
24 COMMUNICATIONS OF THE ACM | APRIL 2015 | VOL. 58 | NO. 4

V
viewpoints

for target exploitation. One possibility,
suggested by Dan Geer, is for the U.S.
government (USG) to openly corner the
vulnerability market.6 In particular, the
USG would buy all vulnerabilities and
share them with vendors and the public,
offering to pay say 10 times as much as
any competitor. Geer argues this strat-
egy will enlarge the talent pool of vulner-
ability finders, while also devaluing the
vulnerabilities themselves. Assuming
the supply of vulnerabilities is relatively
sparse, the approach could eventually
lead to a situation where most vulner-
abilities have been exposed and fixed,
rendering any cyber weapons that ex-
ploited them useless. In addition, since
researchers finding new zero-day will
maximize their earnings by selling them
to the USG, fewer zero-days should end
up in the hands of adversaries.

The cost of Geer’s proposal seems
reasonable. Current prices for vulner-
abilities range from a few hundred to
several hundred thousand dollars. If
we consider the approximately 8,000
vulnerabilities added to the NVD in
2014 and assume an average price
of $1,000, then the cost of purchas-

L
A ST Y E A R, THE National Insti-
tute Standards and Technol-
ogy (NIST) added 7,937 vul-
nerabilities to the National
Vulnerability Database (NVD),

up from 5,174 in 2013. That is approxi-
mately 22 per day, or almost one every
hour. Of these, 1,912 (24%) were la-
beled “high severity” and 7,243 (91%)
“high” or “medium.”7 Simply put, they
cannot be ignored.

As I read reports of new vulnerabili-
ties and the risks they enable, I won-
der whether it will ever end. Will our
software products ever be sufficiently
secure that reports such as these are
few and far between? Or, will they only
become more prevalent as more and
more software enters the market, and
more dangerous as software increas-
ingly controls network-enabled medi-
cal devices and other products that
perform life-critical functions?

In this column, I will explore two
proposals aimed at reducing software
flaws. The first, which involves the U.S.
government cornering the vulnerabil-
ity market, I believe, could make the
problem worse. However, the second,

which involves holding companies lia-
ble for faulty software, is an idea whose
time has come.

Cornering the Vulnerability Market
Many software companies, includ-
ing Microsoft, Google, and Mozilla,
operate bug bounty programs, paying
security researchers who bring new
security flaws to their attention. Other
companies serve as brokers, buying
vulnerabilities and exploits from se-
curity researchers, and then selling
or donating them to product vendors
and other customers. To the extent the
end consumers in this growing market
are the companies whose products are
flawed, the market serves to strengthen
software security. But when end con-
sumers are intelligence agencies and
criminals who use the information to
exploit target systems, the vulnerabil-
ity market exposes us all to greater risk.

To further reduce software vulner-
abilities beyond what the market has
achieved so far, we could look for ways
that encourage the pursuit of vulner-
abilities with the goal of getting them
fixed, but discourage their sale and use

Privacy and Security
Toward More
Secure Software
Two proposals intended to reduce flaws in software
use two very different approaches for software security.

DOI:10.1145/2736281 Dorothy E. Denning

http://dx.doi.org/10.1145/2736281

APRIL 2015 | VOL. 58 | NO. 4 | COMMUNICATIONS OF THE ACM 25

viewpoints

V than in patching flaws in deployed
code that puts users at risk?

Another issue is whether the USG
would be willing to disclose all vulnera-
bilities. Under current policy, software
flaws it uncovers are generally to be dis-
closed to vendors in order that they can
be patched, but they can be kept secret
and exploited when there is “a clear
national security or law enforcement”
reason.10 At the same time, it seems
likely that many discovered vulnera-
bilities will never reach the USG, being
held for the purposes of exploitation
by criminals and foreign governments.
And many persons might simply op-
pose reporting them to the USG.

Finally, vulnerability disclosure has
the downside of increasing the risks
of those using the reported products,
at least until they can acquire and in-
stall the necessary patches. Consider
ShellShock, a flaw in the UNIX Bourne-
again shell (Bash), which lets attackers
remotely execute code or escalate privi-
leges. Disclosure of the flaw allowed
attackers to harvest vulnerable com-
puters into a botnet that sent out over
100,000 phishing email messages.3 A
Symantec study found that attacks ex-
ploiting particular zero-day vulnerabil-
ities increased by as much as 100,000-
fold after their disclosure.2

Software Liability
A better approach to reducing vulnera-
bilities would be to hold software com-
panies liable for damages incurred by
cyber-attacks that exploit security flaws
in their code. Right now, companies
are not liable, protected by their licens-
ing agreements. No other industry en-
joys such dispensation. The manufac-
turers of automobiles, appliances, and
other products can be sued for faulty
products that lead to death and injury.

In Geekonomics, David Rice makes
a strong case that industry incentives
to produce secure software are inad-
equate under current market forces,
and that one way of shifting this would
be to hold companies accountable for
faulty products.8 Geer proposes that
software companies be liable for dam-
ages caused by commercial software
when used normally, but that devel-
opers could avoid liability by deliver-
ing their software with “complete and
buildable source code and a license
that allows disabling any functional-

ing these vulnerabilities would be $8
million, a drop in the bucket for the
USG. Even if the average price rose to
$100,000, the annual cost would still
be reasonable at $800 million. How-
ever, the costs could become much
higher and the problems worse if the
program perversely incentivized the
creation of bugs (for example, an in-
side developer colluding with an out-
side bounty collector).1 Costs could
also rise from outrageous monetary
demands or the effects of more people
looking for bugs in more products.

I especially worry that by shifting

the cost from the private sector to the
USG, companies would lose an eco-
nomic incentive to produce more se-
cure software in the first place. As it is,
an empirical study by UC Berkeley re-
searchers of the bug bounty programs
offered by Google and Mozilla for their
respective browsers, Chrome and
Firefox, found the programs were eco-
nomically efficient and cost effective
compared to hiring full-time security
researchers to hunt down the flaws.5
Would it not be better to shift the in-
centives so it was more economical to
invest in secure software development

26 COMMUNICATIONS OF THE ACM | APRIL 2015 | VOL. 58 | NO. 4

viewpoints

Because software licenses and the
Uniform Commercial Code severely lim-
it vendors from liability for security flaws
in their code, companies today cannot
be effectively sued or punished when
they are negligent and the flaws are ex-
ploited to cause economic harm.9 Legis-
lation or regulation is needed to change
this and remove the ability of companies
to exempt themselves through licensing
agreements. Developing a suitable li-
ability regime will be a challenge, how-
ever, as the system must address the
concerns of both software developers
and users. Perhaps a good start would
be for ACM to sponsor a workshop that
brings together a diverse community of
stakeholders and domain experts to rec-
ommend a course of action.

Of course, holding software com-
panies accountable will not solve all
our security woes. Many cyber-attacks
exploit weaknesses unrelated to faulty
software, such as weak and default
passwords and failure to encrypt sen-
sitive information. But companies are
liable when their systems are attacked,
and they can be successfully sued for
not following security standards and
best practices. The time has come to
make software vendors liable as well.

References
1. Baker, H. Re: Zero-day bounties. The Risks Digest 28.25

(Sept. 9, 2014).
2. Bilge, L. and Dumitras, T. An empirical study of zero-

day attacks in the real world. CCS’12 (Oct. 16–18,
Raleigh, N.C.); http://users.ece.cmu.edu/~tdumitra/
public_documents/bilge12_zero_day.pdf.

3. Carman, A. Shellshock used to amass botnet and
execute phishing campaign. SC Magazine (Oct. 15,
2014); http://bit.ly/1Df7Slg.

4. CERT Coding Standards; http://www.cert.org/secure-
coding/index.cfm.

5. Finifter, M., Akhawe, D., and Wagner, D. An empirical
study of vulnerability rewards programs. USENIX
Security 13; https://www.eecs.berkeley.edu/~daw/
papers/vrp-use13.pdf.

6. Geer, D. Cybersecurity as realpolitik. Blackhat 2014;
http://geer.tinho.net/geer.blackhat.6viii14.txt.

7. National Vulnerability Database, National Institute of
Standards and Technology; https://web.nvd.nist.gov.

8. Rice, D. Geekonomics: The Real Cost of Insecure
Software, Addison Wesley, 2008.

9. Scott, M.D. Tort liability for vendors of insecure
software: Has the time finally come? Maryland
Law Review 67, 2 (2008); http://digitalcommons.
law.umaryland.edu/cgi/viewcontent.
cgi?article=3320&context=mlr.

10. Zetter, K. Obama: NSA must reveal bugs like Heartbleed,
unless they help the NSA. Wired (Apr. 15, 2014); http://
www.wired.com/2014/04/obama-zero-day/.

Dorothy E. Denning (dedennin@nps.edu) is Distinguished
Professor of Defense Analysis at the Naval Postgraduate
School in Monterey, CA.

The views expressed here are those of the author and
do not reflect the official policy or position of the U.S.
Department of Defense or the U.S. federal government.

Copyright held by author.

ity or code the licensee decides.”6 The
escape clause, which would cover free
and open source software, would allow
users to inspect and cut out any soft-
ware they did not trust.

My main concern with Geer’s propos-
al relates to absolving any code offered
commercially from liability. As a practi-
cal matter, very few users are in a posi-
tion to inspect source code. Even those
that are can miss significant flaws, as
seen with Heartbleed, a flaw in OpenS-
SL that gives attackers access to sensi-
tive information, and also ShellShock.
In addition, exemption does nothing
to incentivize the production of more
secure open source code. At the same
time, penalizing a large, volunteer com-
munity for flaws in their code would be
both difficult and distasteful.

A better way around this dilemma
might be to exempt the immediate de-
velopers of open source code, but hold
accountable any company that embeds
it in their products or that offers ser-
vices for open source products. Under
such a provision, if an individual or
group of volunteers offers a free, open
source App, they would not be account-
able, though any company offering it
through their App store would be.

This compromise would incentiv-
ize software companies to pay greater
attention to security in all of the code
they offer through their products and
services, regardless of whether the
code is developed in house, by a con-
tractor, or within the open source com-
munity; and regardless of whether the
product is released with source code or
the capability to disable certain func-
tions. Moreover, given that many com-
panies contribute to open source de-
velopment, they would be incentivized
to promote secure coding practices in
the open source community as well as
within their own development teams.

Importantly, as with other forms of
liability, software liability should be
tied to standards and best practices, as
well as the damage and harm that result
from security flaws. The objective is not
to penalize companies who invest con-
siderable resources in software security
but find their code vulnerable to a new
exploit that nobody had anticipated.
Rather, it is to bring all software up to
a higher level of security by punishing
those who are negligent in this domain,
for example, by putting out code that

fails to check inputs. Standards and
best practices for secure coding have ad-
vanced considerably, and readers inter-
ested in learning more might start with
CERT’s Secure Coding Web portal.4

The argument is often made that
software liability will inhibit innovation,
but we should inhibit the introduction
of faulty software. Moreover, assigning
liability will likely stimulate innovation
relating to secure software develop-
ment. Another argument against soft-
ware liability is that it will raise the price
of software. While this may be true, it
should lower the costs we all pay from
cyber-attacks that exploit software vul-
nerabilities, costs that have been rising
over the years and fall on the backs of
users as well as software companies.

Conclusion
Bug bounties emerged under current
market forces and are likely here to
stay. I oppose a program that would
attempt to have the U.S. government
corner and fund this market, in part
because it would reduce the incentive
for software companies to produce
more secure code and could make the
problem worse.

A better strategy is one that increas-
es the incentives for the development
of secure software but decreases those
for putting out sloppy code. One way of
achieving this is by holding companies
responsible for all the code they sell
and service, including both proprietary
and open source. Under this strategy,
companies could be sued for damages
caused by cyber-attacks that exploited
flaws in their code, and penalties would
be inflicted according to whether the
code was developed under standards
and best practices for secure coding.

Developing a suitable
liability regime
will be a challenge,
as the system must
address the concerns
of both software
developers and users.

