2 L 1IN\
7 7 1T N NN

SR

International

AR WA,
SIS ®

SH International

000003

REQUIREMENTS AND MODEL

FOR IDES—A REAL-TIME
INTRUSION-DETECTION
EXPERT SYSTEM

Final Report

August 1985

By: Dorothy Denning
Peter G. Neumann

Computer Science Laboratory
Computer Science and Technology Division

Contract No. 83F83-01-00

SRI Project 6169-70

SRI international

333 Ravenswood Avenue

Menlo Park, California 94025-3493
Telephone: (415) 326-6200

Cable: SR! INTL MPK

TWX: 910-373-2046

Telex: 334 486

000004
Intrusion Detection Page i

Table of Contents
1. Introduction
2. Requirements
3. A Model of Intrusion Detection
3.1. Subjects and Objects
3.2. Audit Records
3.3. Profiles
3.3.1. Metrics
3.3.2. Statistical Models
3.3.3. Profile Structure
3.3.4. Profiles for Classes of Subjects and Objects
3.3.5. Profile Templates
3.4. Anomaly Records
3.5. Activity Rules
3.5.1. Audit-Record Rules
3.5.2. Periodic-Activity-Update Rules
3.5.3. Anomaly-Record Rules
3.5.4. Periodic-Anomaly-Analysis Rules
4. Applying the Model
4.1. Auditing
4.1.1. Complex Operations on Multiple Objects
4.1.2. Time of Audit
4.1.3. Deficiencies of Existing Audit Mechanisms
4.1.4. Sample Audit
4.2. Activity Profiles
4.2.1. Variable Types
4.2.2. Login and Session Profiles
4.2.3. Command or Program Execution Profiles
4.2 4. File-Access Profiles
4.2.5. Database-Access Profiles
4.2.6. Profiles for Other Activities
4.2.7. New Users and Objects
4.3. Activity Rules
4.3.1. Audit-Record and Periodic-Activity-Update Rules
4.3.2. Anomaly-Record and Periodic-Anomaly-Analysis Rules
5. System Design
5.1. System Configuration
5.2. IDES Monitor
5.3. IDES Knowledge Base and Database Management System
6. Research Questions
7. Conclusions and Future Work
I. Sample Cases of Intrusion
II. Security Flaws in Computer Systems

Appendices

000005

Intrusion Detection Page ii Appendices

List of Figures

Figure 3-1:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:

Figure 4-8:
Figure 4-9:

Figure 5-1:

Hierarchy of Subjects and Objects.

Hypothetical Sequence of Activity.

Audit Records for Activity of Figure 4-1.

Subtype Moments.

Simple Event Counter, Operational Model.

Interval Counter, Operational Model.

Event Counter, Mean and Standard Deviation Model.

Event Counter By Day and Hour, Mean and Standard Deviation
Model.

Resource Measure over Activity, Mean and Standard Deviation
Model.

Resource Measure over Time, Mean and Standard Deviation
Model.

System Configuration.

17
30
31
34
35
36
37

39

40

60

000006
Intrusion Detection Page 1 Introduction

1. Introduction

The development of a real-time intrusion-detection system is motivated by four
factors: (1) most existing systems have security flaws that render them susceptible to
intrusions, penetrations, and other forms of abuse; finding and fixing all these
deficiencies is not feasible for technical and economic reasons; (2) existing systems with
known flaws are not easily replaced by systems that are more secure -- mainly because
the systems have attractive features that are missing in the more-secure systems, or else
they cannot be replaced for economic reasons; (3) developing systems that are absolutely
secure Is extremely difficult, if not generally impossible; and (4) even the most secure
systems are vulnerable to abuses by insiders who misuse their privileges. Thus, a
mechanism that could detect intrusions while they are in progress would be extremely
valuable, especially if such a mechanism did not have to know about the particular

deficiencies of the target system. Currently, there are no such mechanisms.

The purpose of this report is to lay the groundwork for a real-time intrusion-
detection expert system called IDES that could detect security violations independent of
whether they are initiated by outsiders who attempt to break into a system or by
insiders who attempt to misuse the privileges of their accounts. IDES is based on the
hypothesis that exploitation of a system’s vulnerabilities involves abnormal use of the
system; therefore, security violations could be detected from abnormal patterns of system
usage. The following examples illustrate (see Appendix I for recent cases of intrusion
and Appendix II for examples of known security flaws that can lead to intrusions of the

type described here):

e Attempted break-in -- If someone attempts to break into a system by trying
many passwords with a single login identifier, the number of login failures for
the account will increase; if he tries one password with different accounts, the
number of login failures for the system as a whole will increase.

® Masquerading or success ful break-in -- If someone logs into a system
through an unauthorized account and password (e.g., obtained by guessing,
browsing through someone’s desk, or scanning bulletin boards), the login
time, location, or connection may differ from that of the account’s legitimate
user. In addition, the penetrator’s behavior on the system may differ
considerably from that of the legitimate user; in particular, he might spend

000007
Intrusion Detection Page 2 Introduction

most of his time browsing through file directories and executing system status
commands, whereas the legitimate user might concentrate on editing one file

or compiling and linking programs. Many break-ins have been discovered by
security officers or other users on the system who have noticed the alleged

user behaving strangely.

o Penetration by legitimate user -- If a user attempts to penetrate the security
mechanisms in the operating system, we would expect to see some deviation
from his normal use of the system even if his attempt fails; he may execute
different programs or trigger more protection violations from attempts to
access unauthorized files or programs. If his attempt succeeds, he will have
access to commands and files not normally permitted to him.

o Leakage by legitimate user -- If a user with access to sensitive documents
decides to leak these documents, the user may begin logging into the system
at unusual times (e.g., late at night), reading through more files than usual,
routing data to remote printers, or generating more hardcopy than usual.

e In ference by legitimate user -- If a user with access to a database attempts to
obtain unauthorized data from the database using inference techniques, he
may retrieve more records than usual.

e Trojan horse -- If a Trojan horse is planted in or substituted for a program,
its behavior, e.g., CPU time or I/O activity, may change. For example, a
Trojan horse login program might write passwords to an obscure file. If a
Trojan horse is planted in an experimental library directory that is searched
before the standard system directory, there would suddenly be increased
activity for the experimental version and decreased activity for the standard
version. If a Trojan Horse tries to leak information covertly by allocating
available resources or locking out files, the number of resource-exhaustion or
file-open exceptions may increase.

e Virus -- A virus planted in a system might cause an increase in the frequency
of executable files rewritten, storage used by executable files, or a particular
program being executed as the virus spreads; or an increase in frequency of
file deletions (if the virus is particularly destructive).

® Denial-of-Service -- If an intruder is able to monopolize a resource (e.g.,
network) in such a way that other users are denied access to the resource,
activity measured with respect to the intruder or resource may be abnormally
high, while activity for the other users may be low.

Unfortunately, the above forms of aberrant usage can also be linked with actions

unrelated to security. They could be a sign of a user changing work tasks, acquiring new

000008 :
Intrusion Detection Page 3 Introduction

skills, or making typing mistakes; software updates; or changing workload on the system.
Learning what activity measures discriminate intrusions from other factors will require

experimental investigation.

The basic approach of IDES is to monitor system activity as it is recorded in audit
records. IDES will examine the audit records as they are generated, update profiles that
characterize the behavior of subjects (users) with respect to objects (files, commands,
etc), and ascertain whether current activity is abnormal with respect to the profiles.
When an anomaly is detected, it will determine whether the security officer should be
alerted immediately to a possible intrusion. Periodically, it may also check activity or
anomalies accumulated over a time interval. The security officer assists IDES in
establishing activities to monitor, but the IDES software and much of its database is

system-independent.

IDES monitors the standard operations on a target system: logins, command and
program executions, file and device accesses, etc., looking only for deviations in usage. It
does not attempt to hunt for specific pattern matches that are known or suspected to
exploit a particular security flaw in the system; indeed, it has no knowledge of the target
system’s security mechanisms or its deficiencies. Although a flaw-based detection
mechanism may have some value, it would be considerably more complex and unable to
cope with intrusions that exploit deficiencies that are not suspected or with personnel-
related vulnerabilities. The approach taken by IDES has the advantage of being system-
independent and capable of detecting intrusions when the vulnerability that allowed the

intrusion to take place is unknown. By detecting the intrusion, however, IDES may

assist the security officer in locating vulnerabilities.

IDES cannot be expected to detect all intrusions. Some intrusions may involve
activity that is not monitored by IDES -- e.g., because it is at too low a level in the
system. In addition, a person with enough knowledge about IDES may be able to defeat
1t through gradual modifications of behavior. The goal of IDES is to detect most

intrusions and to make it extremely difficult to escape detection.

000009
Intrusion Detection Page 4 Introduction

Although IDES will monitor specific target systems, it will have a built-in system-
independent knowledge base that contains templates for generating profiles as well as
rules for capturing knowledge about the normal behavior of a system (by updating
profiles), detecting abnormal behavior (by statistical tests), and analyzing and reporting
abnormalities to the security officer. This system-independent knowledge base, which

must be developed by human experts in the field, represents the expert system aspect of

IDES.

The remainder of this report is organized as follows: Section 2 states the
requirements for IDES. Section 3 presents a model of intrusion detection based on
subjects, objects, audit records, profiles, anomaly records, and rules. Section 4 describes
and illustrates how the model can be applied to real systems. Section 5 outlines a
possible system design for IDES. Section 6 enumerates some research questions. Finally,
Section 7 provides our conclusions, namely that the approach appears to be feasible,
powerful, and suitable for the subsequent development of a prototype intrusion-detection

system.

000010
Intrusion Detection Page 5 Requirements

2. Requirements

We will use the term system or target system to refer to a computer system (and
its applications) that is being monitored for intrusions. The intrusion-detection system
itself is generally referred to as IDES. IDES may run on hardware that is physically
separate from that of the target system, and may monitor more than one system
simultaneously. (IDES might also seek to detect intrusions within its own computer

base.)

The requirements of IDES are as follows:

1. Intrusions detected. IDES should be able to detect a wide range of possible
intrusions, including the following:

a. Atlempted break-in -- attempts by outsiders to break into a system,
typically by trying different passwords with one or more accounts.

b. Masquerading -- seemingly legitimate accesses resulting from someone
having acquired another user’s identifier and password, and logging into
the system as that user.

c. Penetration -- attempts to circumvent access controls, including
password mechanisms, that may be inadequate or incomplete. Two
types of penetration are particularly relevant: browsing and tampering.

e Browsing: attempts to violate the desired privacy of user or
system information.

e Tampering -- attempts to alter user or system information.

d. Second-order access violations -- attempts to gain unauthorized
information through inference or aggregation of collections of individual
data items, access to each item of which is authorized. The inference
and aggregation security policies may or may not be stated explicitly,
and may or may not be enforced by the system. (At present these
policies tend to be neither stated nor enforced, but problems resulting
therefrom are becoming clearly recognized as important in various
contexts.)

e. Channels -- attempts to leak sensitive information from the system or
within the system (overtly or covertly), or to exploit existing leakage
paths. Two kinds of covert channels are relevant: storage channels

000011

Intrusion Detection Page 6 Requirements

(which involve events such as resource exhaustion and exception
conditions) and timing channels (which involve inferences based on
temporal properties of the system). Such violations may or may not
involve collaboration between different users.

f. Denial of service -- attempts to monopolize or disable resources for the
purpose of denying service to other users.

g. Side-effects -- injection of viruses, worms, or similar programs that can
disrupt service, compromise users, and lead to denial-of-service or
serious damage to data and software. Such side-effects may be
completely unnoticeable to the victim, but might nevertheless be
detectable by IDES (e.g., because of detectable changes in normal
system behavior or alterations of programs that have been changed
suspiciously).

. Applicability. IDES should be adaptable to different hardware, different

operating systems, and different application environments, e.g., C3I systems,
ship-board information systems, general-purpose time-sharing systems,
message systems, and networks of computing systems. The system design
and software should be application-independent, with all application-
dependent information represented in the IDES database rather than in the
software.

. Discriminating power. IDES should have the capability of providing a high

rate of detection and a low rate of false alarms. This is not straightforward,
since adjusting one parameter to increase the detection rate could have the
side effect of increasing the false-alarm rate. It will be necessary to
determine which activities and statistical measures have the best
discriminating power.

. Ease of use. IDES should be considerate of its users, e.g., providing help and

prompt facilities, and requiring positive confirmations in cases of irrevocable
actions. An example of the latter case would be a request to delete the IDES
database, the result of accidentally mistyping one argument. (The system
will be used exclusively by trained security officers, which should simplify this
requirement somewhat.)

. Mods fiability. IDES should have facilities for setting and altering

parameters and inserting new rules, but controllably and reliably so that
inconsistent changes cannot cause unexpected results (e.g., in setting
thresholds contrarily, so that no intrusions would ever be detected). Its
output should help the security officer determine which activities and
statistical measures have the best discriminating power, so that this
information can be incorporated into its parameters and rules.

000012
Intrusion Detection Page 7 Requirements

6. Self-Learning. IDES should learn what constitutes normal behavior from its
monitoring.

7. Real-time detection. To detect intrusions while they are in progress requires
that the audit records be made immediately available to IDES for processing,
and that IDES itself be able to keep up with the rate at which they are
generated. This may limit the level at which auditing can be monitored.
Although IDES is designed primarily for real-time detection, the IDES
database will also be useful in after-the-fact sleuthing regarding earlier
intrusions.

8. Security of IDES and its database. The system must enforce privacy1 and
integrity of the IDES database (including nonalterability of primitive
information that should remain intact for historical reasons), and restrict
denials of service within IDES itself. In addition, the IDES interface used by

the monitored system must itself be secure, to prevent spoofing.2

1Audit-trails often contain sensitive items. For example, examination of live data for the MILNET
TACACS audit trail [3] shows that the data are littered with passwords, typed out of sync with the TAC
login sequence.

2Many intrusions that IDES will attempt to detect could represent problems in IDES itself were IDES
implemented on the target system. The user community on IDES must be restricted to prevent
masquerading, penetration, and tampering. In addition, the possibility of aggregation and inference on the
IDES data might require that IDES be classified at a level higher than any of the IDES data. (In practice,
this problem has usually either been ignored completely, or else finessed by implicitly giving all security
officers higher-than-system-high clearances.) Furthermore, interactive use of IDES should itself be
audited, to monitor and/or detect potential misuse by security officers.

000013
Intrusion Detection Page 8 Model

3. A Model of Intrusion Detection

A system for intrusion detection can be modeled in terms of six main components:
e Subjects -- initiators of activity on a target system.
e Objects -- resources managed by the system.

e Audit records -- generated by the target system in response to actions
performed or attempted by subjects on objects.

e Profiles -- structures that characterize the behavior of subjects with respect
to objects in terms of statistical metrics and models of observed activity.

e Anomaly records -- generated when abnormal behavior is detected.

e Activity rules -- actions taken when some condition is satisfied, which update
profiles, detect abnormal behavior, and produce reports.

3.1. Subjects and Objects

Subjects are the initiators of actions in the system. A subject is typically a
terminal user, but might also be a process acting on behalf of users or groups of users, or
might be the system itself. All activity arises through commands initiated by subjects.
Subjects may be grouped into different classes (e.g., user groups) for the purpose of

controlling access to objects in the system. User groups may overlap.

Objects are the receptors of actions and typically include such entities as files,
programs, messages, records, terminals, printers, and user- or program-created
structures. When subjects can be recipients of actions (e.g., electronic mail), then those
subjects are also considered to be objects in the model. Objects are grouped into classes
by type (program, text file, etc.). Additional structure may also be imposed, e.g., records
may be grouped into files or database relations; files may be grouped into directories.
Different environments may require different object granularity; e.g., for some database
applications, granularity at the record level may be desired, whereas for most

applications, granularity at the file or directory level may suffice.

000014
Intrusion Detection Page 9 Model

3.2. Audit Records

Audit Records are 6-tuples representing actions performed by subjects on objects:

<Subject, Action, Object, Exception-Condition, Resource-Usage, Time-stamp>
where

® Action -- operation performed by the subject on or with the object, e.g.,
login, logout, read, execute.

e Exception-Condition-- denotes which, if any, exception condition is raised on
the return. Note that IDES should know the actual exception condition raised
by the system, not just the apparent exception condition returned to the
subject (which may be censored for security reasons).

® Resource-Usage -- list of quantitative elements, where each element gives the
amount used of some resource, e.g., number of lines or pages printed, number
of records read or written, CPU time or I/O units used, session elapsed time.

e Time-stamp -- a time/date stamp that identifies when the action took place.
We assume that time-stamps are unique, so that audit records are uniquely
identified by them.

We assume that each field is self-identifying, either implicitly or explicitly; e.g., the
action field either implies the type of the expected object field or else the object field
itself specifies its type. If audit records are collected for multiple systems, then an
additional field is needed for a system identifier. For simplicity, we will assume here

that IDES monitors only one system.

The target system is responsible for auditing and for transmitting audit records to
IDES for analysis. It may also keep an independent audit trail. When IDES receives an
audit record, it processes it according to its rules and inserts it in its database.> For
convenience here, we will imagine that IDES stores all audit records in a single relation
Audit-Records (as in a relational database system) with attributes Subject, Action,

Object, Exception-Condition, Resource-Usage, and Time-stamp.

3IDES must, of course, validate each record before incorporating it into its database, to ensure that the
database cannot be corrupted by spurious or erroneous records.

000015
Intrusion Detection Page 10 Model

Rather than formally modeling a set of operators for manipulating audit records
and other structures in the IDES database, we will simply assume that IDES has
capabilities of both relational and statistical database systems (though we do not require
that an implementation of IDES use a relational database system). A set of audit

records is then specified by a selection query of the form:
RETRIEVE * FROM Audit-Records WHERE F,

where F is any logical formula over the attributes and their domains, and “*"" denotes all

attributes in the records matching the formula.

Since each audit record specifies a subject and object, it is conceptually associated
with some cell in an ‘“‘audit matrix”’ whose rows correspond to subjects and columns to

objects. Thus, the set of all audit records defined by the query:
RETRIEVE * FROM Audit-Records WHERE Subject = s and Object = o ,

is associated with row s, column o. Similar queries define the set of audit records for a
row (all records associated with a given subject), column (all records associated with a
given object), or arbitrary collection of cells in the matrix. Every statistical measure is

computed from audit records associated with one or more cells in the matrix.

The audit matrix is analogous to the ‘“access-matrix’”’ protection model, which
specifies the rights of subjects to access objects; that is, the actions that each subject is
authorized to perform on each object. The intrusion-detection model of IDES differs
from the access-matrix model by substituting the concept of ‘‘action performed’” (as
evidenced by an audit record associated with a cell in the matrix) for “‘action
authorized” (as specified by an access right in the matrix cell). Indeed, IDES observes
activity without regard for authorization, implicitly assuming that the access controls in
the system permitted an action to occur. Its job is to determine whether activity is

unusual enough to suspect an intrusion.

000016
Intrusion Detection Page 11 Model

3.3. Profiles

There are two kinds of profiles: activity profiles and profile templates. An activity
profile characterizes the behavior of a given subject (or set of subjects) with respect to a
given object (or set thereof), thereby serving as a signature or description of normal
activity for its respective subject(s) and object(s). Observed behavior is characterized in
terms of a statistical metric and model. A metric is a random variable z representing a
quantitative measure accumulated over a period. The period may be a fixed interval of
time {(minute, hour, day, week, etc.), or the time between two audit-related events (i.e.,
between login and logout, program initiation and program termination, file open and file
close, etc.). From the audit records, IDES obtains observations (sample points) z,of z,
which are used together with a statistical model to determine whether a new observation
is abnormal. The statistical model makes no assumptions about the underlying
distribution of z; all knowledge about z is obtained from observations. We shall first
discuss metrics and models, and then describe the structure of an activity profile. Next,
we shall describe profiles for classes of subjects and objects. Finally, we shall discuss

how profiles can be generated from profile templates.

3.3.1. Metrics
IDES has three types of metrics:

e Event Counter -- = is the number of audit records satisfying some property
occurring during a period (each audit record corresponds to an event).
Examples of event counters are number of logins during an hour, number of
times some command is executed during a login session, number of password
failures during a minute, and number of file-access violations during a day.

o Interval Timer -- z is the length of time between tivo related events; i.e., the
difference between the time-stamps in the respective audit records. Examples
are the length of time between successive logins into an account and the
length of time between successive executions of some command.

® Resource Measure -- x is the quantity of resources consumed by some action
during a period as specified in the Resource-Usage field of the audit records.
Examples are the total number of pages printed by a user per day, total
amount of CPU time consumed by some program during a single execution,
and total number of records read per day. Note that a resource measure in
IDES is implemented as an event counter or interval timer on the target
system. For example, the number of pages printed during a login session is

000017
Intrusion Detection Page 12 Model

implemented on the target system as an event counter that counts the
number of print events between login and logout, CPU time consumed by a
program as an interval timer that runs between program initiation and
termination, session elapsed time as an interval timer that runs between login
and logout. Thus, whereas event counters and interval timers in IDES
measure events at the audit-record level, resource measures acquire data from
events on the target system that occur at a level below the audit records.
The Resource-Usage field of audit records thereby provides a means of data
reduction so that fewer events need be explicitly recorded in audit records.

3.3.2. Statistical Models
Given a metric for a random variable £ and n observations Z,, .- T, the purpose

of a statistical model of z is to determine whether a new observation T, is abnormal

with respect to the previous observations. The following models may be included in

IDES:

1. Operational Model. This model is based on the operational assumption that
abnormality can be decided by comparing a new observation of z against
fixed limits. Although the previous sample points for z are not used,
presumably the limits are determined from prior observations of the same
type of variable. The operational model is most applicable to metrics where
experience has shown that certain values are frequently linked with
intrusions. An example is an event counter for the number of password
failures during a brief period, where more than 10, say, suggests an
attempted break-in. Another example is an interval timer for the length of
time between successive logins into an account, where more than a month,
say, suggests a break-in into a ‘‘dead’ account.

2. Mean and Standard Deviation Model. This model is based on the
assumption that all we know about z,, ..., z are mean and standard

deviation as determined from its first two moments:
sum = 1‘1 + ...+ CEn

2 2
sumsquares = z, + ...+ r,
mean = sum/n

stdev = sqri(sumsquares/(n—1) — mean?) .

A new observation T, .1 is defined to be abnormal if it falls outside a

con fidence interval that is d standard deviations from the mean for some
parameter d:

000018
Intrusion Detection Page 13 Model

mean + d X stdev

By Chebyshev’s inequality, the probability of a value falling outside this
interval is at most 1/d2; for d = 4, for example, it is at most .0625.

This model is applicable to event counters, interval timers, and resource
measures accumulated over a fixed time interval or between two related
events. It has two advantages over an operational model: First, it requires
no prior knowledge about normal activity in order to set limits; instead, it
learns what constitutes normal activity from its observations, and the
confidence intervals automatically reflect this increased knowledge. Second,
because the confidence intervals depend on observed data, it allows different
limits to be used with different subjects and objects; therefore, what may be
normal for one user can be abnormal for another. If all users and objects
have the same limits for normal usage, masqueraders, for example, could not
be detected.

Note that the moments sum and sumsquares can be updated dynamically
with each occurrence, so that it is unnecessary to keep all values of z to
compute mean and standard deviation when a new value arrives. Also, 0 (or
null) occurrences should be included so as not to bias the data.

A slight variation on the mean and standard deviation model is to weight the
computations, with greater weights placed on more recent values.

3. Multivariate Model. This model is similar to the mean and standard
deviation model except that it is based on correlations among two or more
metrics. This model would be useful if experimental data show that better
discriminating power can be obtained from combinations of related measures
rather than individually -- e.g., CPU time and I/O units used by a program,
login frequency and session elapsed time (which may be inversely related).

4. Markov Process Model. This model, which applies only to event counters,
regards each distinct type of event (audit record) as a state variable, and uses
a state transition matrix to characterize the transition frequencies between
states (rather than just the frequencies of the individual states -- i.e., audit
records -- taken separately). A new observation is defined to be abnormal if
its probability as determined by the previous state and the transition matrix
is too low. This model might be useful for looking at transitions between
certain commands where command sequences were important.

5. Ttme Series Model. This model, which uses an interval timer together with
an event counter or resource measure, takes into account the order and inter-
arrival times of the observations Ty ooy T, 88 well as their values. A new

observation is abnormal if its probability of occurring at that time is too low.

000019
Intrusion Detection Page 14 Model

A time series has the advautage of measuring trends of behavior over time
and detecting gradual but significant shifts in behavior, but the disadvantage
of being more costly than mean and standard deviation.

Other statistical models can be considered, for example, models that use more than

the first two moments but less than the full set of values.

3.3.3. Profile Structure

An activity profile contains information that identifies the statistical model and
metric of a random variable, as well as the set of audit events measured by the variable.
The structure of a profile contains 10 components, the first 7 of which are independent

of the specific subjects and objects measured:

<Variable-Name, Action-Pattern, Exception-Pattern, Resource-Usage-Pattern,
Period, Variable-Type, Threshold, Subject-Pattern, Object-Pattern, Value>

Subject- and Object-Independent Components:

e Vauriable-Name -- name of variable.

® Action-Pattern -- pattern that matches zero or more actions in the audit
records, e.g., ‘login’, ‘read’, ‘execute’.

o Ezxception-Pattern -- pattern that matches on the Exception-Condition field
of an audit record.

® Resource-Usage-Pattern -- pattern that matches on the Resource-Usage field
of an audit record

® Period -- time interval for measurement, e.g., day, hour, minute (expressed in
terms of clock units). This component is null if there is no fixed time
interval; i.e., the period is the duration of the activity (e.g., duration of
program execution).

e Variable-Type -- name of abstract data type that defines a particular type of
metric and statistical model, e.g., event counter with mean and standard
deviation model.

® Threshold -- parameter(s) defining limit(s) used in statistical test to determine
abnormality. This field and its interpretation is determined by the statistical
model (Variable-Type). For the operational model, it is an upper (and
possibly lower) bound on the value of an observation; for the mean and
standard deviation model, it is the number of standard deviations from the

Intrusion Detection

mean.

parameters.

‘string’
%

| #

| IN(list)

|

1 p — name

|

pl p2
pl|p2
pl, p2
-p

000020
Page 15 Model

Subject- and Object-Dependent Components:
e Subject-Pattern -- pattern that matches on the Subject field of audit records.
e Object-Pattern -- pattern that matches on the Object field of audit records.
e Value -- value of current (most recent) observation and parameters used by
the statistical model to represent distribution of previous values. For the

mean and standard deviation model, these parameters are count, sum, and
sum-of-squares (first two moments). The operational model requires no

A profile is uniquely identified by Variable-Name, Subject-Pattern, and Object-
Pattern. All components of a profile are invariant except for Value.

Although we leave unspecified the exact format for patterns, we will adapt a

notation that borrows constructs from SNOBOL:

Pattern Matching Constructs

string of characters to be matched exactly.

wild card matching any sequence of 0 or more characters
{(wild cards can be embedded in constant strings).

match an arbitrary numeric string.
match an arbitrary string contained in the set list.

the string matched by p is immediately associated with name
for later reference.

match pattern pl followed by p2.
match pattern pl or p2.

match pattern pl and p2.

match anything but pattern p.

Examples of patterns are:

000021
Intrusion Detection Page 16 Model

‘Smith’
* — User -- match any string and assign result to User

‘CPU=" # — Amount -- match string °‘CPU=" followed by integer,
assign integer to Amount

‘<Library>*’ -- match files in <Library> directory

—* -- do not match anything (i.e., match fails)

Whenever IDES receives an audit record that matches a variable’s patterns, it
updates the variable’s distribution and checks for abnormality according to the variable’s
type and anomaly threshold. The distribution of values for a variable is thus derived --

l.e., learned -- as audit records matching the profile patterns are processed.

3.3.4. Profiles for Classes of Subjects and Objects

Profiles can be defined for individual subject-object pairs (i.e., where the Subject
and Object patterns match specific names, e.g, Subject ‘Smith’ and Object ‘Foo’), or for
aggregates of subjects and objects (i.e., where the Subject and Object patterns match
sets of names) as shown in Figure 3-1. For example, file-activity profiles could be
created for pairs of individual users and files, for groups of users with respect to specific
files, for individual users with respect to classes of files, or for groups of users with

respect to file classes. The nodes in the lattice are interpreted as follows:

o Subject s - Object o: actions performed by subject s on object o as derived
from the matching audit records:

RETRIEVE * FROM Audit-Records
WHERE Subject = s AND Object = o .

Examples: user Smith - file Foo, user Jones - file Chess.

e Subject s - Object Class O: actions performed by subject s aggregated over
all objects in class O as derived from the audit records:

RETRIEVE * FROM Audit-Records
WHERE Subject = s AND Object IN O .

Examples: user Smith - all text files, user Smith - all executable files. The
expression “‘Object IN O might be represented as a pattern match on a
subfield of the Object field that specifies the object’s type (class), as a pattern

000022
Intrusion Detection Page 17 Model

| Figure 3-1: Hierarchy of Subjects and Objects.

SubjectClass ObjectClass
| I \ / I
| I \ / !

\/
SubjectClass-ObjectClass |
/\ I
/ N\ I
I / 0\ I
Subject-ObjectClass SubjectClass-Object
: \ /
| \ /
| \ /
\ /
\ /
Subject-Object

l |
I I
I |
Subject \ / Object
| |
| I
I
I
|

000023
Intrusion Detection Page 18 Model

match directly on the object’s name (e.g., the pattern ‘<Smith>*" for all
files in Smith’s library, the pattern ‘*.EXE’ for all executable files), or as a
pattern match that tests whether the object is in the set O (e.g., “IN(O)").

e Subject Class S - Object o: actions performed on object o aggregated over all
subjects in class S as derived from:

RETRIEVE * FROM Audit-Records
WHERE Subject IN S AND Object = o.

Examples: privileged users - directory file <Library>, nonprivileged users -
directory file <Library>.

o Subject Class S - Object Class O: actions aggregated over all subjects in
class S and objects in class O as derived from:

RETRIEVE * FROM Audit-Records
WHERE Subject IN S AND Object IN O .

Examples: privileged users - system files, nonprivileged users - system files.

o Subject s: actions performed by subject s aggregated over all objects as
derived from:

RETRIEVE * FROM Audit-Records WHERE Subject = s.

Examples: user session activity.

® Object o: actions performed on object o aggregated over all subjects as
derived from:

RETRIEVE * FROM Audit-Records WHERE Object = o.
Examples: password file activity.

o Subject Class S: actions aggregated over all subjects in class S and all
objects as derived from:

RETRIEVE * FROM Audit-Records WHERE Subject IN S .
Examples: privileged user activity, unprivileged user activity.

® Object Class O: actions aggregated over all objects in class O and all
subjects as derived from:

RETRIEVE * FROM Audit-Records WHERE Object IN O.

Examples: executable file activity.

000024
Intrusion Detection Page 19 Model

e System: actions aggregated over all subjects and objects:
RETRIEVE * FROM Audit-Records

Examples: general system activity

The random variable represented by a profile for a class can aggregate activity for

the class in two ways:

o Class-as-a-whole activity -- The set of all subjects or objects in the class is
treated as a single entity, and each observation of the random variable
represents aggregate activity for the entity. An example is a profile for the
class of all users representing the average number of logins into the system

! per day, where all users are treated as a single entity.

e Aggregate individual activity -- The subjects or objects in the class are
treated as distinct entities, and each observation of the random variable
represents activity for some member of the class. An example is a profile for
the class of all users characterizing the average number of logins by any one
user per day. Thus, the profile represents a ‘typical’ member of the class.

Whereas class-as-a-whole activity can be defined by an event counter, interval
timer, or resource measure for the class, aggregate individual activity requires separate
metrics for each member of the class. Thus, it is defined in terms of the lower-level

profiles (in the sense of the lattice) for the individual class members. For example,

average login frequency per day is defined as the average of the daily total frequencies in
the individual user login profiles. A measure for a class-as-a-whole could also be defined

‘ in terms of lower-level profiles, but this is not necessary.

The two methods of aggregation serve different purposes with respect to intrusion
detection. Class-as-a-whole activity reveals whether some general pattern of behavior is
normal with respect to a class. A variable that gives the frequency with which the class
of executable program files are updated in the system per day, for example, might be
useful for detecting the injection of a virus into the system (which causes executable files
to be rewritten as the virus spreads). A frequency distribution of remote logins into the

class of dial-up lines might be useful for detecting attempted break-ins.

000025
Intrusion Detection Page 20 Model

Aggregate individual activity reveals whether the behavior of a given user (or
object) is consistent with that of other users (or objects). This may be useful for

detecting intrusions by new users who have deviant behavior from the start.

3.3.5. Profile Templates
When user accounts and objects can be created dynamically, a mechanism is
needed to generate activity profiles for new subjects and objects. Three approaches are

possible:

1. Manual create -- the security officer explicitly requests IDES to create all
profiles for the new subject or object.

2. Automatic explicit create -- IDES automatically generates all profiles for a
new user or object when it receives a ‘create’ record in the audit trail.

3. First use -- IDES automatically generates a profile when a subject (new or
old) first uses an object (new or old).

The first approach has the obvious disadvantage of requiring manual intervention
on the part of the security officer. The second approach overcomes this disadvantage,
but introduces two others. The first is that it does not automatically deal with startup
conditions, where there will be many existing subjects and objects. The second is that it
requires a subject-object profile to be generated for any pair that is a candidate for
monitoring, even if the subject never uses the particular object. This could cause many
more profiles than necessary to be generated. For example, suppose file accesses are
monitored at the level of individual users and files. Consider a system with 1000 users,
where each user has an average of 200 files, giving 200,000 files total and 200,000,000
possible combinations of user-file pairs. If each user accesses at most 300 of those files,

however, only 300,000 profiles are needed.

IDES follows the third approach, which overcomes the disadvantages of the others
by generating profiles when they are needed from templates. A profile template has the
same structure as the profile it generates, except that the subject and object patterns
define both a matching pattern (on the audit records) and a replacement pattern (to

place in the generated profile). The format for the fields Subject-Pattern and Object-

000026
Intrusion Detection Page 21 Model

Pattern is thus:
matching-pattern <- replacement-pattern

where the patterns are defined dynamically during pattern matching. The Value

component of a template profile contains the initial values for the variable, as specified

by its type.

When a new audit record is received, a process matches the record against both
activity profiles and template profiles, obtaining existing profiles and new profiles
generated from the matching templates. The subject and object patterns in a generated
profile contain the replacement patterns defined during the match; all other fields are
copied exactly from the template. If a new profile has the same patterns (for all
components) as an existing activity profile, it is discarded; otherwise, it is added to the
set of activity profiles. The process then returns the activity profiles matching the audit

record.

Separate matching and replacement patterns are needed so that a template can
match a wide range of subjects and objects, yet generate a profile for specific subjects,

objects, and classes thereof. For examle, consider the following patterns:

Subject-Pattern: * — user <- user
Object-Pattern: IN(Special-Files) — file <- file

The subject pattern will match any user name and generate a replacement pattern with
that name. Similarly, the object pattern will match any file in the list Special-Files and
generate a replacement pattern with that name. Now, suppose the list Special-Files
contains the file names Password and Accounts. The following shows a sequence of audit
records and the profiles that a template with these matching and replacement patterns

will generate:

Audit Records Generated Profiles
Subject Object Subject-Pattern Object-Pattern
‘Smith’ ‘Password’ ‘Smith’ ‘Password’
‘Smith’ ‘Accounts’ ‘Smith’ ‘Accounts’

‘Jones’ ‘Accounts’ ¢ Jones’ ‘Accounts’

000027
Intrusion Detection Page 22 Model

The subject and object patterns for a template can be mutually dependent as in

following patterns:

Subject-Pattern: * — user <- user
Object-Pattern: ‘<’ user ‘>x’ <- ‘<’ user ‘>%’

Here, the object pattern will match any file in the user’s directory and generate a profile
for the user’s directory (if one does not already exist). The following shows a sequence of

audit records and the profiles that would be generated from a template containing these

patterns:
Audit Records Generated Profiles
Subject Object Subject-Pattern Object-Pattern
‘Smith’ ‘<Smith>Game’ ‘Smith’ ‘<Smith>*’
‘Smith’ ‘<Smith>Letter’ generated profile is same as above and discarded
¢ Jones’ ‘<Jones>Foo’ *Jones’ ‘<Jones>*’
‘Smith’ ‘<Jones>Foo no match, so no profile is generated

3.4. Anomaly Records

Through its activity rules (next subsection), IDES updates activity profiles and
checks for anomalous behavior whenever an audit record is generated or a period
terminates. If abnormal behavior is detected, an anomaly record is generated having

three components:
<Event, Time-stamp, Profile>

where

e Event -- indicates the event giving rise to the abnormality and is either
‘audit’, meaning the data in an audit record was found abnormal, or ‘period’,
meaning the data accumulated over the current interval was found abnormal.

e Time-stamp -- either the time-stamp in the audit record or interval stop time
(since we assume that audit records are identified by their time-stamps, this
provides a means of tying an anomaly back to an audit record).

e Profile -- activity profile with respect to which the abnormality was detected
(rather than including the complete profile, IDES might include a ‘key’ field,
which identifies the profile in the database, and the current state of the
Value field).

000028
Intrusion Detection Page 23 Model

3.5. Activity Rules

An activity rule specifies an action to be taken when an audit record or anomaly
record is generated, or a time period ends. It consists of two parts: a condition that,
when satisfied, causes the rule to be ‘fired’, and a body. We will use the term ‘body’
rather than ‘action’ to avoid confusion with the actions monitored by IDES. The

condition is specified as a pattern match on an event. There are four types of rules:

e Audit-record rule, triggered by a match between a new audit record and an
activity profile, updates the profile and checks for anomalous behavior.

® Periodic-activity-update rule, triggered by the end of an interval matching
the period component of an activity profile, updates the profile and checks
for anomalous behavior.

e Anomaly-record rules, triggered by the generation of an anomaly record,
brings the anomaly to the immediate attention of the security officer.

o Periodic-anomaly-analysis rule, triggered by the end of an interval,
generates summary reports of the anomalies during the current period.

3.5.1. Audit-Record Rules

An audit-record rule is triggered whenever a new audit record matches the
patterns in an activity profile. It updates the profile to reflect the activity reported in
the record and checks for deviant behavior. If an abnormality is detected, it generates
an anomaly record. Since the algorithm for updating the profile and checking for
abnormality depends only on the type ¢ of variable (statistical metric and model)
represented by the profile, but not on the profile’s other components (e.g., subject,
object, action, etc.), it can be encoded in a procedure AuditProcesst. Thus, all audit

record rules are represented by the following generic rule:

AUDIT-RECORD RULE
Condition: new Audit.Record
Audit.Record matches Profile
Profile.Variable-Type = {

Body: AuditProcessf(Audit-Record, Profile);
END

Examples of procedures for AuditProcesst are given in Section 4.3.1.

000029
Intrusion Detection Page 24 Model

3.5.2. Periodic-Activity-Update Rules

This type of rule, which is also parameterized by the type ¢ of statistical measure,
is triggered whenever a period of length p completes, the Period component of a profile
is p, and the Variable-Type component is {. The rule updates the matching profile,
checks for abnormal behavior, and generates an anomaly record if an abnormality is

detected. (It may also produce a summary activity report.)

PERIODIC-VARIABLE-UPDATE RULE
Condition: Clock mod p = 0
Profile.Period = p
Profile.Variable-Type = {

Body: PeriodProcesst(Clock, Profile);
END

The parameter Clock gives the time at the end of the period.

When the variable represented by the profile for a class is defined in terms of
lower-level profiles, as is the case for aggregate individual profiles, the procedure
PeriodProcesst must obtain data from the individual profiles constituting the class in
order to update its Value component. Otherwise, the procedure does not require any

data other than what are stored in the profile.

3.5.3. Anomaly-Record Rules

Each anomaly-record rule is triggered whenever a new anomaly record matches
patterns given in the rule for its components Event and Profile. Thus, a rule may be
conditioned on a particular variable, a particular subject or object, on the audit action
that was found to be anomalous, and so forth. For those components of a Profile that
are also patterns (e.g., the subject and object components), the patterns given in an
anomaly rule must be identical for a match to occur; that is, one pattern matches
another only if the patterns are identical. The matching record is brought to the
immediate attention of the security officer, with an indication of the suspected type of

intrusion. The general form of such a rule is as follows:

000030
Intrusion Detection Page 25 Modeli

ANOMALY-RECORD RULE
Condition: new Anomaly-Record
Anomaly-Record.Profile matches profile-pattern
Anomaly-Record.Event matches event-pattern

Body: PrintAlert(‘Suspect intrusion of type ...’, Anomaly-record);
END
3.5.4. Periodic-Anomaly-Analysis Rules
This type of rule is triggered by the end of an interval. It analyzes some set of
anomaly records for the period and generates a report summarizing the anomalies to the

security officer. Its generic form is

PERIODIC-ANOMALY-ANALYSIS RULE
Condition: Clock mod p = 0

Body:
Start = Clock - p;
A = SELECT FROM Anomaly-Records WHERE Anomaly-Record.Time-stamp > Start;
generate summary report of A;

END '

The rule selects all anomaly records belonging to the period from the set (relation)

of all anomaly records, Anomaly-Records.

To facilitate the reporting of anomalies, the model might be enhanced to include
anomaly profiles. An anomaly profile would be similar to an activity profile except that
updates would be triggered by the generation of an anomaly record within IDES rather
than an audit record from the target system. Whether such a structure would be useful,

however, is unclear.

000031
Intrusion Detection Page 26 Application

4. Applying the Model

This section describes and illustrates application of the model to real systems.
Subsection 4.1 discusses several problems associated with generating audit records for
real-time intrusion detection and illustrates how the activity on a system can be
represented by a series of audit records. Subsection 4.2 gives definitions for different
types of activity variables and complete descriptions of profiles that use these types to
measure activity related to login and session activity, command and program execution,
and file and database access. Subsection 4.3 shows how the generic rules are instantiated

to specific types of statistical measures.

4.1. Auditing

This section discusses how complex system activities can be represented by audit
records, when audit records should be generated, and deficiencies of existing audit
mechanisms. An example illustrating how activity on a system is audited is given at the

end.

4.1.1. Complex Operations on Multiple Objects

Most operations on a system involve multiple objects. For example, file copying
involves the copy program, the original file, and the copy. Editing involves the edit
program plus one or more files. Compiling involves the compiler, a source program file,
an object program file, and possibly intermediate files and additional source files
referenced through “include’” statements. Linking involves the linker, object files,
library files, an executable file, and a map file. Sending an electronic mail message
involves the mail program, possibly multiple destinations in the “To”” and “cc” fields,

and possibly “include’ files.

After some consideration, we decided to decompose all activity into single-object
actions so that each audit record references only one object. Thus, for example, file
copying is decomposed into an execute operation on the copy command, a read operation
on the source file, and a write operation on the destination file. There are three reasons
for this decomposition. First, since objects are the protectable entities of a system, the

decomposition is consistent with the protection mechanisms of systems. As noted earlier,

000032
Intrusion Detection Page 27 Application

whereas access controls aim to restrict what actions a subject is allowed to perform on a
given object in accordance with the protection policies of the system, IDES monitors
what actions are attempted and which succeed. IDES can potentially discover both
attempted subversions of the access controls (by noting an abnormality in the number of
exception conditions returned) and successful subversions (by noting an abnormality in
the set of objects accessible to the subject). Second, single-object audit records greatly
simplify the model and its application. Third, the audit records produced by existing
systems generally contain a single object, though some systems provide a way of linking
together the audit records associated with a ‘‘job step” (e.g., copy or compile) so that all
files accessed during execution of a program can be identified. Although it appears that
the combinatorial information lost by decomposition will not interfere with our ability to
detect intrusions, we leave open the possibility of needing a more complex model to

handle multi-object actions.

4.1.2. Time of Audit

The time at which audit records are generated determines what type of data is
available. If the audit record for some action is generated at the time an action is
requested, it is possible to measure successful and unsuccessful attempts (e.g., because of
protection violations) to perform the activity, even if the action should abort or cause a
system crash. If it is generated when the action completes, it is possible to measure the
resources consumed by the action and exception conditions that may cause the action to
terminate abnormally (e.g., because of resource overflow). Thus, auditing an activity
after it completes has the advantage of providing more information, but the
disadvantage of not allowing immediate detection of abnormalities, especially those
related to break-ins and system crashes. Thus, activities such as login, execution of high
risk commands (e.g., to acquire special ‘‘superuser’ privileges), or access to sensitive data
should be audited when they are attempted so that penetrations can be detected
immediately; if resource-usage data are also desired, additional auditing can be
performed on completion as well. For example, access to a database containing highly
sensitive data may be monitored when the access is attempted and then again when it
completes to report the number of records retrieved or updated. Most existing audit

systems monitor session activity at both initiation (login), when the time and location of

000033
Intrusion Detection Page 28 Application

login are recorded, and termination (logout), when the resources consumed during the
session are recorded. They do not, however, monitor both the start and finish of
command and program execution or file accesses. IBM’s System Management Facilities

(SMF) [6], for example, audit only the completion of these activities.

4.1.3. Deficiencies of Existing Audit Mechanisms

The auditing mechanisms of existing systems generally provide the types of records
desired, but may not monitor all of the behavior of potential interest. For example,
Berkeley 4.2 UNIX? [8] monitors command usage but not file accesses or file protection
violations. Some systems do not record all login failures. Most systems do not monitor
the activity of the login program itself (in terms of I/O and CPU activity), possibly
because the resources it consumes are not charged to any user’s account. Programs,
including system programs, that are not invoked at the command level are not explicitly
monitored (their activity is included in that for the main program). The extent to which
a system should be modified to audit additional activity is unclear and requires further

investigation.

Deficiencies in the record structures are also present. Most SMF audit records, for
example, do not contain a subject field; the subject must be reconstructed by linking
together the records associated with a given job. Time-stamps are not always unique;
indeed, they provide the means of linking SMF audit records for a batch job. Requiring
unique time-stamps, however, is not essential if audit records can be uniquely identified
by other fields. Protection violations are sometimes provided through separate record
formats rather than as an exception condition in a common record; VM password failures
at login, for example, are handled this way (there are separate records for successful

logins and password failures).

Another problem with existing audit records is that they contain little or no
descriptive information to identify the values contained therein. Every record type has

its own structure, and the exact format of each record type must be known to interpret

4UNIX is a trademark of Bell Laboratories.

000034
Intrusion Detection Page 29 Application

the values. A uniform record format with self-identifying data would be preferable so
that the IDES software to process the audit records could be system-independent. This
could be achieved either by modifying the software that produces the audit records in

the target system, or by writing a filter that translates the records into a standard IDES

format.

4.1.4. Sample Audit

To see how the actions initiated by users can be represented as audit records,
consider the scenario in Figure 4-1, which shows Smith inserting a preconceived Trojan
horse into a game program, recompiling the program, trying unsuccessfully to install it in
the main <Library> directory, settling for an experimental library <LibraryExp>,
and sending mail to two other users. A user whose search path specifies the
experimental library before the main library would automatically get the intentionally
flawed GAMES program rather than the original one. Independent activity of two other

users, Brown and a would-be interloper, are also shown.

A sequence of audit records for the scenario is shown in Figure 4-2. For simplicity,

we have omitted the Resource-Usage field; thus, the structure of an audit record is
(Subject, Action, Object, Exception-Condition, Time-stamp)

We have generated all audit records at the time the activity is attempted, except for
session activity, which is recorded both at login and logout. (In the Exception-Condition

field, the string ‘0" denotes the absence of a raised exception condition.)

Intrusion Detection

000035
Page 30 Application

Figure 4-1: Hypothetical Sequence of Activity.

COMMAND SEQUENCE

{BY SMITH}

login Smith password

edit

read <Library>GAME.ADA

read TROJAN.HORSE

write GAME.ADA

exit edit

Ada GAME.ADA {compile}

copy GAME .EXE <Library>GAME.EXE
copy GAME.EXE <LibraryExp>GAME.EXE
mail

send to Jones cc Green@USC-ISI
exit mail

logout

{BY BROWN WHILE SMITH LOGGED IN}
login Brown passwordl

connect Smith password?2
directory <Smith>

read <Smith>TROJAN.HORSE

link Smith

logout Smith

logout

SYSTEM RESPONSE

Previous login, failed attempts

Read GAME into edit buffer
Insert Trojan horse
‘‘<Smith>GAME.ADA written®

‘‘GAME.EXE created’’
‘*No write access'’

Time elapsed, charges

Previous login, failed attempts
‘‘Incorrect Password’’
Lists Smith’s files
‘‘No read access’’
‘‘Protection Violation
‘‘Protection Violation
Time elapsed, charges

1)
18

{BY UNIDENTIFIED USER ATTEMPTING TO LOGIN AS JONES}

finger {or who?}

login JONES password3
login JONES password4
login JONES passwordb

'’Please log in.**7

‘‘Login not permitted’’
‘‘Login not permitted’’
System hangs up on the user.

E’Smith had refused links. This would have been ‘“User Not Logged In” if Smith had already logged out.

6Permitted only for superuser or another logged-in job of Smith.

7Some systems permit certain commands prior to login — in which case the response here would be a
list of connected users. However, this practice is risky if it provides would-be penetrators with any helpful

information.

000036
Intrusion Detection Page 31 Application

Figure 4-2: Audit Records for Activity of Figure 4-1.

(Smith, login, hard-wired-terminal A, t0) {Smith Login}

0,
(Smith, execute, <Library>EDIT.EXE, 0, t1) {Edit}
(Smith, read, <Library>GAME.ADA, 0, t2)
(Smith, read, <Smith>TROJAN.HORSE, 0, t3)
(Smith, write, <Smith>GAME.ADA, 0, t4) {Save Trojan horse game}
(Smith, execute, <Library>ADA.EXE, 0, tb) {Compile}
(Smith, read, <Smith>GAME.ADA, 0, t6)
(Smith, write, <Smith>GAME.EXE, 0, t7)
(Smith, execute, <Library>COPY.EXE, 0, t8) {Try to Copy to Library}

(Smith, read, <Smith>GAME.EXE, 0, t9)

(Smith, write, <Library>GAME.EXE, write-viol, t10)

(Smith, execute, <Library>COPY.EXE, 0, t11) {Copy to LibraryExp}
(Smith, read, <Smith>GAME .EXE, 0, t12)

(Smith, write, <LibraryExp>GAME.EXE,0, t13)

(Smith, execute, <Library>MAIL.EXE, 0, t14) {Send mail}

(Smith, send, Jones, 0, t15)

(Smith, send, Green@USC-ISI, 0, t16)

(Brown, login, dial-up-port X, 0, t17) {Brown login}

(Brown, connect, Smith, bad-PW, t18) {Try to connect to Smith}
(Brown, execute, <Library>DIR.EXE, 0, t19) {Read directory}

(Brown, read, <Smith>, 0, t20)

(Brown, read, <Smith>TROJAN .HORSE, read-viol, t21)8

(Brown, link, Smith, link-refused, t22)

(Brown, execute, logout another user, privilege-viol, t23)
(Brown, logout, dial-up-port X, 0, t24) {Brown logout}
(Smith, logout, hard-wired-terminal A,0, t25) {Smith logout}
(Unknown, execute, <Library>FINGER.EXE, not-logged-in, £26)°
(Jones, login, ARPANET socket X USC-ISI, bad-PW, t27)
(Jones, login, ARPANET socket X USC-ISI, bad-PW, £28)
(Jones, login, ARPANET socket X USC-ISI, bad-PW-hang-up, t29)

8Note a potential security glitch in the operating system that permits Brown to see an entry for
TROJAN.HORSE in Smith’s directory, but not to be able to access the file.

9Since the Subject is unknown in such cases, the User ID should be that of a collective Unknown user --
although it might be useful to use a finer-grain subject, such as Unknown-dial-up or Unknown-hard-wired.
Alternatively, if all commands other than login are forbidden prior to login, the problem goes away.

000037
Intrusion Detection Page 32 Application

4.2. Activity Profiles

This section illustrates how profiles as described is Section 3.3 are applied to
measure login and session activity, command and program usage, file accesses, and
database activity. We shall first give complete definitions for variable types that
represent the three different metrics (event counters, interval timers, and resource
measures) and simple statistical models, and then give profile specifications in terms of

these types.

4.2.1. Variable Types

Figures 4-4 through 4-9 define six abstract data types in terms of their structure
and operations. The first two types are based on the operational model, where a fixed
bound determines abnormality. The remaining four types are based on the mean and

standard deviation model, where a confidence interval determines abnormality.

e SimpleCounter -- event counter over a fixed-length interval based on the
operational model.

o IntervalTimer -- interval timer based on the operational model.

e EventCounter -- event counter over a fixed-length interval based on the mean
and standard deviation model.

e EventCounterByDayAndHour -- array of event counters by day of week and
hour of day based on the mean and standard deviation model.

e ResourceByActivity -- resource measure accumulated over duration of action
based on the mean and standard deviation model.

¢ ResourceByTime -- resource measure accumulated over fixed-length interval
based on the mean and standard deviation model.

For each type ¢, we define three procedures: ‘“Newt” for processing a new
observation of the variable, ‘‘UpdatetDistrib” for updating the distribution of the
variable to include the new observation (or simply “Updatet’ if there is no distribution),
and ““Checkt?” for testing whether the new observation is abnormal. The syntax for the
structures and procedures is reminiscent of both Pascal and C. Since moments are used

to represent the distributions of the first three types, a subtype Moments is defined in

000038
Intrusion Detection Page 33 Application

to represent the distributions of the first three types, a subtype Moments is defined in

Figure 4-3.

All six types represent a single metric defined in terms of a single profile. They
could be used for measuring individual subject-object activity or class-as-a-whole
activity. Multivariate measures, or measures for aggregate individual activity (which are
used to define ‘typical’ members of a class) could be defined in terms of these more
primitive metrics. For example, multivariate profiles representing the correlation
between login frequency and total session elapsed time during a day could be defined in
terms of single-variable profiles for login frequency and session elapsed time. The "
multivariate profiles would be updated at the end of the day using the values in the
more primitive profiles. Similarly, profiles for aggregate individual activity would be

periodically updated from lower-level profiles for the class members.

000039
Intrusion Detection Page 34 Application

Figure 4-3: Subtype Moments.

TYPE Moments = RECORD
{Represent distribution characterized by mean & standard deviation
derived from the first two moments.

}
count: integer = 0; {number of occurrences of variable}
sum: integer = 0; {sum of values}
sumsquares: integer = 0; {sum of squares of values}
END

UpdateMoments (VAR x: Moments, new:integer) <{update distribution with new value}
BEGIN
x.count += 1;
X.Sum += new;
X.Sumsquares += X.current**2;
END

AbnormalMoments(x: Moments, new: integer, threshold: integer)

{check if new value exceeds the mean by more than threshold deviations --

one might also check whether it is below the mean by that amount}
BEGIN

IF (x.count <= 1) THEN RETURN(false);

mean = X.sum/x.count;

stdev = sqrt(x.sumsquares/(x.count - 1) - mean**2});

diff = (new - mean)/stdev;

IF (diff > threshold) THEN RETURN(true) ELSE RETURN(false);
END

000040

Intrusion Detection Page 35 Application

Figure 4-4: Simple Event Counter, Operational Model.

TYPE SimpleCounter = RECORD
counter: integer = 0; {current count}
END

NewSimpleCounter (x: SimpleCounter)
BEGIN
x.counter += 1;
END

UpdateSimpleCounter (x: SimpleCounter) {reset counter}
BEGIN
X.counter = 0;
END

CheckSimpleCounter(x: SimpleCounter, threshold) {check if current value is too large}
BEGIN
IF (x.counter > threshold) THEN RETURN(true) ELSE RETURN(false);
END

000041
Intrusion Detection Page 36 Application

Figure 4-5: Interval Counter, Operational Model.

TYPE IntervalTimer = RECORD

"

0; {length of time since last occurrence}
0; {time of last occurrence}

interval: integer
last: integer
END

NewIntervalTimer(var x: IntervalTimer, time: integer)
{update last time of occurrence}
BEGIN
x.interval = time - x.last;
x.last = time;
END

UpdateIntervalTimer(var x: IntervalTimer, time: integer) {reset}
BEGIN
x.interval = 0;
X.last = time;
END

CheckIntervalTimer(x: IntervalTimer, threshold: integer)
{check if delay since last occurrence is too long}
BEGIN
IF (x.interval > threshold) THEN RETURN(true); ELSE RETURN(false);
END

000042

Intrusion Detection Page 37 Application

Figure 4-6: Event Counter, Mean and Standard Deviation Model.

TYPE EventCounter = RECORD

distribution: Moments;
counter: integer = 0; {current value, initially 0}
END

NewEventCounter (VAR x: EventCounter) <{new event occurs}
BEGIN
x.counter += 1;
END

UpdateEventCounterDistrib(VAR x: EventCounter)
{add current counter to distribution and reset counter}

BEGIN
UpdateMoments (x.distribution, x.counter);
x.counter = 0; {reset to 0}

END

CheckEventCounter(x: EventCounter, threshold: integer) {abnormality test}
{check if current counter is more than threshold deviations from mean}
BEGIN
IF AbnormalMoments(x.distribution, x.counter, threshold)
THEN RETURN(true) ELSE RETURN(false);
END

000043
Intrusion Detection Page 38 Application

Figure 4-7: Event Counter By Day and Hour, Mean and Standard Deviation Model.

TYPE EventCounterByDayAndHour = RECORD

distribution: array[1:7,1:24] of Moments;
counter: integer = 0; {value for current period, initially 0}
END

NewEventCounterByDayAndHour (VAR x: EventCounter) <{new event occurs}
BEGIN
X.counter += 1;
END

UpdateEventCounterByDayAndHourDistrib (VAR x: EventCounter,
day: integer, hour: integer)
{add current counter to distribution and reset counter}

BEGIN
UpdateMoments(x.distribution[day,hour], x.counter);
x.counter = 0; {reset to 0}

END

CheckEventCounterByDayAndHour (x: EventCounter, day: integer, hour: integer,
threshold: integer)
{check if current counter is more than threshold deviations from mean}
BEGIN
IF AbnormalMoments(x.distribution[day,hour], x.counter, threshold)
THEN RETURN(true) ELSE RETURN(false);
END

000044

Intrusion Detection Page 39 Application

Figure 4-8: Resource Measure over Activity, Mean and Standard Deviation Model.

TYPE ResourceByActivity = RECORD

distribution: Moments;
amount: integer = 0; {resources used during most recent action)}

END

~ NewResourceByActivity(VAR x: ResourceByActivity, new: integer) {new amount}
BEGIN

X.amount = new;
END

UpdateResourceByActivityDistrib(VAR x: ResourceByActivity)
{add current amount to distribution}
BEGIN
UpdateMoments (x.distribution, x.amount);
x.amount = 0;
END

CheckResourceByActivity(x: ResourceByActivity, new: integer, threshold: integer)
{check if current amount is more than threshold deviations from mean}
BEGIN
IF AbnormalMoments(x.distribution, x.amount, threshold)
THEN RETURN(true) ELSE RETURN(false);
END

000045
Intrusion Detection Page 40 Application

Figure 4-9: Resource Measure over Time, Mean and Standard Deviation Model.

TYPE ResourceByTime = RECORD

distribution: Moments;
amount: integer = 0; {resources used in current time interval}
END

NewResourceByTime (VAR x: ResourceByTime, new: integer) {new amount}
BEGIN
X.amount += new; {add to amount current time period}
END

UpdateResourceByTimeDistrib(VAR x: ResourceByTime)
{add current amount to distribution}
BEGIN
UpdateMoments(x.distribution, x.amount);
X.amount = 0;
END

CheckResourceByTime (x: ResourceByTime, new: integer, threshold: integer)
{check if current amount is more than threshold deviations from mean}
BEGIN
IF AbnormalMoments(x.distribution, x.amount, threshold)
THEN RETURN(true) ELSE RETURN(false);
END

000046
Intrusion Detection Page 41 Application

4.2.2. Login and Session Profiles

We now consider profile templates for generating activity profiles related to login
and session activity. Login and session activity is represented in audit records where the
subject is a user, the object is the user’s login location (terminal, workstation, network,
remote host, port, etc., or some combination), and action is ‘login’ or ‘logout’. Locations
may be grouped into classes by properties such as type of connection: hard-wired, dial-
up, network, etc. or type of location: dumb terminal, intelligent workstation, network

host, etc.

Before describing specific profile templates, we consider several possibilities for

their subject and object patterns:

e Individual user and location:

Subject-Pattern: * — user <~ user
Object-Pattern: * — loc <~ loc

Subject-Pattern specifies that whatever name is matched in the Subject field
of an audit record, e.g., ‘Smith’, should be copied into the Subject-Pattern for
the generated activity profile. Object-Pattern similarly causes exact location
names to be placed in generated activity profiles.

e Individual user, all locations grouped together:

Subject-Pattern: * — user <- user
Object-Pattern: * <~ %

Because both the matching and replacement patterns for objects specify wild
cards, the template will match any object and generate a profile that matches
any object.

e User groups, all locations:

Subject-Pattern: IN(user-group) <- IN(user-group)
Object-Pattern: ¥ <= %

where user-group is a list containing the names of all users in the group. A
template is defined for each such group to generate the activity profiles for
the group.

000047
Intrusion Detection Page 42 Application

o All users, all locations:

Subject-Pattern: * <~ X
Object-Pattern: x <

A template with these patterns generates a single profile representing all
users and locations.

e Individual user, locations grouped by connection type:

Subject-Pattern: * — user <- user
Object-Pattern: connection-type <- connection-type
* <- %

where connection-type is DIAL-UP, HARD-WIRED, etc. We assume in this
example that the object component in an audit record has the substructure

(connection-type, location-name), so separate patterns are given for each of
its elements. A template is defined for each connection type to generate the
activity profiles for its class.

The following gives the subject- and object-independent components of template
profiles for various measures of login and session activity (see Section 3.3.3 for a

description of the components):

o LoginFrequency -- event counter that measures login frequency by day and
time using the mean and standard deviation model. Since a user’s login
behavior may vary considerably during a work week, login occurrences may
be represented by an array of event counters parameterized by day of week
(specific day or weekday v. weekend) and time of day (hour or shift)
(Another possible breakdown is: weekday, evening, weekend, night.)

Variable-Name: LoginFrequency

Action-Pattern: ‘login’

Exception-Pattern: 0 {successful login}
Resource-Usage-Pattern:

Period: hour {number of clock units per hour}
Variable-Type: EventCounterByDayAndHour

Threshold: 4 {standard deviations from mean}

Profiles for login frequencies may be especially useful for detecting
masqueraders, who are likely to log into an unauthorized account during off-
hours when the legitimate user is not expected to be using the account.
Although they could be defined for individual users and specific locations,
login-frequency profiles may be more suitable for classes of locations -- either
all locations taken together or aggregated by type of location or connection.
A system with 1000 users and 20 groups might have 1000 profiles that are

000048
Intrusion Detection Page 43 Application

! user-specific, 20 profiles that aggregate over each group, and 1 profile that
aggregates over everyone, giving a total of 121 profiles if all locations are
aggregated together. If locations are aggregated into two groups, say, there
would be 242 profiles.

o LocationFrequency -- event counter that measures the frequency of login at
different locations using the mean and standard deviation model. Although
this measure could be broken down by day of week and time of day (since a
user may login from one location during normal working hours and another
during non-working hours), we will represent it here as a single counter where
the period is one day:

Variable-Name: LocationFrequency

Action-Pattern: ‘login’

Exception-Pattern: 0 {successful login}
Resource-Usage-Pattern:

Period: day

Variable-Type: EventCounter

Threshold: 4 {standard deviations from mean}

Because the variable relates to specific objects, it should be defined for
individual locations or location types. It may be useful for detecting
masqueraders -- e.g., if someone logs into an account from a location that the
legitimate user never uses, or penetration attempts by legitimate users -- e.g.,
if someone who normally works from an unprivileged local terminal logs in
from a highly privileged terminal.

® LastLogin -- interval timer measuring time since last login using the
operational model.

Variable-Name: LastLogin

Action-Pattern: ‘login’

Exception-Pattern: 0 {successful login}
Resource-Usage-Pattern:

Period:

Variable-Type: IntervalTimer

Threshold: 50 days {fixed limit}

This type of profile could be defined for individual users but location classes,
since the exact location seems less relevant than the lapse of time. It would
be particularly useful for detecting a break-in on a ‘“dead’ account.

e SessionElapsedTime -- resource measure of elapsed time per session based on
mean and standard deviation model:

000049

Intrusion Detection Page 44 Application
Variable-Name: SessionElapsedTime
Action-Pattern: ‘logout’
Exception-Pattern: 0 {successful logout}
Resource-Usage-Pattern: ‘ElapsedTime=' # — amount
Period: {collect on session basis}
Variable-Type: ResourceByActivity
Threshold: 4 {deviations from mean}

The Resource-Usage-Pattern means matches a string that contains the
sequence ‘ElapsedTime="' followed by a number (which matches the ‘#’ and
is associated with ‘amount’). This type of profile could be defined for
individual users or groups, but object classes. Deviations might signify
masqueraders.

SessionQOutput -- resource measure of quantity of output to terminal per
session using mean and standard deviation model (output might also be
measured on a daily basis):

Variable-Name: SessionOutput

Action-Pattern: ‘logout’

Exception-Pattern: 0 {successful logout}
Resource-Usage-Pattern: ‘SessionCutput=' # — amount

Period: {collect on session basis}
Variable-Type: ResourceByActivity

Threshold: 4 {standard deviations}

Defining this type of profile for individual locations or classes thereof may be
useful for detecting excessive amounts of data being transmitted to remote
locations, which could signify leakage of sensitive data.

SessionCPU, SessionlO, SessionPages, etc. -- resource measures
accumulated on a daily bases (or session basis) based on the mean and
standard deviation model. The following shows the structure of SessionCPU;
the others are similar.

Variable-Name: SessionCPU

Action-Pattern: ‘logout’

Exception-Pattern: 0 {successful logout}
Resource-Usage-Pattern: ‘CPU=' # — amount

Period: day

Variable-Type: ResourceByTime

Threshold: 4 {deviations from mean}

These profiles may be useful for detecting masqueraders.

e PasswordFails -- event counter that measures password failures at login

using the operational model:

000050

Intrusion Detection Page 45 Application
Variable-Name: PasswordFails
Action-Pattern: ‘login’
Exception-Pattern: ‘bad-PW’
Resource-Usage-Pattern:
Period: 5 minutes
Variable-Type: SimpleCounter
Threshold: 10 {fixed bound}

This type of profile is extremely useful for detecting attempted break-ins, and
should be defined both for individual users and all users taken together. An
attack involving many trial passwords on a particular account would show up
as an abnormally high number of password failures with respect to a profile
for the individual account (user); an attack involving a single trial password
over many accounts would show up as an abnormally high number of
password failures with respect to a profile for all users. Recording password
failures by location class may be desirable if there are substantially more
failures across dial-up lines caused by unreliable communications. Password
failures might be recorded over a fairly short period of time, say at most a
few minutes, since break-ins are usually attempted in a burst of activity.

e LocationFails -- event counter measuring failures to login from specified
terminals based on operational model:

LocationFails
‘login’
‘illegal-location’

Variable-Name:
Action-Pattern:
Exception-Pattern:
Resource-Usage-Pattern:

Period:
Variable-Type: SimpleCounter
Threshold: 1 {fixed bound}

This type of profile might be defined for individual users, but aggregates of
locations together since the exact location is less significant than that it was
unauthorized. It may be used to detect attempted break-ins or attempts to
log into highly privileged terminals.

4.2.3. Command or Pregram Execution Profiles

Command or program execution activity is represented in audit records where the
subject is a user, the object is the name of a program (for simplicity, we will assume that
all commands are programs and not distinguish between the two), and action is ‘execute’.
Programs may be classified and aggregated by whether they are privileged (executable
only by privileged users or in privileged mode) or nonprivileged, by whether they are
system programs or user programs, by whether they are typically used by novices or

experts, or by some other property.

000051
Intrusion Detection Page 46 Application

Since subject and object patterns for program template profiles are similar to those
defined for session profiles, we will not give a complete list of possibilities. The

following, however, use patterns that are unlike those described for login and session
activity:
e Individual users, all programs in system library directory grouped together:

Subject-Pattern: * — user <- user
Object-Pattern: ‘<Library>*’ <- ’<Library>*’

e Individual users, all programs in user’s directory grouped together:

Subject-Pattern: ¥ — user <- user
Object-Pattern: ‘<’ user ‘>x* <- ‘<’ user ‘>%’

e Individual users, all programs in all other directories grouped together:

Subject-Pattern: * — user <- user
Object-Pattern: (*<’ —(user | ‘Library’) *>x%’) <-
(*<’ —(user | ‘Library’) ‘>%’)

We now describe statistical measures for program profiles:

e ExecutionFrequency -- event counter measuring the number of times a
program is executed during some time period using the mean and standard

deviation model:

Variable-Name: ExecutionFrequency

Action-Pattern: ‘execute’

Exception-Pattern: 0

Resource-Usage-Pattern:

Period: day

Variable-Type: EventCounter

Threshold: 4 {standard deviations}

This type of profile may be defined for individual users and programs or
classes thereof. A profile for individual users and commands may be useful
for detecting masqueraders, who are likely to use different commands from
the legitimate users; or for detecting a successful penetration by a legitimate
user, who will then have access to privileged commands that were previously
disallowed. A profile for individual programs but all users may be useful for
detecting substitution of a Trojan horse in an experimental library that is
searched before the standard library, since the frequency of executing the
original program would drop off. It may also be useful for detecting viruses
where the virus is manifested in a program invoked by infected programs.

000052
Intrusion Detection Page 47 Application

e ProgamCPU, ProgramlO, elc. -- resource measures per execution of a
program using the mean and standard deviation model. A profile for
ProgramCPU is given by:

Variable-Name: ProgramCPU

Action-Pattern: ‘execute’

Exception-Pattern: 0

Resource-Usage-Pattern: ‘CPU=' # — amount

Period:

Variable-Type: ResourceByActivity

Threshold: 4 {standard deviations}

This type of profile may be defined for individual users and programs or
classes thereof. An abnormal value for one of these measures applied to the
aggregate of all users might suggest injection of a Trojan horse or virus in the
original program, which performs side-effects that increase its I/O or CPU
usage. Rather than accumulating data on a per execution basis, the variables
could measure activity accumulated over some time interval, e.g., a day. A
fixed-length interval, however, seems less useful here for intrusion detection.

e EzecutionDenied -- event counter for number of attempts to execute an
unauthorized program during a day based on operational model:

Variable-Name: ExecutionDenied
Action-Pattern: ‘execute’

Exception-Pattern: ‘privilege-viol’
Resource-Usage-Pattern:

Period: day

Variable-Type: SimpleCounter

Threshold: 3 {fixed bound}

Defining this type of profile for individual users might be useful for detecting
a penetration attempt by some particular user. This type of profile might
also be defined for individual programs that are highly sensitive, in which
case a threshold of 1 may be appropriate.

e ProgramResourceErhaustion -- event counter for the number of times a
program terminates abnormally during a day because of inadequate resources
using the operational model:

Variable-Name: ProgramResourceExhaustion
Action-Pattern: ‘execute’

Exception-Pattern: ‘resource-exhaust’
Resource-Usage-Pattern:

Period: day

Variable-Type: SimpleCounter

Threshold: 5 {fixed bound}

This type of profile might be defined for individual programs or classes of

000053
Intrusion Detection Page 48 Application

programs to detect a program that consistently aborts (e.g., because it is
leaking data to the user through a covert channel based on resource usage).

It is probably unnecessary, even if feasible, to keep individual profiles for all
programs in the system. Individual profiles for some programs seem essential, however,
to detect masquerading, attempted penetrations, and Trojan horse substitutions from
command usage (these profiles could, however, aggregate over all users). Programs that
might be monitored individually include those that are privileged, security relevant,

indicative of browsing, or frequently used. Examples are:

link or write to another user (2 in the scenario)

connect or change working directory (t18 in the scenario)

logout another user (3 in the scenario)

create a new user account

change password

change access privileges for a user, especially authorizations for
*superuser® status

delete an account

status commands that tell what other users are doing (e.g., ps on UNIX,
sys on TOPS-20, and who and finger) (6 in the scenario)

editors, document formatters, compilers, linkers, software tools, utilities,
mail programs, games

4.2.4. File-Access Profiles

File-access activity is represented in audit records where the subject is a user, the
object is the name of a file, and action is ‘read’, ‘write’, ‘create’, or ‘delete’ (‘append’ is
also a possibility for some systems). Files may be classified by type: text, executable
program, directory, etc.; by whether they are system files or user files; or by some other
property. Since a program is a file, it can be monitored both with respect to its

execution activity and its file-access activity.

Subject and object patterns for file template profiles may be similar to those
defined for session and program profiles. The following example further illustrates how

files might be aggregated into classes:

000054
Intrusion Detection Page 49 Application

¢ Individual users, files grouped by the extension (type):

Subject-Pattern: * — user <- user
Object-Pattern: ‘. ext’ < ‘x.ext’

where ext is ‘EXE’, ‘TXT’, ‘ADA’, ete.

The following measures are candidates for profiles:

o ReadFrequency, WriteFrequency, CreateFrequency, DeleteFrequency -- event
counters that measure the number of accesses of their respective types during
a day (or some other period) using the mean and standard deviation model.
The following shows the components of a profile for ReadFrequency:

! Variable-Name: ReadFrequency
‘ Action-Pattern: ‘read’
Flag-Pattern:

Resource-Usage-Pattern:

Period: day
Variable-Type: EventCounter
Threshold: 4 {standard deviations from mean}

Read and write access frequency profiles may be defined for individual users
and files or classes thereof. Create and delete access profiles, however, only
make sense for aggregate file activity since any individual file is created and
deleted at most once. Abnormalities for read and write access frequencies for
individual users may signify masquerading or browsing. They may also
indicate a successful penetration, since the user would then have access to
files that were previously disallowed.

® RecordsRead, RecordsWritten -- resource measures for the number of records
read or written per access (measurements could also be made on a daily basis)
using the mean and standard deviation model:

Variable-Name: RecordsRead

Action-Pattern: read

Flag-Pattern:

Resource-Usage-Pattern: ‘Records=' # — amount

Period:

Variable-Type: ResourceByActivity

Threshold: 4 {standard deviations from mean}

This type of profile might be defined for individual users and files or classes
thereof. An abnormality could signify an attempt to obtain sensitive data by
inference and aggregation (e.g., by obtaining vast amounts of related data).

® ReadFails, WriteFails, DeleteFails, CreateFails -- event counters that

000055
Intrusion Detection Page 50 Application

measure the number of access violations per day using the operational model.
The structure of ReadFails is:

Variable-Nanme: ReadFails

Action-Pattern: ‘read’

Exception-Pattern: ‘read-viol’
Resource-Usage-Pattern:

Period: day

Variable-Type: SimpleCounter

Threshold: 2 {fixed bound}

This type of profile might be defined for individual users and files or classes
thereof. Profiles for individual users and the class of all files could be useful
for detecting users who persistently attempt to access unauthorized files.
Profiles for individual files and the class of all users could be useful for
detecting any unauthorized access to highly sensitive files (the threshold may
be set to 1 in that case).

e FileResourceExhaustion -- event counter that measures the number failures
caused by attempts to overflow the quota of available space using the
operational model:

Variable-Name: FileResourceExhaustion
Action-Pattern: ‘write’

Exception-Pattern: ‘resource-exhaust’
Resource-Usage~-Pattern:

Period: day

Variable-Type: SimpleCounter

Threshold: 2 {fixed bound}

This type of profile may be defined for individual users aggregated over all
files. An abnormality might signify a covert channel, where the signaling
process consumes all available disk space to signal a ‘1’ bit.

Since the number of files in the system may be enormous (e.g., millions), it may be
infeasible to monitor all files individually. It is, however, desirable to monitor accesses to
the program files listed previously as well as to other data files that are security relevant

or sensitive. Examples include:

password file

all files with authorization data
audit data

network host tables

address files, e.g., for electronic mail

000056
Intrusion Detection Page 51 Application

4.2.5. Database-Access Profiles

Database accesses can be handled in much the same way as file accesses. In
relational database systems, for example, every relation is stored as a separate file.
Thus, accesses at the relation level are simply file accesses, though the operations are
slightly different; in particular, we have ‘retrieve’, ‘update’, ‘insert’, and ‘delete’ for the
records within a relation, and ‘create’ and ‘delete’ for a relation as a whole. Thus,
database retrievals correspond to file reads, and database updates, inserts, and deletes

correspond to file writes.

If auditing is performed at the relation (file) level, then exactly the same types of
profiles used to monitor file activity can be used to monitor database activity. Indeed, a
relation can simply be regarded as a special type of file. Moreover, this approach can be
used with database systems that are not relational as well since all database systems

store sets of records having common formats in files.

If auditing is desired at a lower level, say on individual records, the same basic
principles apply as for files, but additional support is needed from the database system to
write out individual audit records for all database records accessed. The object field for
these records must uniquely identify the records, e.g., by relation name and record key.
Because of the potentially huge volume of data generated by monitoring at the record
level (a single retrieval could access a million records in order to compute an average
value for the records), an intrusion-detection system operating at the record level may be

infeasible!?,

For some systems, it may even suffice to monitor at the database level, without
decomposing a database into its constituent files. Again, the same general principles

apply as for files.

10This, of course, does not mean that access controls cannot be applied at the record or element level.

000057
Intrusion Detection Page 52 Application

4.2.6. Profiles for Other Activities
Profiles of the type we have described can be defined for any type of activity that

can be represented in the audit records. In particular, they can be defined for system-

dependent or user-defined object types.

4.2.7. New Users and Objects

Introducing new users (and objects) into the target system potentially raises two
problems. The first, which is caused by the lack of profile information about the user’s
behavior as well as by the user’s own inexperience with the system, is generating an
excessive number of anomaly records. This problem could be solved by ignoring
anomalies for new users were it not for the second problem: failing to detect an

intrusion by the new user. We would like a solution that minimizes false alarms without

overlooking actual intrusions.

False alarms can be controlled by an appropriate choice of statistical model for the
activities causing the alarms and by an appropriate choice of profiles. With the mean
and standard deviation model, for example, the confidence intervals are initially large so
that more diversity is tolerated while data are being collected about a user’s behavior;
the intervals then shrink as the number of observations increases. This reduces false
alarms caused by an individual user profile, but does not protect the system against new
users (or infrequent users) whose behavior is devious, or against users who establish
unusual behavior from the beginning, as a cover. To deal with this problem, current
activity can be compared with that in aggregate individual profiles or with the set of

profiles for all users or all users in some group.

Although the operational model does not automatically adapt to an individual user
(because it uses fixed thresholds to determine abnormality), the problem can be solved
by using more lenient bounds with new users, and adjusting the bounds as the user gains

experience.

000058
Intrusion Detection Page 53 Application

4.3. Activity Rules

The activity rules that process audit data and update profiles depend on system-
independent algorithms that encode different types of statistical metrics and models, and
on parameters that are obtained from the components of a particular audit record and
profile, namely the threshold for the anomaly test, the distribution of previous
observations, the value of the current observation, and so forth. Similarly, the rules that
generate periodic reports of anomalies depend on the statistical reporting methods (rules
for reporting individual anomalies do not seem to require any statistical analysis). This
section gives possible rules for managing the six variable types defined in Section 4.2.1,

and gives examples of rules for anomaly records.

4.3.1. Audit-Record and Periodic-Activity-Update Rules

In Section 3.5, we defined a generic audit-record rule for type ¢ that is triggered
whenever a new audit record matches the patterns given in an activity profile and the
Variable-Type component of the matching profile contains type ¢. The body of the rule
is encoded in a procedure AuditProcesst, which was left unspecified. Similarly, we
defined a generic periodic-activity-update rule for type ¢ that is triggered whenever a
period of length p ends and an activity profile contains p for its Period component and ¢
for its Variable-Type component. The body of this rule is encoded in a procedure
PeriodicProcesst, which was also left unspecified. We will now give possible definitions

for these procedures for the six variable types.

First, consider simple event counters as defined in Figure 4-4:

000059
Intrusion Detection Page 54 Application

{Simple event counter with operational model}

AuditProcessSimpleCounter (Audit-Record, Profile)
BEGIN
NewSimpleCounter (Profile.Value);
IF CheckSimpleCounter(Profile.Value, Profile.Threshold)
THEN NewAnomaly(‘audit’, Audit-Record.Time-stamp, Profile);
END

PeriodicProcessSimpleCounter(Clock, Profile)
BEGIN
IF CheckSimpleCounter(Profile.Value, Profile.Threshold)
THEN NewAnomaly(‘period’, Clock, Profile);
UpdateSimpleCounter (Profile.Value); {reset counter}
END

Note that every time an audit record is generated, the audit-record procedure
checks the frequency of activity for the current time interval. In addition, the periodic
procedure checks the frequency at the end of the time interval. Although checking only
at the end of the time interval suffices for detecting abnormal behavior, there can be a
delay between the time of intrusion and time of detection, especially if the time interval
is long. By checking on each occurrence, we can detect a sudden flurry of activity as
soon as it passes the threshold. Of course, it then becomes unnecessary to check at the
end of the interval unless the value is compared against a lower bound to detect

unusually low levels of activity.

Consider next an interval timer as defined in Figure 4-5. Here there is no need for

a periodic procedure since the timer is not reset.
{Interval timer with operational model}

AuditProcessIntervalTimer (Audit-Record, Profile)
BEGIN
NewIntervalTimer (Profile.Value, Audit-Record.Timestamp);
IF CheckIntervalTimer(Profile.Value, Profile.Threshold)
THEN NewAnomaly(‘'audit’, Audit-Record.Time-stamp, Variable);
END

Procedures for the two types of event counters defined in Figures 4-6 and 4-7 are

as follows:

000060
Intrusion Detection Page 55 Application

{Event counters with mean and standard deviation model}

! AuditProcessEventCounter (Audit-Record, Profile)
‘ BEGIN
NewEventCounter (Profile.Value) ;
IF CheckEventCounter(Profile.Value, Profile.Threshold)
THEN NewAnomaly(‘audit’, Audit-Record.Time-stamp, Profile);
END

PeriodicProcessEventCounter(Clock, Profile)
BEGIN
IF CheckEventCounter(Profile.Value, Profile.Threshold)
THEN NewAnomaly(‘period’, Clock, Profile);
UpdateEventCounterDistrib(Profile.Value);
! END

\
| {Event counter by day and hour with mean and standard deviation model}
i

AuditProcessEventCounterByDayAndHour (Audit-Record, Profile)
BEGIN

d = day(Audit-Record.Time-stamp);

h = hour (Audit-Record.Time-stamp);
! NewEventCounterByDayAndHour (Profile.Value, d, h);
‘ IF CheckEventCounterByDayAndHour (Profile.Value,

Profile.Threshold, d, h)

THEN NewAnomaly(‘audit’, Audit-Record.Time-stamp, Profile);

END

PeriodicProcessEventCounterByDayAndHour (Clock, Profile)
BEGIN
d = day(Clock);
h = hour(Clock);
IF CheckEventCounterByDayAndHour (Profile.Value,
Profile.Threshold, d, h)
THEN NewAnomaly(‘period’, Clock, Profile);
UpdateEventCounterByDayAndHourDistrib(Profile.Value, d, h);
END

The functions ‘day’ and ‘hour’ convert a time-stamp into day-of-week and hour-of-

day respectively.

Finally, we give procedures for the two types of resource measures defined in
Figures 4-8 and 4-9. Since the type ResourceByActivity is not accumulated by period, it

has no periodic-update rule. The parameter ‘amount’ in the rules refers to the matching

0000861
Intrusion Detection Page 56 Application

resource-usage value in the audit record (recall that the definition for a variable of these

types includes a resource-usage pattern of the form “name="'# — amount’).
{Resource usage measured per activity}

AuditProcessResourceByActivity(Audit-Record, Profile)
BEGIN ;
NewResourceByActivity(Profile.Value, new);
IF CheckResourceByActivity(Profile.Value, Profile.Threshold, amount)
THEN NewAnomaly(‘audit’, Audit-Record.Time-stamp, Profile);
END

{Resource usage measured over time}

AuditProcessResourceByTime (Audit-Record, Profile)
BEGIN
NewResourceByTime (Profile.Value, new);
IF CheckResourceByTime (Profile.Value, Profile.Threshold, amount)
THEN NewAnomaly(‘audit’, Audit-Record.Time-stamp, Profile);
END

PeriodicProcessResourceByTime (Clock, Profile)
BEGIN
IF CheckResourceByTime(Profile.Value, Profile.Threshold)
THEN NewAnomaly(‘period’, Clock, Profile);
UpdateResourceByTimeDistrib(Profile.Value);
END
4.3.2. Anomaly-Record and Periodic-Anomaly-Analysis Rules
Each anomaly-record rule specifies those anomaly records that may be related to a
particular type of intrusion and should be brought to the immediate attention of the
security officer. Ideally, the security officer should be notified of an abnormality only if
there is a suspected intrusion. Unfortunately, we have very little knowledge about the
exact relationship between certain types of abnormalities and intrusions (performing

experiments to determine these relationships is an important objective of our proposed

follow-on research).

In those cases where we do have experience, we can write rules that incorporate
our knowledge. An example is with password failures, where the security officer should

be notified immediately of a possible break-in attempt if the number of password failures

000062

Intrusion Detection Page 57 Application

on the system during some interval of time is abnormal. This is expressed by the
following rule, which has the form outlined in Section 3.5 {a more elaborate rule might
also print the number of failures, whether they originated from one account or many,

and the relevant audit record):

ANOMALY-RECORD RULE
Condition: new Anomaly-Record
Anoraly-Record.Profile.Variable-Name = ‘PasswordFails’

Anomaly-Record.Event = ‘audit’

Body: PrintAlert(‘Possible break-in: abnormal number of password failures’,
Anomaly-record) ;
END

Other abnormalities that are candidates for immediate notification include:

e Abnormal lapse since login (variable LastLogin in login profiles), which could
indicate a successful break-in on a ‘““dead’ account.

e Highly abnormal login occurrence (variable LoginFrequency in login profiles)
-- e.g., the user has never previously logged in late at night -- which could

indicate masquerading.

Each periodic-anomaly-analysis rule analyzes some subset of the anomaly records
generated during the time interval handled by the rule. It may produce a report
summarizing the abnormalities found during the reporting period, without attempting to
link the abnormalities to possible intrusions, or it may speculate about a possible
intrusion. An example of a rule of this type is one that prints the total number of
warnings generated during the time interval for each unique subject identified in the
Subject field of a profile (grouping could also be over some other field such as Object or
Action), but does not attempt to link the abnormalities to any particular type of

intrusion:

000063
Intrusion Detection Page 58 Application

PERIODIC-ANOMALY-ANALYSIS RULE
Condition: Clock mod p = 0

Body:
Start = Clock - p;
A = SELECT FROM Anomaly-Records WHERE Anomaly-Record.Time-stamp > Start;
report = SELECT COUNT() FROM A
GROUP BY Anomaly-Record.Profile.Subject-Pattern;
Print(report);
END

The above rule uses the *"GROUP BY* feature of relational programming so that a

separate total is given out for each user (or group) that appears in the anomaly records.

Rules that process anomaly records might produce summary tables of statistics
broken down by one or more categories or graphs of abnormalities. They might compute
statistical functions over anomalies in order to link them to possible intrusions. Thus
far, we do not have enough experience with on-line intrusion detection to know exactly
how to relate abnormalities to intrusions or what reports will be the most useful. Some
experience with an actual system is needed first to determine useful rules for processing

the anomaly records.

000064
Intrusion Detection Page 59 System Design

5. System Design
This section outlines a possible design strategy for IDES and its knowledge base.

5.1. System Configuration

Figure 5-1 shows a system diagram for IDES, where IDES is implemented on a
processor that is physically separate from that of the system monitored. The connection
between IDES and the system monitored is used only for downloading audit records to
IDES. The only way of interacting with IDES is by direct connection to the IDES

processor, and this path can be physically restricted to the security officer.

Implementing IDES on a separate processor has both performance and security
advantages. The performance advantage is that IDES will not noticeably degrade the
response time of the system monitored or otherwise affect its behavior (there may be
some delay associated with the communication link). The security advantage is that
IDES is protected from the target system. In particular, a user on the target system
cannot gain access to IDES or its knowledge base in order to tamper with profiles,
anomaly records, rules, etc. Thus, whatever flaws may exist in the system monitored do

not endanger IDES and its knowledge base.

An intruder might, however, attempt to subvert IDES by tampering with the audit
records before they are transmitted from the target system to IDES -- e.g., deleting all
audit records associated with his session. There are several strategies that can be used to

protect against such tampering:
e Place sequence numbers in the audit records to detect deletions.
e Place cryptographic checksums in all audit records to detect tampering,.
Because the key is shared by the target system and IDES, this is effective
only if the key is adequately protected on the target system.
e Monitor access to the audit procedures.
Of course, if an intruder successfully penetrates the system, he may be able to turn

off all auditing and completely escape detection while performing considerable damage.

A goal of IDES is to detect the penetration before that happens.

Intrusion Detection

Figure 5-1:

000065

Page 60 System Design

System Configuration.

| I
| System I
I |
| Monitored |
| |
I
| Audit
| Records
!
\
| [
| IDES |
| |-=——==- Security
| ~ Monitor | Officer
| I
|
|
| Audit | |
| Records |------- ettt
---------- IDES I | Suggested |
---------- |-------1 Profiles |
| Profiles |------- I e
---------- DBMS | e
---------- ! | Activity |
| Anomaly |------- | - | Rules |
| Records | I -
---------- |
System-Dependent System-Independent

Knowledge Base

Knowledge Base

000066

Intrusion Detection Page 61 System Design

IDES itself has two main components: a monitor, which interfaces with the main
system and the security officer, and a database management system, which manages the

IDES knowledge base.

5.2. IDES Monitor

The IDES monitor accepts audit records from the target system and interfaces with
the security officer. Audit data are handled by a demon process that listens for data on
the link connecting IDES to the target system. When an audit record is received, it is

passed to the database management system for processing.

The interface to the security officer is used mainly for defining profile templates
(although some templates will be built-in, the security officer may wish to modify these
or define others) and reporting anomalies to the security officer. In addition, it gives the
security officer a means of querying the IDES database for information about the current
status of profiles or anomalies. The interface may also allow the officer to tune IDES to
the target system by adding or modifying metrics, profile templates, and rules. For
example, built-in measures that are found to be ineffective for a particular system might

be modified or deleted.

The monitor is also responsible for initiating all periodic processing of activity
profiles and anomaly records. Periodic-activity-update rules are fired before periodic-
anomaly-analysis rules since the former can generate additional anomaly records that

should be included in the analysis.

The IDES monitor should be system-independent, with all system-dependent
information stored in the IDES database. One area where there is great diversity among
different systems is in audit record formats. This diversity could be resolved by
providing a system-independent audit record interface to IDES. The audit records of a
particular system would then pass through a filter that puts them in the standard format

before being transmitted to IDES.

000067
Intrusion Detection Page 62 System Design

5.3. IDES Knowledge Base and Database Management System

The IDES database management system (IDBMS) manages both the system-
dependent and system-independent knowledge bases. The data itself could be stored and
processed as relations, possibly using an off-the-shelf relational database management

system.

The system-dependent knowledge base can be described in terms of three main

relations:

e Audit-Records -- for all audit records. Because this relation will be enormous
(there might be a million records per week), it should be physically
represented by a multilevel store, where records are migrated from the main
store (e.g., high-speed disk) to secondary store (e.g., tape or optical disk).

e Profiles -- for all activity profiles and profile templates.
e Anomaly-Records -- for all anomaly records.

Note that the above relations are not necessarily in ‘normal form’. An implementation
may decompose these relations into normal form to preclude certain kinds of update,
insert, and delete ‘anomalies’ on the data and to minimize the storage requirements -- we

do not consider how this should be done here.

The system-independent knowledge base could be defined by relations that contain
suggested profile templates and information about the statistical metrics, models, and
activity rules built into IDES. The rules themselves may be encoded as update and
retrieval queries on the relations. For example, consider the audit-record rules, which
are triggered by a new audit record, a match between the record and a profile, and a
match between the type in the profile and the type implemented by the rule. When a
new audit record is received, a query on the Profiles relation can retrieve all activity
profiles and template profiles matching the audit record, generating new activity profiles
for templates that do not have matching activity profiles. For each activity profile in
the set, a query that implements the AuditProcess rule for that type is then invoked.
Periodic-activity-update rules can be similarly handled. Periodic-anomaly-analysis rules,

which may compute statistics over past anomaly records, can be implemented as queries

000068
Intrusion Detection Page 63 System Design

on the Anomaly-Record relation. Note that, unlike some expert systems, it is important

in IDES that all rules whose conditions are satisfied be fired.

Commercial relational database systems may not have all of the capabilities desired
for IDES, particularly for pattern matching and implementing statistical models that are
more complex than those based on mean and standard deviation. These capabilities may
be provided through a higher-level language that interfaces to the database query
language (via compilation/interpretation or procedure callls). Although we do not
attempt to define such a language here, we do note that Prolog and LISP, which are
popular for Al applications, are not appropriate for IDES. Neither supports statistical
computing. Although Prolog provides matching (in the form of resolution) its matching
capability does not seem to be well suited to IDES (recursive matching with backup, for

example, may not be needed).

000069

Intrusion Detection Page 64 Research Questions

6. Research Questions

Although we believe the approach outlined in this report is powerful and feasible,

further research is needed to address several questions:

e Soundness of Approach -- Does the approach actually detect intrusions? Is it
possible to distinguish anomalies related to intrusions from those related to
other factors? It is not possible to answer these questions without
experimentally trying the approach and measuring the correlation between
anomalies and actual (or simulated) intrusions.

o Completeness of Approach -- Does the approach detect most, if not all,
intrusions, or is a significant proportion of intrusions undetectable by this
method? We expect that the approach can detect most intrusions, though
subtle forms of intrusion that use low-level features of the target system that
are not monitored (because they would produce too much data) may escape
notice. For example, because it is not practical to monitor individual page
faults, a program that leaks data covertly by controlling page faults would
not be detected -- at least by its page-fault activity.

It is important, however, to distinguish between detecting a low-level action
that exploits a particular flaw in a system and detecting the related intrusion.
For example, if the program that acquires the sensitive data covertly routes
the data to an abnormal location, or the user acquiring the data logs into the
system during unusual hours or from an abnormal location, the intrusion may
be detected from the aberrant activity. As another example, consider an
operating system penetration based on trying supervisor calls with slight
variants of the calling parameters until arguments are found that allow the
user to run his own programs in supervisor mode. Detecting the actual
penetration would be impossible without monitoring all supervisor calls,
which is generally not practical. The intrusion, however, may be detected
once the penetration succeeds if the intruder begins to access objects he could
not access before. Thus, the important question is not whether IDES can
detect a particular low-level action that exploits a system flaw, but whether
intrusions are manifest by activity that can be practically monitored.

In order to determine the ability of IDES to detect intrusions, it will be
necessary to experimentally try different methods of intrusion and observe
whether, and how quickly, IDES detects the intrusions. A significant
challenge for IDES will be responding to someone attempting live penetration
testing.

e Timeliness of Approach -- Can IDES detect intrusions before significant
damage is done? The answer to this question depends on whether the actions
that trigger detection sufficiently precede those that cause damage that the

000070

Intrusion Detection Page 65 Research Questions

security officer can be notified of the possible intrusion and take appropriate
action. This is the main reason why IDES monitors all activity for aberrant
usage, and not just security-related activity or actions that could cause
potential damage (e.g., file deletes).

IDES can never replace the security controls on the target system, which aim
to prevent intrusions and ensuing damage. Its operating mode is purely
detective. A swift one-shot penetration that exploits a system flaw and then
destroys all files with a single ‘delete all’ command may be able to perform
significant damage before any action can be taken. It is doubtful that one
can do much to protect against this threat beyond what can be provided by
the security controls on the target system.

e Choice of Metrics, Statistical Models, and Pro files -- What metries, models,
and profiles provide the best discriminating power? Which are cost-effective?
What are the relationships between certain types of anomalies and different
methods of intrusion? In Section 4 we gave suggestions for measures and
rules, but these were based on intuition and our desire to limit the examples
to a few simple measures. We need more information from security officers
who have observed the effect of actual intrusions on system activity, as well
as experimental data showing correlations between actual intrusions and
different statistical measures.

o System Design -- How should the IDES software and database be structured?
What should the user (security officer) interface to IDES look like? What
should be the standard format for audit records? What language should be
used for defining profile templates, pattern matching, and writing rules
(which require statistical computations)? In Section 5 we sketched a design
based on a relational database system, but left the details for future work.

e Social Implications -- How will IDES affect the user community it monitors?
Will it deter intrusions? Will the users feel their data are better protected?
Will it be regarded as a step towards ‘big brother’ watching all of our
activity and invading our privacy? Will its capabilities be misused to that
end? It is not enough to consider technical questions; the social aspects could
significantly affect the ultimate successes or failure of IDES.

000071

Intrusion Detection Page 66 Conclusions

7. Conclusions and Future Work

We have developed a model for an intrusion-detection expert system called IDES,
showed how the model can be applied to real systems, and outlined a system-
independent design that allows the IDES software to be independent of the system
monitored. We believe that the approach is feasible and capable of detecting a wide
range of intrusions related to attempted break-ins, masquerading (successful break-ins),
system penetrations, Trojan horses, viruses, leakage and other abuses by legitimate users,
and certain covert channels. Moreover, it can detect intrusions without knowing about
the flaws in the target system that allowed the intrusion to take place, and without
necessarily observing the particular action that exploits the flaw. Although IDES may be
unable to detect all intrusions, we believe that it can detect most intrusions and thereby

significantly enhance the security of a target system.

We recommend development of a rapid prototype of IDES to test the model and
approach experimentally. The prototype would provide a testbed for investigating
different metrics, statistical models, and rules, and for measuring the correlation between
simulated intrusions and observed anomalies. It would also provide a means of refining
the design of IDES, including the IDES knowledge base and user interface. If the
prototype effort demonstrates the feasibility and effectiveness of the approach, we
recommend development of a production IDES that would be capable of monitoring a

wide variety of systems and applications.

The approach outlined in this report may apply to areas other than security -- for
example, it may be useful for detecting unreliable system states (e.g., a system that is
beginning to crash) and dangerous situations involving human safety (e.g., failures in
control systems for traffic, ships, aircraft, and missiles). If IDES is suécessful in detecting
security breaches, then investigating its application to these other areas would be

worthwhile.

000072
Intrusion Detection Page 67 Appendices

I. Sample Cases of Intrusion

e San Francisco Public Defender files were inadvertently made accessible to
police and prosecutors. As many as 1000 cases could have been compromised
as a result, although the lack of adequate audit trails makes it impossible to
know what information might actually have been read, and by whom.

e Someone gained access to the password file for British Telecom’s Prestel
Information Service and demonstrated this to a reporter for the London Daily
Mail -- by reading Prince Philip’s mailbox and altering a financial market
database.

e In a clever 1984 April-Fool’s-Day hoax, someone faked a message from
Chernenko@MOSKVAX and modified the system tables to permit the receipt
of return mail sent to the originating (but in reality nonexistent) host.

e Someone accessed the TRW on-line credit information bureau (which is
widely available), and then obtained a credit card number for a Newsweek
reporter (Richard Sandza) who had written “anti-hacker” articles. $1100 in
unauthorized charges resulted, apparently in retribution for the article.

e High-school students (the “Milwaukee 414s’’) found it relatively trivial to
break in to a large number of computer systems using the ARPANET.
Although they seem to have been mostly snooping, they also did some
damage.

e Bloodstock Research Inc. (in Kentucky), which maintains genealogical and
other data on thoroughbred race horses, had its system logged into via dial-
% up and its database compromised.

e A Santa Clara County jail inmate managed to log in to the prison computer
database system and alter his release date.

e Cal Tech students remotely subverted the scoreboard controls during the
1984 Rose Bowl, and altered the display (e.g., changing the teams to ‘‘Cal
Tech vs. MIT”).

Further background on these cases can be found in recent issues of the ACM

SIGSOFT Software Engincering Notes. Over a hundred additional cases of computer-

related security problems are documented in Norman [4].

000073
Intrusion Detection Page 68 Appendices

H. Security Flaws in Computer Systems
The following is a list of a few known flaws in different operating systems. For

each flaw, we suggest how an intrusion that exploits the flaw might be detected by IDES.

e TENEX’s lack of hang-up detection leaves a dialed-up process logged in after
a line break, accessible to whomever next happens to acquire that dial-up
port -- detect masquerader by abnormal usage of account.

e An earlier Cyber system had a command that complained if a would-be new
password was already in use by another user -- detect attempts to find the
account associated with the password by abnormal password failures; detect
successful break-in by abnormal usage of account.

e UNIX passwords were subject to dictionary attacks despite encrypted
passwords [1] -- detect attempted break-in by unusually high number of
password failures; detect successful break-in by abnormal usage of an
account.

e UNIX Version 6 had an accidental universal password that worked for all
users -- detect masquerading by abnormal usage of account.

e UNIX ‘root’ capture is possible, even without being logged in -- detect by
abnormal activity for ‘root’ account.

e UNIX Version 6 login could be broken by successive quits during login --
detect successful break-in by abnormal usage of account.

e A Trojan horse was implanted in the UNIX C compiler, awaiting the next
recompilation of the UNIX login procedure, upon which a trap door was
installed that allowed login into any account using a special password [7] --
detect unauthorized use of account by abnormal usage.

e Mounted file systems in UNIX (for example) bypass protection checks --
detect by abnormal file accesses.

o Serious flaws in the security appliques RACF and ACF-2 and in their
underlying operating system MVS result in easy penetrability [5] -- detect
successful penetration by change in files and commands accessible to
intruder.

e UNIX restricted shells are trivially breakable, in a variety of ways, allowing
one to acquire Superuser status -- detect penetration by change in files and
commands accessible to intruder.

000074
Intrusion Detection Page 69 Appendices

e UNIX Superuser status and TOPS-20 Wheel status are vastly too powerful,
allowing considerable damage to be done by a successful penetration -- this
may facilitate intrusion detection because the penetrator’s activity can
change dramatically once privileged status is acquired.

e TOPS-20 retrieval of an archived file that had been protected brings it back
unprotected -- detect by abnormal file access.

e In UNIVAC 1100 under Exec-8, a chain of 8 indirect words resulted in
memory protection being bypassed for the last access; this could be used to
penetrate the system (by overwriting system tables) -- detect by abnormal
command and file usage by penetrator.

A summary of characteristic flaws in computer systems is given in Neumann [2]
and includes weaknesses in systems and in programming languages such as improper
encapsulation, naming problems, hidden side-effects, improper validation, interruptible

“atomic” actions, improper sequencing, etc.

000075
Intrusion Detection Page 70 Appendices

References

1. R. Morris, K. Thompson. *UNIX Password Security: A Case History®. Comm.
ACM 22, 11 (November 1979), 594-597.

2. Neumann, P. G. "Computer Security Evaluation®. Proc. NCC 47(1978),
1087-1095.

3. P.G. Neumann. Audit Trail Analysis and Usage Data Collection and Processing,
Part One. SRI International, Project 5910, January, 1985.

4. AR.D. Norman. Computer Insecurity. Chapman and Hall Ltd., New York and
London, 1983.

5. Ronald Paans, Guus Bonnes. Surreptitious Security Violation in the MVS Operating
System. Delft University of Technology, Department of Electrical Engineering, POBox
5031, 2600 GA Delft, Netherlands, 1984.

6. System Management Facilities. BC28-0706-1 edition, IBM Corp., 1977.

7. K. Thompson. *Reflections on Trusting Trust (1983 Turing Award Lecture)*®.
Comm. ACM 27, 8 (August 1984), 761-763.

8. UNIX Programmer’s Manual. 4.2 Berkeley Software Distribution edition, Dept.
EECS, Univ. of Calif., Berkeley, 1983.

000076

