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ABSTRACT

Denning, Dorothy Elizebeth Robling. Ph.D., Purdue University, Mey 1975.
Secure Information Flow in Computer Systems. Major Professor: Herbert D.
Schwetman.

This thesis investigates mechanisms that guarantee the secure flow
of information between a set of security classes in a computing system.
These mechaenisms are examined within the framework of a mathematical
model suitable for concisely formulating the requirements of secure
information flow. Tae model provides a unifying view of all systems
that restrict informetion flow and erables a classification of them
according to security objectives.

The central component of the model is & lattice structure derived
from the security classes and justified by the semantics of information
flow. The lattice properties are used to develop two mechanisms that
verify the secure execution of a prograu adéressing storage locations
associated with different security classes. The first operates in an
environment in which the security class associated with each location
is invariant. The second operates in & more ccmplex environment in
which the security class associated with each location is to be deter-~

mined by the information contained in it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INTRODUCTION

Chapter 1

This thesis is a theoretical investigation of mechenisms thet
guarantee secure information flow in a computer system. By information
flow we mean that information in one object (e.g., a variable or file)

is used to derive information in another. By secure information flow,

or simple security, we mean that no unauthorized flow of information is
possible. the mechanisms that guarantee the security of a system are
referred to as protection mechanisms.

We restrict our study to the special case where the flow of infor-
mation is to be constrained by a "flow relation" on a set of "security
class". We develop a mathematical model of information flow suitable
for formulating the security requirements of such a system. The proper-
ties of the model are used to construct automatic program certification
mechenisms that verify the secure execution of a program.

In the remainder of this introduction we discuss informally the
security problem we wish specifically to solve and the approach followed
thereafter to its solution. (See [PoTL,Hf69] for a survey of other

security problems.)



1.1 Problem Statement

The problem under investigation may be informally stated as
fuilows: given a set of "security classes" corresponding to classes
of information, and a specification of allowable paths by which
information can flow among them, construct a mechanism which guarantecs
that the flows which arise during program executions do not violate
the specification. The security classes are intended to model the
important concepts of "security classifications", "security categories",
and "need to know" [We69,GaT2]; as will be seen, however, they are
more general in their scope. Information is considered to flow from
one class to another if it flows from an object associated with the
tormer to one associated with the latter.

Consider for example a system, in which all information is par-
titioned into four security levels: A, AZ’ A3, Ah’ where
Al < Ae < A3 < Ah' The security requirement of this system is that
information may flow from Ai to Aj only if i < j. Interpreting

A < I\.J to mean that "A; is at a lower security level than A.," this

'
requirement states simply that high security information cannot flow
into low security classes. In a government or military system, the
classes Al"" ’Ah could correspond to unclassified, classified, secret,
and top secret information respectively. In this case, the szcurity
requirement is to prevent events such as top secret data's from entering
an vnclassified file or reaching a user with only a secret clearance.
This partially describes the security requirements of ADEPT-50, a time
sharing system designed to handle sensitive information in governmcnt

and military systems [We69].
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To guarantee security in such a system, it is necessary to block
all communication channels or "flow paths" between objects in class A
and class A‘1 whenever Ay > AJ. For instance, consider two files a and
b belonging to classes Ai and AJ respectively. The security require-
ment of the system implies that data may be transferred from a to b

if and only if Ai < A,. According to this requirement, transferring

J
data from a top secret file a to an unclassified file b is not permitted.
A major implementation problem with this type of security require-
ment is detecting and monitoring all possible flow paths from a to b;
most direct paths are simply detected, but indirect paths — involving
one or more other processes and files — are considerably more difficult
to detect. The problem can be stated precisely as follows. For a file
a and process p, let a => p denote the proposition "p can read a irto
its local computetional memory," and p => a denote the proposition
"p can write from its 1océl computational memory into a." Then let
& => b mean there exists a process p such that a => p => b, and a LN b
mean there exist processes PpseeesPy and files CpareesCy (n> 1)

such that

a=cp=> p => e = Py = ... = p .= ¢ = ¢, =b.

n-17 Pn

When n = 1 the flow a 2> b is "direct", and when n > 1 it is "indirect".

The foregoing security requirement is now stated simply: no flow

at b for a e Ai and b e AJ is permissible unless Ai < A,J"
Figure 1.1-1 illustrates two representations of the flow a i b:

a graphical form and an "access matrix" form. The latter form was

first introduced by Lampson [La7l] and developed by Graham and
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Figure 1.1-1. Communication Channel from a to b.
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Denning [GD72]. It has proved to be & useful conceptual basis within
which to study problems of access control [JoT3]. However, since it
does not include notions of security classes and information flow, one
of our tasks will be extending it so that, for example, granting a
read or write access to a process is not permitted if it introduces an
insecure flow path.

The example above is easily extended to allow for processes that
communicate directly between their computational memories (for example,
using "send message" and "get message" operations [HaT0]) by regarding
some of the ci as message buffers rather than files.

The example is of course a rather simple instance of a more general
problem. The complications which we shall study include, but are not
limited to:

1. The scecurity classes A)-_ do not conform to a strict linear

ordering relation.

2, The processes involved in effecting a flow a :>b are them-
selves associated with security classes — e.g., according to
the classes of their cwning users — and these classes may
vary during execution. Process security classes must be
accounted for in deciding whether a flow a §> b is permissible.

3. The classes with which files are associated may be allowed
to change during a computation. Similarly, the security
level of a process's loeal computational memory may change
according to the highest class of information residing

within it.
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'8 Programs, or the systems on which they operate, must be
certified as to whether they meet the stated security
requirements before they are permitted to execute.

Even if adequate solutions for controlling information flow
among specified security classes are instituted, there remain many
subtle ways information can flow in violation of the stated security
requirements. Some of these troublesome flows utilize the mechanisms
put into place to contrel the direct and indirect flows cited abovel
Indeed, were it not for the so-called "covert channels" along which
information can flow, and were it not for the difficulty in identi-
fying such channels, protection might not be the enormous problem we
find today [La73]. A famous e;(a.mple of a covert path is a process
shat alters its demands on some system resource in a pattern (e.g.,
Morse Code) that can be observed by an accomplice process; though the
capacity of such & channel may be at best a few bits per second, this
may be quite sufficient for a patient perpetrator. Another example
is a process that discloses a confidential value x by opening x files,
again under the observation of an accomplice. Other examples can be
constructed around the principle of using error-checking mechanisms to
divulge information by the very existence of an error; we shall see

specific cases of this later. These problems have been perplexing

Rotenberg [Ro7k, and Fenton [FeTlal). The mechanisms developed in
this thesis provide solutions to many of them.
4 is important to note that the protection requirements we have

specified hers are stronger than the read-write access control



requirements found in many contemporary systems, such as MULTICS
[0r72,5872] and HYDRA [WuTh], in that indirect flow paths are not
controlled in these latter systems. For example, in MULTICS, if a
process p is given read-access %o & file a, it may be able to com~
municate, via a second file b, the entire contents of a to another
process p' that was denied read-access to a. More precisely,
existence of a path a => p may imply the existence of a path a :> p'
(namely a => P =>b => p'), even though p' vwes not permitted to
establish a direct path a => p'. Similarly, in HYDRA, if a process is
given a "capsbility" to read a file, it can pass this capability to
another process (provided the capability has the "copy" option).
This does not imply that the protection mechanisms of MULTICS or
HYDRA are insecure; it implies only that they are inadequate for the
rroblem under investigation in this thesis. It is also important to
realize that the access control mechanisms of these systems handle
additional security requirements that we are not explicitly consid-
ering here. For example, the mechanisms of both HYDRA and MULTICS
permit the controlled execution of code segments; the mechanism for
creating new types of objects in HYDRA permits greater control over
the use of files. Here, for instance, the "owner" of a file can

require that access to it be only through a specified set of procedures.

1.2 Previous Research

The problem under investigation has also been studied by Weissman
[We69], Rotenverg [RoTh], Walter et. al. [Wa7L], Bell and LaPadula
[BL73a,BLT3b], and Fenton [Fe73,FeTha,FeThb]. Weissman describes the

ADEPT-50 system (mentioned earlier), in which control over information
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flow is based on a set theoretic model of access rights. The security
classes (or profiles, as they are éalled) are sets derived from two
properties, Authority and Category, corresponding respectively to
government and military Classification and Compartments. Each user,
terminal, program, and file is assigned a profile. The basic set oper-
ations (e.g., union, intersection) are used to control access to objects
and the flow of information. Rotenberg proposes the use of "privacy
restricti;)ns" for controlling information flow in a large time sharing
system. Here, the security classes are sets of restrictions. A
Privacy Restriction Processor records the flow of informetion in the
system by propagating restrictions among the restriction sets associ-
ated with segment: and processes. The restriction sets are then used
to prevent unauthorized releases of information. Walter et. al. report

on an investigation at Case Western Reserve to design = Security Kernel

" that monitors the flow of information between files and processes in a

system like MULTICS. Their approach has been to develop a series of
three models, MO’ Ml’ Mz. M0 represents the most abstract model and
contains agents and repositories which must obey four basic axioms of
information flow. Structured modeling techniques ere then used to
arrive et consistent, but, successively less abstract models Ml and Me.
They are currently investigating implementation of the final model Mz.
Bell and LaPadula describe a project at MITRE to develop a set theor-
etic model of protection for government and military systems. Like
ADEPT and the CASE system, their model is intended for systems that

control information flow between files and processes. Fenton examines

the problem of controlling information flow withirn e program; i.e.,
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controlling the flow of information between the storage registers
accessible to a program. He proposes a restricted hardware design
in which each storage register is tagged according to its information
class and the instruction execution mechanism inhibits instructions
thet would produce information flows not permitted by the tags.

We shall return to these works, examining them in more detail
in the light of the general model of information flow to be developed
in Chapter 2. The objective of this thesis is to extend and improve
these reseerch efforts. The model presented in the next chapter gives
a formal basis for proving that security requirements are met. By

providing a general enough context, it gives a single medium of

ion for compering and conbrasting the five systems above eand
others as well. The semantics of the security problem impnse a well-

developed structure on the permissible flows among security classes.
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This structure is exploite
checking algorithms.

The problem of certifying security properties has also been
previously investigated by Bell and Burke [BBT:], Neumann and Fabry
[NF74], Popek and Kline [PKTh] and Walter et. al. [WaTh]. However,
their research efforts have been directed primarly toward the problem
of manually certifying the correct operation and implementation of
a complete system, whereas our efforts have been directed exclusively
toward the problem of automatically certifying the secure execution of

& program in an otherwise secure systei.
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1.3 Organization and Results of Thesis

In Chapter 2 we introduce a formal model of information flow and
state a definition of security in terms of the model. An examination
of the mathematical properties of the model shows that under certain
assumptions the set of security classes forms a lattice. These
assumptions are not arbitrarily chosen. but rather follow from the
semantics of the problem. The lattice structure is exploited in later

chapters to develop efficient security certification algorithms.

Special cases of the model are examined in terms of their security

requirements and relation to previous work. Finally, problem of
guaranteeing "determinacy" of security classes in a multiprogrammed
environment is analyzed.

In Chapters 3 and 4 we investigate the special case of guaranteeing
the secure flow of information within a program written in a well-
structured high level langusge, such as PASCAL [WrTl]. In particular,
we present algorithms for proving (or disproving) certain security
properties for an arbitrary program. The significance of these
algorithms is that the secure execution of a program can be estab-
lished prior to its execution by a certification procedure. In Chapter
3 we present an algorithm for certifying the secure execution of &
program in an environment in which the security class of each storage
register remeins constant throughout the lifetime of the program.
Because it exploits the lattice structure of the security classes,
the certification procedure can easily be embedded into the analysis
phase of a compiler without adding substantially to the compilation

time of a program. In Chapter 4 we propose a hardware design, based
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N

classes, so that the class of a register can be a functicn of its
contents. We then present two possible algorithms for certifying the
secure execution of a program in this environment.

In Chapter 5 we state the conclusions reached by this research and
propose areas for future study. The important contributions of this
research are summarized below:

1. A formal model of information flow and security is developed.

It is used for stating and proving the security and determinacy
requirements of systems that control information flow.

2. Analysis of the properties of the model, and of the security
problem itself, leads to the conclusion that it is semantically
reasonable to assume that the set of security classes forms
a lattice. The lattice, which appears frequently in studies
of programming languages and other sementic problems in
computer science, is found to be important in the security
problem as well. That lattices are inherent in this problem
is the principal reason that verification of security require-
ments is not only feasible — it is understandsble and
efficient.

3. The model is a generalization of previous work on the security
problem. It gives a unifying view of this work, enables a
classification of it according to security objectives, and
suggests some new approaches.

' The model ensbles the specification of compile-time algorithms

for certifying the secure execution of a program, one in an
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environment in which the’ security class of each storege
register is invariant, the other in the more complex environ-
ment in which the security class of some (or all) storage
registers can change in accordance with the class of the
information contained in them.

The model allows the study of 1un-time verification mech-
anisms, leading to the conclusion that such mechanisms are,
in most cases, insufficient to enforce properly the security
requirements of a system. Certain forms of certification
must be performed prior to program execution (point I, above)

to guarantee the correct use of run-time mechanisms.
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A MODEL OF INFORMATION FLOW

Chepter 2

In Section 1.1 we observed that the access control mechanisms of
most systems do not control the flow of information in & system.
Instead they monitor only a process's immediate read and write access
rights (or privileges) to objects. In these systems, whether or not
information will flow correctly is an undecidable question [HRTAL].
Consequently the security of such general systems relies greatly on
trust.

{ The cbjective of this research is to eliminate this element of
undecidability and reduce the need for trust by finding suitable
constraints under which the security of a system can be decided and
enforced. Our results have been more than encouraging: not only do
such constraints exist, but they are rich in mathematical structure.

In Section 2.1 we introduce a model suitable for formulating the
concept of information flow and specifying the requirements of secure
information flow. The model consis.ts of three components: an informa-
tion flow structure, states, and transition operators. The information
flow structure consists of a'set of security classes A, B, ... repre~
senting different classes of informetion; a binary relation ~, where
A + B means that information associated with class A is permitted to

flow to class B; and a binary operator 6, where A ® B represents the
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( class associated with information derived from classes A and B (e.g., the
‘ result of an arithmetic operation performed on information in classes A

and B). The states consist of logical storage objects, zn address
mapping function from these objects to physical memory, processes, func-
tions that bind objects ‘and processes to security classes, and relations
specifying processes' read and write access rights to objects. The
trensition operators consist of all operations that can cause a change
of state.

In Section 2.2 the security requiremeuts of the model are stated:
no set of processes must be able to effect a flow of information from
class A into class B unless A + B. This flow could occur, for example,
as the result of one or morc processes transferring (via a sequence of
read and write operations) information form a storage object assigned

to class A to one assigned to class B. The analysis reveals that

(N

security can be guaerenteed if each o
when the flow relation -+ is tran.si‘:.ive.

An investigation of the mathematical properties of the model in
Section 2.3 shows that under certain essumptions, justified by the
semantics of information flow, the security classes form a lattice.
Specifically, we show the semantics of information flow imply that we
are justified in assuming +that a) the security classes are partially
ordered by the flow relation +, b) ® is a least upper bound operator,
and c) there exists a greatest lower bound operator, which we denote
by 8. This result permits concise formulations of the security
requirements of different systems and facilitstes the construction

of mechanisms that enforce these requirements.
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( . In Section 2.4 special cases of the model are classified along
two dimensions: static v. dynamic binding and single v. multi-class.
"Static binding" means that the security class -associated with an
object remains constent over the lifetime of the system; at the opposite
extreme, "dynamic binding" means that the security class of an object
is a function of its contents and therefore varies with its contents.
The difference between static and dynamic binding is illustrated with
a simple example. Suppose a process p wishes to move information from
its working store (i.e., computational memory) WD to a file b. Under
static binding, it is necessary to verify that the flow from WP to b is
valid exactly once, at the time p cpens b for writing. Under dynamic
binding, it is necessary to update the class of b by that of Wp each
time p writes into b.

A "single-class" working store of a process is treated as a single
object bound to a single security class; in contrast, a "multi-class"
working store of a process is treated as more than one object and
allows each object to be bound to a differcnt class. Security in a
single-class system depends only on file input and output operations
and therefore can be verified at low cost. In contrast, security in
a multi-class system may depend on every instruction executed by a pro-
cess and therefore is inherently more cos*ly to verify. All of the
known mechanisms for controlling information flow ere characterized by
these two dimensions.

A determinacy problem arises in dynamically hound systems if the
security class of an object depends on the order in which a set of

processes execute. Since this may be undesirable in some systems, in
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( . Section 2.5 we state additional constraints that guarsntee determinate

operation with respect to security classes.

2.1 Description of the Model
An information flow model FM is defined by

FM = <FS, S, T>
where

FS is an information flow structure.

S is a set of states.

T is a set of transition operators.
The information flow structure FS models the valid flow paths of a
system and is defined by

FS = <sC, », &
where

SC = {A, B, ...} is a set of security classes closed under ©.

+ € SC x SC is a binary flow relation.

®: SC x SC -> SC is a binary class-combining operator.
The security classes SC correspond to disjoint classes of information.
The flow relation + on SC x SC is defined by A » B if and only if infor-
mation in class A is permitted to "flow" into ciass B. (A full discus-
sion of the implications of "flow" comes later). If A » B, we say that
A is a lower security class than B, or equivalently that B is a higher
security class than A. If there exists a class A such that A » B for
all B ¢ 8C, then A is said to be a lowest security class. If there
exists a class B such that A + B for all A € SC, then B is said tc be
a highest security class. In Section 2.3 we shall show that the seman~

tics of the problem imply we are justified to assume the existence of
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( \ unique lowest and highest security classes.
) The glass-combining operator ® specifies the class that corresponds
to the combination of information in two classes (e.g., by eddition,
multiplication, or insertion into a common file); that is, A & B is
the class corresponding to the result of an operation f applied to
information in classes A end B. In Section 2.3 we shell show that the
semantics of the problem imply we are justified in assuming that
the ® operator is a least upper bound operator on the set of classes SC.

Figure 2.1~1 shows two examples of information flow structures on
four security classes, where the flow relation + is a partial ordering
of the classes; i.e., + is reflexive, transitive, and anti-symmetric.
Example (a) shows the special case of a linear ordering, with a lowest
security class Al and a highest security class Ahi it corresponds to the
example described in Chapter 1. Example (b) shows a non-linear (partial)
ordering, with a lowest security class A00 and & highest security class
Ajy. Tﬁe graphical representations are standard precedence graphs for
a partial order, showing only the non-reflexive, immediate (irredundent)
relations; the remaining relations are implied by transitivity (i.e. , &
full partial order graph is the transitive closure of its precedence
graph). In Section 2.3 we shall show that the semantics of the problem
imply we are justified in assuming that the flow relation always
partially orders the security classes.

Although we have defined an information flow model FM in terms of
a single flow structure FS, an actual system may require more than one
flow structure. For example, several disjoint flow structures may

be needed to specify the valid flows between different types of objects.
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Description Representation
a) A Linear Ordering
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Description Representation

b) A Non-Linear (Partial) Ordering

Figurce 2,1-1. Examples of Partially Ordered Intormetion Flow Structures.
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In this case it is a simple matter to extend the model to include a set
of flow étructmes {FS,...,F8 ).

The states S model the state-dependent components of a protection
system. These are the set of active processes, the set of logical mem-
ory objects (i.e., the receptacles of information), the binding of
objects to security classes, the binding (if any) of processes to secur-
ity classes, the current configuration of processes' read and write
access rights (i.e., configuration of the access matrix), the binding
of physical memory locations to objects and classes, and in general all
information pertaining to the "security state" of the system, For each
state s £ S, the following vector is sufficient for our purposes here:

s = <N, M, P, loc, class, tag, clearance, read, write>
where

N=1{a, b, ...} is & set of logical memory objects.

M={u, v, ...} s a set of physical memory locations.

P=1{p, gy «+.} is a set of processes.

loc: N -> powerset(M) is a mapping function from logical memory
objects to subsets of physical memory.

class: N -> SC is a function that binds each object in
logical memory to a security class.

tag: M > SC is a function that binds each location in
physical memory to a security class.

clearance: P -> SC is a function that binds each process.to a
security class.

read CP x I is a relation specifying processes' read

access rights (or privileges) to objects.
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( | write CP x N is a relation specifying processes' write
access rights {or privileges) to oojects.

The logical memory N is the set of logical storage objects (i.e.,
the information receptacles) in the system. We refer to the elements
of N simply as objects. Objects may be files, segments, or even pro-
gram variables, depending on the level of detail under consideration.
The physical memory M is the set of physical storage locations in the
system. Some elements of M may be located in the main memory, others
on secondary storsge devices such as disks or drums. Each location
u in M represents the suellest unit of memory that can be assigned to
a logical object (see the description of loc below). For example, in

. a peged virtual memory system, u may be a single page in main memory
or a sector of a track on drum. We assume that all physical memory
locations are addressed only through logical memory objects. The
processes P are the active agents responsible for all information flow
in the system.

The function loc: N -> powerset(M) assigns one or more (usually
contiguous) physical storage locations to each object; that is, for
ael, ]ﬁ(&) = U, wvhere U C M. For example, if a is a segment in a
paged virtual memory system, U would be the set of pages in main memory
and the set of track sectors in secondary memory occupied by a.

The functions class: N -> SC, tag: M -> SC, and clearance: P -> SC
respectively bind each object, physical location, and process to e
security class. The tag function is so named to suggest the use of
herdware tags for binding physical memory locations to classes.

Although tagged architectures {Fu73] present a possible direct
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implementation, tags cean also be implicit, as fields in page or segment
tables or in file descriptor tables. Moreover, the latter form (file
tags) are easily added to most existing file systems. However, it is
recessary to make explicit the requirement that the implementation of
security classes must conform to the logical structure; i.e., for object

a, we require that tag(u) = class(a) for all u e loc(a). If location u

has contents o and tag A (i.e., tag({u) = A), this will be illustrated by

u

We assume that all objects are logically and, therefore, physically
disjoint; that is, loc(a) N loc(b) = ¢ for ail a,b ¢ N. Without this
assumption, for any a,b not independent (i.e., an b # @ and therefore
loc(a) N loc(b) # @), several complications arise when information flows
in or out of loc(a) M loc(b). For example, if information flows into
object a, but is stored in loc(a) N loc(b), it must guaranteed that it is
permitted to flow into b as well as a. Or, if the class of a is changed,
causing & corresponding change to tag(u) for all u € loc(a), then the
class of b should also change.

The relations read and write on P x N specify processes' read and
write access rights (or privileges) to objects. These relations are
equivalent to the well known |P| x |N|"access control matrix" AM
defined by

r € Mlp,a] iff p read a;

v e AM[p,a] iff p write a.

(See Figure 1.1-1 for en example of en access matrix and [La7l,GD72]

for a thorough treatment of the use of an access matrix as a model of
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protection.) Of course, if a process has read access to an object a

and write access to an object b (i.e., p read a and p write b), this

does not necessarily mean that it can exercise these privileges and
transfer information from a to b; the information transfer must also

be permitted by the flow relation (i.e., class(a) + class(b)).

The read and write relations need not be implemented as a matrix.
Some methods that are commonly used include "capabilities", "access
control lists", end "locks and keys". The capability method corresponds
to storing the matrix by rows. Associated with each process p is a set
of pairs

CL = {(a, AM[p,al) | AM[p,a] # ¢}.
The elemcats of Lhe set are referred to ss "capabilities" and the set
CL as a "capability list". Capabilities were first introduced by
Dennis and VanHorn [DV66] and their utility is becoming increasingly
epparent [AnTh,ELT2,EnT2,Fa68,FaTl,FaTh,1168,0073,1i73 ,Ne72,5tTh ,WaTh].
The access control method corresponds to storing the matrix by columns.
Associated with each objecp a is a set of pairs

ACL = {(p, AM[p,a]) | AM[p,a] # @}
referred to as an "access comtrol list" [SS72]. The lock and key
method is a combination of the capability and access control list
methods and is commonly used to control access to physical menory
[IB68]. Popek examines methods for finding optimum representations of
access control relationships expressed with locks and keys [Po73]. For
a comparison of the relative costs and reliability aspects of these

methods see [DeTh,GDT2,PoTh,Ts73,WiT2).
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( When we need to identify the components of a particular state 8
to distinguish them from those of another state SJ’ we shall subsecript
the components with i: Ni’ EJL‘S_S.;'_’ E‘ﬁi’ ete..

The transition operators T model all important operations thet
affect or effect the flow of information in the system. For example,
granting a process p write access to an object a affects the flow of
information if p may subsequently move information into a3 executing an
assignment operation "b := a&" effects the flow of information by causing
data to be transferred from a to b (actually from loc(a) to loelb)).

The operations under ccnsideration here are given in Figure 2.1-2, For
each operation, a brief description is given together with the condi-
tions necessary for execution of the operation (i.e., pre~conditions

on the state variables) and the conditions that result from its execu-
tion (i.e., post-conditions on the state variables). We assume that no
changes are made to state variables except as explicitly stated.

The cperation transfer(f,al,... ,en,b) reg;resents any action that
causes f(al,. .o ,an) to flow to b. For example, execution of tle state-
ments "b := a", "b := al + a2", end "output a t_ob" will respectively

be represented by transfer(:=,a,b), transfer(+,al,a2,b), and

transfer(output,a,b). Note that the operetion tra.nsfer(f,al,.. . ,an,b)
does not necessarily replace the entire contents of loc(b) with

i’(al,. .. ,an); it may instead extend or modify it by f(al,.. ) (as,
for example, with an cutput operation to a file b). We shall assume
that all transfer operations to an object b replace the contents of

loc(t) vhen b is e s’ .:zle element (e.g., a scalar variable) and modify

it when b is an aggregate of clements {e.g., a file or segment).
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The operation create obdect(a,A-,U) creates a new logical object
a in class A, and assigns it to (unoccupied) storage locations U. The
tag of each element u ¢ U is also set to A, however, the contents of u
is not initialized. Note thai the operation create object(a,A,U)
does not automatically give the process that executed it read or write
access to the object; this must be acquired by subsequent execution of
a grant operation (see below). This is done so that all changes to the
"access matrix" are modeled by just two operations (grant and ungrant).
The operation delete oh.ject(a) removes object a, releasing its physical
memory locations.

The operation move(a,U) assigns new (unoccupied) storage locations
U to object a, while transferring the contents of the old loecations V

to U. The tag of each element u € U is also set to class(a). The move

operation would be performed, for example, by a "storage compacter" or

. by a relocation mechanicm in a virtual memory system. It is easy to see

that the pre-condition "VbeN: loc(b)U=@" on the operations

create(a,A,U) and move(s,,U) guarentees that no two objects will ever

share physical memory, since these are the only two operations that
assign storage to objects.

The operation reclassif‘[(a,A) changes the class of object a and
the tag of its corresponding storage locations, without changing its
contents. This operation might be useful in a government or military
system, wherc it is necessary to change the classification of data.

The operation clear(u) clears (unoccupied) location u (e.g., by

filling with zeros or an undefined value). The tag of u is then set

to the security class associated with unoccupied storage locations.
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The operation create process(p,A) creates a new process p with
clearance A. The class A could, for example, correspond to the security
clearance of the user on whose behalf p will execute. Sometimes there
will exist processes for which no clearance is specified or even neces=-
sary; in such cases the class A associated with p would be undefined.
Note that the create process operation does not allocate any storage to
p; this would have to be done by execution of create object and grant
operations. The delete Erocess(p) operation simply removes process p
from the system.

The grant and ungrant operations add and remove elements of the
read and write relations (i.e., change entries in the access matrix).
For example, the operation m(p,a,r) could be performed when a
process p requests that a file a be opened for input (i.e., reading).

In this case, granting p this access privilege may depend on the
clearance of p, what other processes have access to a, or other state
variables not explicitly accounted for in our model. In some systems
the controlled granting and ungranting of access privileges mey be
coordinated with the security requirements — i.e., so that all accesses
granted are consistent with permissible flows. In other systems the
granting and ungranting of access privileges may not be coordinated with
the security requirements; in this case, a process may be denied a
request to write into a file to which it has an access privilege if this

would create a disallowed flow path.
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( 2.2 Security Requirements
The security requirements of the model are simply stated: all

information flow must satisfy the constraints of the flow structure;

that is, information in class A must not flow into class B unless A -+ B.

A precise formulation of the meaning of "flow" can be given in terms of
sequences of state transition operators. For state s and sequence

T = tl'...'tm of transition operators, we say that T is feasible from
state s if it can be executed beginning in state s (i.e. » the pre-
conditions for each ti (1 < i< m) are satisfied); in this case we
write st to denote the successor state of s under t. Two observations
are important: 1) in any state, all information in the systen is stored
in some physical location, and 2) new information is derived only by
applying a function f to existing information (in our terms, by some
process executing an operation transfer(f,al,... ,an,b)).

Now, suppose the system is in state si and some process executes an
operaticn t that causes a transition to state sJ (i.e., si't = sd).
Let a denote an item of information and let o € A mean that o is stored
in a location u such that tag(u) = A. Then information can flow from
class A to class B as a result of a single operation t if and only if
there exists an informetion item o ¢ A in si that derives an information
item B ¢ B in SJ (a = B is possible). This can occur as the result of
one of three possibilities (see Figure 2.2-1):

a) In S5 @ is stored in location u for which g_ggi(u) = A, and in

8y, @ is stored in location v for which t_agj(v) =B (v=uis

possible).

b) There exist locations Upseensy (n > 1) such that: the
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u

a) Direct transfer ( u # v) or tag change (u = v).

A=A Q...Q)An
o=1lay,... 0. )

An o
"

¢) Function value transfer(v = uJ for some uJ is possible).

Figure 2.2-1. Information Flow from A to B by an Operation %.
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( contents of w is a and t—s’Ei(“k) = Ak (1 <k <n), and the
result B = f(al,... ,an) of some function f applied to the
contents of locations Upgeeesty is stored in a location v for
which t_agj(v) =B. Then a = & and A = A for some k.

c¢) Same conditions as case (b), ex.ept that a = B = f(ul,...,un)

and A=A © ... 0A. (This extended use of the & operator
is justified in the next section.)

Note that case (a) corresponds to a transfer between locations u # v

or a tag change in a given location u = v; case (b) corresponds to the

given value's being an input operand to a function which influences thie

result place in location v; case (c) corresponds to the given value's
being generated functionally, in a class to which none of the operands

may belong, and then being placed in location v.

We will use the notation aS:; B to denote the derivation C‘f intor-
metion B in s°*t from information ¢ in s as the result of executing oper-
ation t in s, and AS;§ B to dencte the flow of information from class A
to class B as the result of executing t in s. Clearly A SQE B if and
only if there exists an & € A in s and a B € B in s*t such that
o s;§ B. Since a flow A S;E A occurs trivially whenever an operation is
performed that does not affect a location u (i.e., Eig;(u) = A before and
after), we consider only flows A S;E B for A # B.

Consider two states S5 and Sj such that si-t = sj for some t. It

is easy to see that for delete object, clear, create process, delete

process, grant, or ungrant there is no flow of information. For
+ = move(a,U), information cannot change classes since the contents of

a's storage locetions are moved to U, replacing the former contents of
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u and changing its tag. Hence, any information item q e }_D_c,i(s.) is
moved to U = ;o_c"(a) without changing class (the previous information
8 € U is lost). This leaves just the three operations: transfer,
create object, and reclassify to consider as flow-causing operations.
For t = transfer(f, a.l,...,a.n,b), Asi:; B whenever c_la_s_si(ak) = A for
some a (1 <k < n) and/or Q&s_si(al) ... 08 ggis_i(an) = A, and
class, (b) = B. This is ill:st:ated in Figure 2.2-2 (a). For
t = create object(b,B,U), A “=> B vhenever tag, (u) = A for some u ¢ U,
indicating that it was previously occupied by an object a in class A
(which has now been deleted or moved elsewhere), but that its contents
have not been cleared. Hence, the information in u flows from A to B
since the create object operation sets t_agd(u) = B. This type of flow
occurs frequently in systems that do not clear storage before assigning
it to new objects. It is illustrated in Figure 2.2-2 (b). For
t = reclassify(a,B), Asii B whenever g}gs_s_i(a) = A, since reclassify
sets c_lisij(e,) = B and t_a&J(u) = B for all u € l_o_ci(a),_ thus also
changing the class of informetion in loc;(a). Figure 2.2-2 (c) illus-
trates this type of flow.

Information can also flow from a class A to a class B as the result
of execution of a sequence of operations 1 = tl-tz-...-tm. For this

seT
case, let o => B denote the derivation of information item 8 in set

from information item o in s as the result of execution of t beginning

T
in s. Clearly o => g implies there exists information items Yorree oY,
m

(not necessarily distinct), such that

s.t sq°t s (39
1 1°°2 m-1_.m
4 =Yy T Yy =, cer = Vo1 => ym=a,
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[

loc(aq)
' transi‘er(f,al,...,an,b)

a) __________,_!_*

1oc(ak) loc(b)

g= f(u.l, -osap)
(1<k<n) and/or

An | o A—A., -8R
loc(a,)
_ create(b,B,U) —
SRR
ueU ugloc(b)

9 ! eclassxgx(a,B)[:-B ﬂ
loc(a)

locla)

Figure 2.2-2. Operations that Cause Information Flow from A to B.
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g where SyseeeaSy is the sequence of successor states of s. Also, let
A %23 B denote the flow of informetion from A to B as the result of
execution of the sequence T beginning in state s. Then it is also clear
that A si; B if and only if there exists an item © in s; stored in
location u such that t_ag,i(u) = A and an item B in sJ = si'r stored in
location v such that t__SE,J(v) = B, and dsi;: B. Examples of operation
sequences 1 that cause information flow from A to B are shown in Figure
2.2-3.

The security requirements of the model are now precisely stated:

An operation sequence T is a secure sequence if and only if for every
initial state s such that 1 is feasible (if any), & s; B implies
A+ B. A flov model FM is secure if and only if every possible opera-

tion sequence is secure.

To verify the security of a particular system, it is necessary
first to show that the system fits the model and then to show that each
B

possible operation sequence t = tl-t2. veuet is secure. Form = 1
m

this invoives showing that the operations transfer, create object, and

reclassify cannot alone cause a flow from A to B when A -/ B. Further-
more, if the system is designed to always clear memory before allo-
cating it to a new object, then it is sufficient to establish the secure
execution of the operations transfer and reclassify. To see how this
can be done, let si be an initial state and let sJ = si- tl. For

tl = reclassifx(a,B), security can be established by yerii‘ying that
2155-5—1(&) + B. Note that this implies that any operation that "declas-
sifies" datu (e.g., by changing it frém "secret" to "unclassified") is

considered to be insecure. This does not mean that such operations must
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transfer(:=,a,b) transfer(:=,b,c)
= T} 5 [
Loc(v) Loc(e)

b)

reclassify(a,B) ) transfer(:=,a,b)
e) 12t 3 B | o ﬁ,IB |a

loc(a) loc(a) loc(b)

Figure 2.2-3. Examples of Operation Sequences that Cause
Information Flow from A to B.
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( . never be allowed; but it does mean that if such operations are necessary,
) they must be regarded as a potential threat to the security of the system
and should be carefully controlled.

For m > 1, verifying the security of a sequence tl-tz-...-tm is
much more difficult, since a prefix of it may be secure, while the en=-
tire sequence may not be. For example, suppose the flow relation satis-
fies the properties A + B and B + C but not A + C, and let the system be

in state s, with class (a) = A. It then executes the sequence
1 =i

transfer(:=,a,b) delete(a), which leaves it in state S5 with cla.ssj(b)=B.
Clearly execution of this sequence iz secure. However, if the operation
transfer(:=,b,c) is now executed, leaving the system in state s, with
%k(c) = C, then the complete sequence transfer(:=,a,b)-delete(a)*
transfer(:=,b,c) is not secure, since information in A has been trans-
.. ferred to C although A # C. We observe that this problem would not have
arisen if the flow relation + were transitive (i.e., A+ B and B+ C

=> A+ C). Indeed, if we consider only those systems in which the flow
relation is transitive, we can ignore the problem of verifying opera-

tion sequences of length m > 1, as the following theorem establishes.

Theorem 2.2-1. Let + be a transitive flow relation and 1' and t"
operation sequences. If t' and t" are secure sequences, then T = t'et"
is also a secure sequence.
proof. Consider an arbitrary initial state s such that v is feas-
ible. If there is none, then 1 is trivially secure, so assume such
en s exists. Then t' secure implies that for any o € A and B ¢ B,
if as;_; B, then A ~ B. Also, 1" secure implies that for any B € B

stet"
and y ¢ C, if B =>y then B + C, where s' = s*1'. Therefore, for
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SeT
aec Aandye C, if g =>v , then A > C by transitivity. Hence,

7 = 1'7" is secure.

Corollary 2.2-1. Let - be a transitive flow relation. If every opera-
tion sequence of length one is secure, then every sequence of operations
is secure.

proof. Immediate from preceding theorem.

Given this result, we will first show that the semantics of the
problem imply we are justified in assuming that - is tremsitive.

This is done in Section 2.3.1. In the remainder of the thesis. we will
then examine protection mechanisms that keep the system in a state such
that execution of the next operation is guaranteed secure. Any state
that satisfies this property is said to be a gafe state. By Corollary
2,2-1, we know that if we can keep the system in a safe state, it will
be secure. This result was also established for the MITRE model
[BL73a].

Mechanisms for maintaining the system always in safe states are of
two types: run-time mechenisms that verify the secure execution of each
operation before it is performed (preventing those that are not secure)
and certification mechanisms that guarantee that no insecure operation
will be attempted. That run-time mechanisms can be used to "leak"
information (i.e., violate flow paths - see below) is a compelliing ergu-
ment for certification mechanisms. However, a practical system may need
both types of mechanisms to provide the fullest range of defenses.

As an example of using a run-time mechanism tc lesk information

(despite the intention of its designers to prevent leeks!), consider
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(' R two classes A and B such that B -}'A, and suppose that process p has
access to some information item B in class B, but that it is not
allowed to communicate this information to its owner Smith who is in
class A (since B # A). However, p may attempt to transfer B from B to
A, B times; and though it will fail, the record of the aborted attempts
contains the velue B! If Smith is permitted to learn of these viola-
tions, the information B has effectively been transferred from B to A.
This example shows that under certain circumstences, "sudit trails"
(i.e., records of attempted viclations), can be used for improper
transfers of information. Rotenberg presents many examples demonstrat-
ing that such mechanisms designed to prevent leaks can be used te trans-
mit information in an encoded form in the recorded or observeble his-
tory of the security mechanism [RoT4]. This form of leskage is one
example of a "covert channel".

The problem cen be dealt with in systems that use run~time mech-
anisms. One way simply is to not "sound the alarm" when a security
violation is attempted. Although this prevents leakage, it has the
disadvantage of not reporting security violations either to the violator
(whose intentions may have been innocent, in which case he should be
informed of his error) or o the security administrator. The more
comforting epproach is to sound the alurm and keep an "sudit trail" so
that all such violations can be scrutinized and the record used as
evidence in indictments of wrongdoing. However, for the rcasons noted
above, access to the audit records must be restricted.

This problem of covert leakege is in principle eliminated with

mechanisms that certify that no insecure operations will be attempted.
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Certification mechanisms are presented in Chapters 3 and 4. It is
importent to realize, however, that the need for run-time mechanisms is
not obviated by certification mechanisms — they are still necessary, tor
example, to detect errcrs wrought by hardware malfunctions that alter the
contents of memory locations or errors which msy arise from incompletely

debugged compilers.

2.3 The Lattice of Information Flow

2.3.1 Derivation

We now exemire the mathematical properties of the information flow
structure F§ = <8C, +, 8> and show that under certain assumptions, FS
forms a u;qiversally bounded lattice. These assumptions are not arbi-
trarily chosen, but rather follow from the semantics of information
flow. By this we meen either that they are required for consistency
or that no generality is lost by them. Consistency means that if one
can write a program that effects a permissible flow, then other flows
implied by that flow should also be permitted by the flow relation.
Stated another way, a program should not be secure by one interpreta~-
tion and insecure by another. It is important that the flow structure
be consistent since it would otherwise be possible to masquerade inse-
cure operations as secure ones.

A lattice is any structure consisting of a partiaily ordered set in
which each pair of clements hus a well-defined "least upper bound" and

"greatest lower bound". A universally bounded iattice is a lattice with

unique least upper and greatest lower bounds on the entire set. A

general discussion of lattices and their properties can be found in
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Stone [St73], Birkhoff [Bi67], or Avbott [Ab69]. The resder should note
that this is not the first time a lattice has appeared in a study in-
volving the semantics of programs or programming. Scott has shown that
lattices, especially continuous functions defined on lattices, apply to
data types and control flow diagrams [ScTl]. These structures are
partially ordered by a relation based on the idea of "approximation".

To show that FS = <SC, =+, > forms a universally bounded lattice,
we shall show that for semantic reasons the following four assumptions
are justified:

1) <SC,» is a partially ordered set.

2) SC is finite.

3) SC has a lower bound L such that L + A for all A e SC.

4) @ is a least upper bound operator on SC; i.e., A ® B is the

unique least upper bound of 4 and B for all A, B ¢ SC.
From these assumptions we shall then establish that there exists a
greatest lower bound operator on SC, which we denote by 8; i.e.,
A @ B is the greatest lower bound of A and B for all A. B e SC. There-
fore, the structure <SC, +, &, 8> is a lattice with greatest lower
bound L and least upper bound, which we denote by H.

To simplify the discussion, we introduce a shorthand underbar
notation to denote the class function, where a denotes class(a) for
object a. Similarly, for an information item o we let o denote the
class associated with a. For the most part, we do not need to meke the
state depencency explicit; if we do, we will use the notation (E)i to

dy i.e. f .
enote class.(a) (i.e., the class of a in state si)
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( . To justify assumption (1), that <SC,*> is a partially ordered set,
we must sh‘ow that the relation - should be reflexive, transitive, snd
anti-symmetric; that is, for all A, B, C, ¢ SC:

a) A+ A (reflexive).

b) A-+BandB+C=>A-+C (transitive).

¢) A-+BandB+A=>A=3 (anti-symmetric).
Reflexivity follows from the observation that performing an operation t
in state s that does not affect an object a does not alter a, implying a
flow a + a from state s to state s * t. Therefore, an inconsistency
arises if A # A for all A ¢ SC. Transitivity follows from the observa-
tion that A + B implies that it is permissible to move an information
item o from an object in A to one in B. Since this puts @ in B, B + C

implies it is then permissible toc move & to an object in C and thereby

=

effect a flow from A to C. Therefore, an inconsistency arises if A # C.
Anti-symmetry follows from the observation that A + B and B + A implies
anything in one class can be moved into the other. Therefore, one of
the two classes is redundant.

To justify assumption (2), thai the set of security classes SC is
finite, we observe simply that no practical system is capable of sup-
porting an infinite number of security classes.

To justify essumption (3), that there exists a lower bound on sc,
we argue that all integers, reels, Booleans, and other data items that
normally appear as "constents" in programs should be permitted to flow
into all classes {or at least all classes that are bound to the same
type of data). Therefore, we assume these values are bound to & lowest

security class, which we denote by L. L could also be associated with
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unoccupied storage locations (i.e., execution of the operation clear(u)
could have the effect of setting tag(u) := L). Note ziso that no gener-
ality is lost by the requirement for a single lowes% class: if more
than one class is desired for different types of constants, no objects
need be ascigned to the lowest class L.

Before jJustifying assumption (4), it is necessary to discuss the
assumption that A @ E is unique — that is, for a = A and b = B,
£(a,b) = A ® B regardless of the function f. It is possible to define
different flow relations for different functions; Figure 2.3-1 suggests
an example where the fuction f places i£s results in class C and func=-
tion g in class D. One problem with this is the possible semantic
ambiguity that arises for results in the range of both f and g — that
is, a value a = f(a,b) = g(a,b) for 2 =A and b = B. Such values are
produced from the same operands, and it is possible, under at least some
interpreta:tions of the security problem, to say that o has been asso-
ciated with the wrong class. At this point, we prefer to avoid this
murky issue by stipulating that © is independent of the function f
used to combine operands. In Section 2.4.1 we show that the effect of
a function dependent operator ® can be achieved with processes.

To justify assumption (4), that & is a least upper bound operator,
we must show that for all A, B, C ¢ SC:

a) A+A®BandB-+A6B.

b) A+CandB+C= A®B=~C.
Property (a) must hold, since it is semantically absurd to suppose that
operands cannot flow into the class of a result generated from them.

Also, inconsistencies arise if an operation such as "c := a + b" is
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N

Figure 2.3-1. Example of a Function Dependent Flow Relation.
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permitted whereas "c := a" is not, since the latter operation can be
performed by executing the former with b = 0. For part (b), consider
four objects a, b, c, and d such that a +¢c, b+ d, and ¢ = d; and

consider the following program and corresponding operation sequence:

c = a; transfer(:=,a,c)
d := by transfer(:=,b,d)
4 := f(e,d) transfer(f,c,d,d)

Execution of this program assigns to d information derived from a and
b. Therefore, the flow a & b -+ 4 is implied semantically, and for
consistency we require that the flow relation reflect this fact. Thus
for any two classes A and B, A ® B is the least upper bound, also re-
ferred to as the "join", of A and B. Note that A ® B -~ C also implies
A~ C and B > C by transitivity and part (a).

A useful property of a least upper bound operator on a partially
ordered set is that its domain can be extended to subsets containing
more than two elements. This is done as follows: For a non=-empty

finite subset {A,,...,A } of SC, define @ by

A ifn=1
[@{Al,...,An_l}] A ifn>1

The following propositions are easily proved by induction on n, using

@(Al,...,An) =

the definition of ® for two classes and assumption (4).

Proposition 2.3-1. @ as defined above specifies the unique least upper

bound of {Aj,...,A,}.

Since the ordering of elsments in the set {Al,.. . ,An} is immate-

rial —i.e., Al ) A2 = A2 ® A for all A, Ay -~ the order in which
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( ) @(Al,... ,An} is evaluated is immaterial. Therefore, we may write
simply

A ® ... 0 A for 6“"1""=%}'
Proposition 2.3-2. A; »B (1 <i <n) iff A ®...84A >B.

This proposition states that information in objects 8500058, Can

flow into an object b if and only if information derived from aysen

(e.g-, £(ay,...,a.)) cen flov into b (since g >0 (1 24i2n)iff

2 8 ... 82 *b). Therefore, from an initial state 8; , the safeness

of state sy = si‘transfer(f,sl,...,an,b) is established by verifying
either

(g); * (®); (A<xzxn)

and (b); ~ (p_)d if the contents of b are modified,
or

(&); 8 ... 0 (a,); ~ (P-)j if the contents of b are replaced

(7); & ... @ (2 ), ® (b), + (b), if the contents of b are
1 o * modified.

Propositicn 2.3-2 if the basis of the verification procedures presented
in Chapters 3 and k.

We now prove that assumptions (1) - (%) imply the existence of a
greatest lower bound operator on the set of security classes SC. For
any pair of classes A end B, define

1B(A,B) = {C | C + A and C + BI.

LB(A,B) is the set of possible lower bounds for both classes. Observe
that the lowest class L is a member of LB{A,B) by assumption {(3), so

that LB(A,B) is non-empty for all A, B. Define the operator ® to be
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the least upper bound of the lower bounds:
A ® B =@®LB(4,B).
Our claim that ® is a greatest lower bound operator is established

by the following proposition.

Proposition 2.3-3. For a flow structure FS = <SC, -, >, the operator
8 is a greatest lower bound operator on SC; i.e., ® satisfies the
following properties for all A, B, C ¢ SC:
a) A@B->AandA®B-~B.
b) C+AeandC+B=>C-+>ABB,
proof. By Proposition 2.3-1 and L ¢ LB(A,B), ® is well-defined.
By Proposition 2.3-2, @ IB(A,B) + A end ® LB(A,B) + B, estab-
lishing property (a). If C -+ A and C + B, then C ¢ LB(A,B) and
thus ¢ +~ @ LB(A,B) by Proposition 2.3-1. Therefore property (b)

also holds.

Thus @ is shown to be the greatest lower bound operator, also
called the "meet" operator, of the set of security classes SC. Note
that its existence follows from the earlier assumptions and requires no
new semantic assumptions. Also note thet if C + A ® B, then C - A and
C + B by transitivity and property (b).

As with the least upper bound operator, the greatest lower bound
operstor ® can also be extended to operate on subsets of the security
classes SC. In this case for a non-empty finite subset {Al,...,An} of
SC, we define @ by
A ifn=1

@A ,... A ) =
1 n (@14, .08, 11 8A irn>1
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Using inductive arguments, it is easily shown that the following is

true.

Proposition 2.3-k. @® as defined above specifies the unique greatest

lower bound of {A.,... ’An}‘

Therefore, we can write

Aje...8Aa rfor ®{a,....A)
Proposition 2.3-5. B~ A; (L<i<n) iff B+A 6...04.

This proposition allows us to verify the security of a set of
transfer operations (transfer(f,a,bl),... ,transfer(f,e.,bn)} by showing

that &> D; 8 ... 8 by

. As with Proposition 2.3-2, this result forms
the basis of the verification algorithms.

We now observe that the lowest class L is just the greatest lower
bound of the entire (finite) set of security classes SC (i.e., L = ® sC).
Furthermore, there exists a highest class, denoted by H, vwhich is the
least upper bound of the entire set SC (i.e., H = @ SC). Although
information in H can be derived from information in any other class, it
is not allowed to flow outside of H to another class. As with the
requirement that there exists a lowest class L, no generality is lost
by the requirement that H exist, since no objects need be assigned to
it (this is also true of any class needed to complete the lattice
structure).

That the informetion flow structure FS forms a lattice
<SC, +, ®, 8> with universal bounds L end H now follows from assumptions

(1) - (4) end Proposition 2.3-3.
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( 2.3.2 Examples
An example of a structure satisfying the lattice property is

derived from & linear ordering on a set of security classes SC:
a) 8C= {A),... A0}
b) A,.-»Ajiffigj
o) A ® A E gy )

d) A, 84
1

J = Apin(i »3)
e) L= Al; H= An
This is Just a generalization of the example illustrated in
Figure 2.1-1 (a) for the special case n = 4. This structure is
suitable for any system in which the classes are linearly (or hier-
archically) ordered. A common case is a government or military system
in which the security classes are determined solely from the four
(" security levels: unclassified, classified, secret, and top secret.
Another case is found in a system that needs ouly two classes:
unconfidential (L) and confidential (H), with the single security
requirement that confidential information cannot flow into an
unconfidential object. This case is considered by Denning, Denning,
and Graham [DDT4] and also by Fenton (using the names null and priv for
the lowest class L and the highest class H, respectively) [FeTha].
A richer structure satisfying the lattice property is derived from
a non-linear partial ordering on the set of all subsets that can be
constructed from a finite set X:
a) 8C = powerset(X)
b) A-+>Biff ACB

c) A®B:zAUB
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d) A®8B=ANB

e) L=¢; H=X
Figure 2.3-2 illustrates this "lattice of subsets" for X = {x,y,z}.
This structure is suitable for any system in which the classes are
determined by a set of properties X, and an informaticn item « is not
permitted to flow into an object b unless b has at least all of the
properties that a has. Consider, for instance, a system that contains
medical, financial, end criminal records on individuals (i.e. »

X = {med,fin,crim}). Then medical information would be permitted to
flow into only those objects a for which med € a, or a combination of
medical and financial information would be permitted to flow into only
those objects a for which med € & and fin ¢ a.

The information flow structure FS of ADEPT [We69] forms a lattice
<SC, +, ®, ®> determined by the (cartesian) product ordering of two
lattices Fsl and FSZ’ where FS, is a linear ordered lattice and F52 is
a subset lattice. The lattice FSl is derived from a linear ordering
of a set of Authority Levels 5Cy = (Al"" ,An} correspending to the
unclassified, confidential, etc. levels of government and military
security. F82 is derived from an ordering by subsets of the set of all
subsets 302 determined by & collection of Categories (properties)

X = {xy,...,%;}, corresponding to special control compartments used to
restrict access by project and area. The information structure FS
then forms the lattice <SC, -, &, 8> defined by:

a) SC= SCl % 8Cy
b) <A, B> > <Ay,B'> iff i < J and BCB'

c) <A;,B> © <AyB'> = < ),BUB‘>

Amax(i,,j



48

N

{x,y,2}
a4
{x,y} {x,2} {y,2}
y ><1 ><
{x} \{Y} {z}
[

Figure 2.3-2. Lattice of Subsets of X = {x,y,z].
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d) <A;,B> @ <AJ <Amin(i,j)

d) L= <Al’¢>; H= <Am,x>

JB'> = s BOB'>

where B and B' are subsets of X (i.e., elements of SCZ)' The Franchise
component of ADEPT's security profiles (corresponding to "need to know")
is not considered to be a component of its information flow structure,
since it is not partially ordered (transitivity is violated). However,
this component can be accounted for with & mechanism controlling

processes' read and write access rights.

2.3.3 Additional Lattice Properties

We now examine some additional well known properties of lattices
and show that they are consistent, as they apply to @, with the seman-
tics of the problem:

1) AGA=A; A®A=A (indempotent)

2) A®B=B6A; A@B=B@A (comutativity)

3) A8 (B®C)=(r0B)ec;

A® (B®8C)=(A®B)®C (associativity)

4) A+>B=>A®B=BandA®B=A (absorption)

The indempotent law is obviously consistent with the semantics
since information derived only from information in a class A should
remain in class A. The commutativity and associativity laws are con-
sistent since the class of an information item o derived from three
objects &, b, and c should be independent of the order in which the
information in a, b, and c¢ is combined. For example, if o is derived
from the expression "(a + b) + c" and o' from the expression
"b + (¢ + &)", then it should be the case that both o = a' and a=ga'.

Finally the absorption law is consistent since, if it is permissible
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to cause a flow from A %o B, then information in B in fact represents
the combination of information derived from A and B. This law implies
that the lowest class L is an identity element over %, sc that infor-
mation combined with data in the lowest security class (e.g. > constants)
remains in its original class, and thali the highest class H is an
identity element over 8. However L is an ebsorbing element over &
since L ® A = L, and H is an absorbing element over € since A & H = H.
(The last case states that once information is linked with highest

security data, it remains in the highest security class.)

2.4 Classification of Systems

Mechanisms for maintaining a system in secure states can be clas-
sified elong two independent, structural dimensions. The first is the
number of security classes permitted in each process’s working store;
sincle-class working stores are an interesting special case. The
second is the extent to which objects are permenently bound to security
classes, and ranges from "static binding" (no changes permitted) at one
extreme to "dynamic binding" (an object changes class according to the
class of information affecting its content) at the othexr.

The first dimension we consider is the structure imposed on the

working store (also referred to as the computational memory or virtual

memory) W of u 57 werking store is the subset of all logical

objects N in which standard arithmetic and logical operations (e.g. >
addition and comparison) can be performed. It is distinguished from
the file store ¥ in that information in a file must be transferred

explicitly into the working store of some process (via en input in-

struction) before it can be operated upon or moved to another file.
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We assume that N = WU F. Letting Wp denote the working store of
process p (i.e., Wp C W, end p read & or p write a for all a € Wp), we
consider two cases: 1) |"~lpl = 1 (single-class) and 2) |Wpl > 1
(multi-class).

The single-class case specifies the working store of a process to
be a single object, and therefore bound to a single class. Hence, all
operations that cause information flow within the working store of a
process are necessarily secure, and this includes most of the non-I/O
instructions found in progremming languages. This case corresponds to
the specifications of ADEFT [WeGS], Roternberg's Privacy Restriction
Moaito. [RoTh], the CASE system [WaTh], and the MITRE model [BLT3a].

’I'h}e multi-class case specifies that the working store of a process
mey be more than one object, and therefore bound to more than one class.
Here, all operations that cause flow within the working store of a
process are not necessarily secure, so mechanisms are needed to guar~
antee the secure execution of all non~I/0 as well as I/0 instructions.
This case corresponds to the abstract model proposed by Fenton [FeT3,
FeTha,FeThb] and the systems described in Chapters 3 and b of this
thesis.

The alert reader may wonder why the single-class case restricts
WIJ to a single object, rather than a set of objects from the same
security class. The reason is that it is impossible to combine the
notion of dynamic binding with a single-class, multiple object, working
store, since the classes of obJects bound dynamically can change over

time.
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The single-class model is useful for studying systems in which a
process's working store is the only private store it has and files are
generally subject te access by many processes. In contrast, systems
which permit objects in virtual memory to be shared (i.e., the working
store of a process is not completely private) must usually be treated
with the multi-class model.

In the context of single-class systems, the only transfer opsra-
tions that require verification are I/O operations that transfer data
either from a file a into the working store W, of a process p (i.e.,
transfer(i_gm,s,wp)) or from a working store wp into a file b
(i.e., transfer(o_u‘cm,wp ,b)). Therefore, the security requirements
will be satisfied if these operations satisfy the conditions:

i) a®W, » w_p, for transfer(in; ut,a,wp);

p

ii) pe Wy > b, for transfer(output,Wy.b).

In the context of multi-class systems, I/O operations such as the above

need verification as well as all operations that cause a flow of infor-
mation within a process's working store (e.g., assignment operations).
The second dimension of security system classification is the
method of associating (binding) objects to security classes. Static
binding means that the security class of an object is constant or
invariant over all states of the system unless explicitly altered by the
reclassify operation. This is the type of binding used in the CASE
system, the MITRE model, and in Fenton's model. namic binding means
that the security class of an object varies with its contents as
follows: if an operation transfer(f,al,... ,an,b) is performed, the

security reguirements are satisfied if the class of b is updated
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according to the assignments:

if the contents of b are replaced; or

® ... 842 ®Db, if the contents of b are modified.

Consequently, execution of & transfer opcration in a dynamic binding

system is always secure (provided, of course, the updating mechanism
functions correctly). In the case of dynemic binding, security classes
are actually associated with the information stored in an object rather

than with the object itself.

A system based purely on dynamic binding may not be practical:
most users, along with their private files, are usually considered to
belong to fixed classes. Hence, we must also consider realistic com-
binations of static and dynamic binding — that is, some objects are
statically bound and others are dynamically bound. Such are the
specifications of ADEPT ang Rotenberg's Privacy Restriction Monitor.

Recall from the resulis of Section 2.2 that security is guaranteed
if the system can be kept in a safe state; i.e., execution of the next
operation cennot cause a flow from a class A to a class B unless A -+-B.
Recall also that the only operations that cen potentially cause a flow
from A to B (A # B) are create object, reclassify, and transfer. Now,
the security of object creation is assuv~l if the system alwsys clears
memory before assigning it to a new obj..t. The security of reclassi-
fication is assured by a simple mechanism that checks & =+ A whenever an

operation reclassify(a,A) is attempted to change the class of object a.

The security of transfer operations is, therefore, the only remeining
prechlem to consider when analyzing the security requirements of the
different types of systems. This will be done in the following sections

which describe five types of systems.
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2.h.1 Single~Class, Static Binding

To guerantee the secure execution of all transfer operations in a
single-class system with stetic binding of objects to security classes,
it is necessary and sufficient to show that if a process p executes an
instruction "input x from a" then & & Wy, > Wy, end if it executes en
instruction "output x to b" then b & ¥, > b, where Wy is p's vorking
store. Also, by the results of Proposition 2.3-2 and reflexivity,
these conditions respectively reduce to a + Wy end W_p + b, Since exe-

cution of these instructions is conditioned on process p having the

necessary read or write access privileges, security is guaranteed if

in every state s,

a) preada = 2 W, and
b) p write b = ¥o> .

Since grant is the only operstion that adds new read and write relations
and reclassify is the only operation that changes the class of an object,
a safe state can be maintained with a simple mechanism atteched to these
operations that verifies conditions (a) and (b) above. Hence, in this
case, it is not necessary to monitor each I/O operation.

If a process p has an associated clearance (see Section 2.2), it
could be used to determine the class of Wp; that is, if a process p is
created, its working store wp would be created and assigned to p by

execution of the operation sequence create(Wp,p)rgrant(p,Wy,rw), where

p denotes clearance(p). In thi_s case, p specifies the highest security
class that p can read from, and the lowest security class that it can
write into. If 8)5-+,8, are the files p can read from, and bl,.” ,’bn
the files p can write into, then security requires that
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2 0.0, 5p>Db 8...80
by conditions (a) and (b) above and the results of Propositions 2.3-2
and é.3—5. See Figure 2.4-1. TFor example, in a government or military
system, a process having a "segret" clearance would not be able to read
from a "top secret” file or write into an "unclassified" one [even if it
had processed only unclassified information during execution). Such are
the CASE system and the MITRE model. In fact, it does not meke sense to
design a single-class, static binding system without such a clearance
function, since some mechanism is needed to determine the glass of a
process's computational store when it is created.

In certain cases the effect of a function dependent & (i,g., a b
depends on the operation performed ecn a and b — see Section 2,3) can
be achieved with processes. Let p and g be processes such that

a) p and g read from common input files a and b, where

2®b~>pandadd+g;

b) p writes into output file c, where p + c;

c) q writes into output file d, where g + d; and

) c#4d
Clearly, all security requirements are satisfied. Now, execution of p
has the effect of combining informetion in clesses & and b and putting
the result in class c; execution of g has the effeet of combining infor-
mation in classes & wd b and putting the result in class d, Therefore,

P implements a ® b = ¢, and q implements a 8 b = d.

2.4.2 Single-Class, Dynsmic Binding
To guarantee the secure execution of all transfer operations

in a single-class system with dynamic binding of objects fo security

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

Input Files Output Files
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Figure 2.4-1. Information Flow in a Single-Class, Static Binding System.
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classes, it is necessary and sufficient to attach to the I/O processor
a mechanism that correctly updetes the class of Wp vhenever a process p
executes an instruction "input x from a" and the class of a file b

whenever p executes an instruction "output x to b", namely

y_p = Hp ® a, for input, and
b = Ep ® b, for output.

Such is the mechanism used by Rotenberg's Privacy Restriction Monitor
for controlling flow to segments and the mechanism used by ADEPT for
changing the "history" cless associated with the working store of a
process.

The existence of a clearance function does not seem necessary in
this type of system since the automatic class updating mechanism
attached to the I/O processor makes it unnecessary to constrain what

files a process cen access — security is always guaranteed.

2.4.3 Single-Class, Static and Dyn Binding

The concepts of static and dynamic binding can be combined in a
single system, with some objects statically bound and others Aynamically
bound. For example, in ADEPT, all existing files are statically bound,
while new files and the working stores of processes are dynamically
oound. One possible specification for a secure system incorporating
both types of binding and meking use of a clearance function is now
cutlined. (See Figure 2.4-2). Each process p is initialized with a
dynamically bound working store Wp in the lowest security class L; as it
inpuls information from files, ylp is updated as described for the
dynamic binding case. However, unlike a pure dynamic binding system,

p is permitted to gain (and keep) read access to a file a only if the
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Figure 2.4-2. Information Flow in a Single-Class System with Static
and Dynamic Binding.
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current class of file a satisfies the constraint a=+p. Itis free to
acquire write access to & file b (except as comstrained by determinacy
requirements, "aeed to know", or other conditions), though it is not
permitted to exereise such a right if b is statically bound and the
current class of ¥, does not satisfy the constraint ¥p+D (if b is
dynamically bound, it can, of course, exercise the right since b will
be updated to b := Db & W__p). It is precisely in this last requirement
that ADEPT has (from our point of view) a security flaw. In ADEPT,
& process with "top secret" clearance can write into any statically
bound file b for which b + p (rather than Wp + b), making it permissible
to write "top secret" data into an "unclassified" filel

In such a system, we define a routing process to be any process p
with highest clearance (i.e., p = H), since such a process is free
(insofar as the model is concerned) to read any file and thus route any
information in a class A to a file in a resulting class B, provided only
that A -+ B. Routing processes are particularly applicable to data base
systems in which the data is distributed among several files associated

' with different classes, is to be accessed directly only by a specified
set of data manipulation processes (the routing processes), and is to
be transmitted to users according to a specified flow relation.

There are two mejor limitations with the single-class systems
outlined above. The first is that it is not possible tc distinguish
different classes of data in a process's working store, since every-
thing must get lumped into a single class. Hence, a process cannot
directly access and menipulate data in segments (or registers) belonging

to different classes es would be required by certain data base systems
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where it is not practical to physically isolate the different classes of
information into separate files. The second is that it is not possible
to account for the shared use of segments (or registers) between two
processes p and p'. Hence, it is not possible to model inter-process

communication via message buffers, semaphores, and so on.

2.4.4 Multi-Class, Static Binding

The primary difficulty with guaranteeing security in a multi-class
system lies in detecting (and monitoring) all transfer operations. This
is because all transfer operations in a program are not explicitly
specified — or indeed even executed! We showed in the previous sections
that the only flows possible in a single-class system are "explicit"
ones caused directly by I/0O operations. When we turn to multi-class
systems we find that some transfer operations applied within the working
store cause "implicit" flows in addition to the explicit flows for which
they were programmed; this "extra" flow complicates security checking.
As an example, consider the statement "if a = 0 then b := 0"; if b # 0
initially, testing b = O on termination of this statement is tentamount
to knowing whether a = 0 or not. In other words, information flows from
a to b regardless of whether or not the then clause is executed.

To deal with this problem, we distinguish between two types of
flow: "explicit" and "implicit". Explicit flow to an object b occurs
as the result of executing any statement (e.g., assignment or I/0) that
directly transfers to b information deriw.red from some sequence of

operand objects aj,...,8,. Examples of explicit flow are:
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( Statement Explicit Transfer
) b= a transfer(:=,a,b)
bi=a*p transfer(¥,a,b,b)
input b from & transfer(input,a,b)
output a to b transfer(output ,a,b)

Implicit flow to b occurs as the result of executing or not executing
a statement that causes an explicit flow to b when that statement is
conditioned on the value of a Boolean expression. Examples of state-

ments thet cause implicit as well as explicit flow are:

Statement Explicit Transfer Implicit Transfer
if a =0 then b := 0 transfer(:=,0,b) transfer(=,a,0,b)
if a = 0 then

input b from ¢ transfer(input,c,b) transfer(=,a,0,b)

while a > 0 do

+ 1 transfar(+,b,1,b) transfer(>,a,0,b)
-1 transfer(-,a,1,2) transfer(>,a,0,a)

if a =0 then if b= 0
then ¢ := d transfer(:=,c,d) transfer(=,a,0,c)
&

transfer(=,b,0,c)

To guarantee the secure execution of a program in tne presence of
implicit flows, it is convenient to consider an abstract representation
of programs that preserves the flows but not necessarily all of the
original structure. Define recursively an abstract program ¢ by:

1. ¢ is an elementary statement; that is, an assigmment or I/0

sta’c;ment.
2. There exist 9, and L2 such that ¢ = @1;¢2.
3. There exist 01,... »¥; and an m-valued expression £ such that

= Eiy,.0. 0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

Step (1) declares simple statements as ebstract programs. Step (2)
declares sequences of simpler programs as abstract programs. Step (3)
declares conditional structures, in which an expression £ selects among
alternative programs, as abstract programs.

The conditional structure is used here to represent all condi-

tional (including iterative) statements found in programming languages.

For example, "if £ then ) else ¢," is represented by "g:wl,die". Both
"if & then ¢l" and "while £ do ¢," are represented by "g:0,", and
"do case £ of @l;...;am" is represented by "5:¢1,...,¢m". Structures

arising from the use of goto statementz can elso be represented by the
conditional structure, but to do so is more difficult (see Section 3.3).

The security requirements for any program of the above form are
now stated simply. Firstly, for any elementary statement E, ¢ = E is
secure if any explicit flow caused by E is secure (no implicit flow is
possible). Specifically, if E represents an operation
tz‘ansfer(f,aj_,... ,a.n,b), the security requirements stipulate that

239 ... 902, + b, if E replaces the contents of b;

8 6...8a ®b~+b, if E modifies the contents of b.
For example, if the unit of protection is a single register and E is
the statement " d := a + b * c", security requires that 28b6c+d.
Secondly, ¢ = @1;02 is secure if both «‘Dl and 452 alone are secure (see
Theorem 2.2-1). Thirdly, ¢ = 5:¢l,...,<bm is secure if each ¢k alone
is secure and all implicit flows from £ are secure. To make this
specific, let V(¢) = {by,...,b,} denote the set of objects that infor-
mation can explicitly flow to in ¢ — that is, for each bi (1 <i<n),

there is an operation transfer(...,bi) is some %5 all implicit flow
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is secure if £ » b, (1 <1i<n)or equivalently (by Proposition 2.3-5)
if £E>Dby ® ... 6 b, after any execution of the structure.

The foregoing requirements on rulti-class systems with static
binding can be implemented as run-time checks (e.g., on tags associated
with objects in the working store) or as compiler-verification proce~
dures (to be discussed in Chapter 3).

An interesting example of a multi-class, static-binding system has
been proposed by Fenton [FeT3,FeThal. Fenton chose to cast his results
in the context of a Minsky machine [Mi67], which is en awtomaton
modeling a multi-register computer. Fenton extends the Minsky machine
by permanently tagging each register with the class to which information
residing in it belongs; this corresponds to the tag function defined
earlier. The Minsky machine has only two instructions in addition to
a halt instruction: the "increment" instruction for any register a,
having the effect "a := a + 1"; and the "decrement and Jump if zero"
instruction, having the effect "if & = 0 then goto m else a := a - 1",
(Minsky has shown that this machine has universal computing power.
Fenton used it as & formal model within which to prove a secure environ-
ment.) Now, the decrement instruction permits information to flow
(implicitly) from a to any register affected by any statement reachable
from the statement labelled m. To enable flow-checking, Fenton tags
the program counter p, updating the class of P according to p :=p & a
on cxecution of the above decrement instruction (in Fenton's model, p
is the only class that can be changed). The successful execution of
uny increment or decrement instruction applied to register a depends on

the pre-condition p @ &~ a, which is verified prior to executing the
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( . instruction. It is the nature of the above mechanism that the sequence
v of classes of p is nondecreasing in security. To permit the class of p
to be decreased, Fenton introduces e stack of p-classes and a new
instruction "if & = O then cell m else a := a - 1", where the operation
"call m" pushes (p,p) onto the stack and sets (p>p) := (m,p ® a). An
instruction return is also provided so that the block of instructions
beginning at location m can return control, pop the stack, and continue
execution following the above if-statement. Fenton shows that secure
execution is guaranteed with the new instruction added.

Because he develops his ® operator to be consistent with the prop-
erties of the Minsky machine without considering the semantics of the
information flow problem, Fenton's flow structure <sC, +, © is not a
lattice, though it is a partial ordering of SC. The discrepancy is that
his @ operator does not satisfy the least upper bound property,
"A+CandB~>C=>A485-C", and is, as a consequence, not associa-
tive. The reason far this "semantic defect" can be understood by
observing that, in a Minsky machine, it is impossible to extract
directly information from two registers and place the result in a third
register. It is possible only to use the contents of one register to
modify the contents of another. (For example, the only Minsky program
to cause the sum a + b to appear in register c, assuming ¢ = 0 initially,
uses the circuitous procedure of adding a to b then copying the result
to c.) For this reason, Fenton defined his ® operator as follows:

A if B> A (B can modify A)

A®B= B if A+ B (A can modify B)

H otherwise (neither A nor B can modify the other).

An example of a complete structure satisfying these properties is given
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in Figure 2.4-3. A requirement such as "the combination of information
in classes A and B can be placed in class C" is handled by defining
A~>Cand B+C (i.e., A®C=0C and B® C = C), so that a program can
use information in classes A and B to modify registers of ciass C and
create the desired combination piecemeal in registers of C. Since it is
possible to have A > C and B+ C but not A ® B+ C, & is not a least
upper bound operator.

When considering how to modify Fenton's ® operator so that it
becomes a lattice operator, one quickly discovers that it cannot be
done without adding new security classes. Figure 2.4-l shows a modifi-
cation of the structure of Figure 2.4-3 to this end, a new class AB
being added. Since Fenton's structure can be extended to a lattice,
one can inquire whether his structure is semantically meaningful. The
answer is, of course, affirmative in the context of the Minsky machine
for which it was derived.

The problem under consideration — secure information flow in multi-
class systems with static binding of security classes — can be solved
completely by a compile-time mechanism, without the need for tagged
architecture or run-time hardware checking mechanisms (see Chapter 3).
However, the run-time mechanism could be used as a redundant check in
case, for example, a hardware malfunction introduced an error into a
previously certified program. (See Fabry [Fa73] for a general discus-
sion of redundancy checks to enhance system reliability.) The compile-
time mechanism has the further attraction that it eliminates the possi-
bility of "covert leakages" caused by tripping alarms built into run-

time mechanisms.



()

[

b4

c/ \D L A B C D H
L(LlA[BlC D H
A[AJAlE|C|D [H
B{BlH |B|C]|D (&
A B c[clclclculH
AN / DD |p[D[H][D|H
L H[E |6 |5 [H 8"

Graph of - Matrix of @

Figure 2.4~3. Example of an Information Flow Structure Satisfying
Fenton's Model.

LH_ L_A B AB C D H
N L [L [A |8 [AB[CID &
c D A [A A |0 [aB[C|D[H
N~ B [B |6 [B [AB[C D [

AB\ AB[AB[AB[ABIAB|C |D | K

c[c clclclclu]H
A/ B DD |p o D [B[DIH
AN / H [H |H |8 |H K IHIH

L

Graph of + Matrix of &

Figure 2.4-L. Example of Figure 2.4-3 Extended to a Lettice.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

2.4.5 Multi-Class, Dyramic Binding

Mechanisms for guaranteeing security when all (or some) objects
are bound dynamicelly to security_ classes require both compile-time am
run-time support and are the most complex of all. As an example, con-
sider a system in which the unit of protection is a single register and
all objects are bound dynamically to classes. Suppose the following
program (proposed by Fecnton [FeT3] is executed to set b equal to the

value of a (assumed to be either 0 or 1 initially):

5
H

oo

b
c
if a
if ¢

The "naive" run-time mechanism (see also [DDT4]) for dynamically binding
registers to classes operates by updating the cless of a register when-
ever an assignment is made to it. For the above program, this proceeds
as follows:

Statement

if a =0 then c =1 is executed, ¢ a
if ¢ =0 thenb :=1 is executed, b := c

When this program terminates, the class of b is the lowest class L
(i.e., b = L) irrespective of the class of a, but the value of b is
identically that of s. This is because the mechanism does not account

for the implicit flow that when the statements "c = 1" and

"o := 1" are not executed. Therefore, a security violation results
unless & = L.

The sbove program illustrates that a run-time mechaniem is
not sufficient to guarantee security since implicit flows that occur

in the absence of explicit flows (from assigmment or I/O operations)
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go undetected. For this reason, Fenton dismisses the problem as insol-
uble in his freamework which relies solely on & run-time mechenism. In
Chapter 4 we show that the problem can be solved with a compile-time
procedure that insertsspecial code (if need be) into a program so that
all implicit flows are accounted for. In the program given above, for
example, the compiler would insert code so0 that execution of the
statement

if a =0 then ¢ := 1
results in the assignment

L£i=a
even if a # 0. The point is, the problem of implicit flow ean be solved
if one is willing to augment the run-time mechanism with a compile-time

mechanism.

2.5 D

acy Reguirements

The existence of appropriate security flow controls does not mean
that the system is fully secure if information can still be communicated
along "covert channels" [La73]. One such case arises if the system
permits the class of a dynamically bound object to be observed, and the
finel class of the object can be made to depend on the relative speeds
of parallel processes; this non-determinacy can be used to transmit
information to an ouserver. For such systems, additional constraints
miy be required to guarantee determinate operation. Determinacy is, of
course, usually considered desirsble in its own right, because it
guarantecs the seproducibility of a system's actions under arbitrary

timirgs of processes that share information.
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To formulate conditions that guarantee determinate behavior, we

=

consider first the simple case of a single-class system under dynamic
binding of security classes (see Section 2.4.2). We than extend the
results to a single-class system under both static and dynamic binding
of security classes (see Section 2.4.3) and to & multi-class system
under dynamic binding of security classes (see Section 2.4.5). In all
cases, we assume that the set of all objects and processes is constant

over the lifetime of the system (i.e. s no create or delete operatiocns

are performed). Our treatment closely follows that of Coffman and
Denning [CD73].

2.3.1 Single-Class, Dynamic Binding

We assume that each process P performs a computation in its private

working store Wp using as input information from a domain set l’)p CF
and producing as output information in a range set RP C F, vhere F is
the set of files in the system. The domain Dp is the set of files to
which p has read access; the range Rp is the set to which it has write
access. We make the restriction that D,p and Rp do not change during
the execution of p.

The set P of all processes in existence is partially ordered by a
relation <, where p < p' means that p must terminate before p' can
begin. The system Il = <P, < > is called a process system. Figure 2.5-1

is an example of a process system represented by a prece

ce graph.
Associated with each process p is an "initiation event" corresponding to

the operation initiate(p), denoted by "[p". Similarly, there is a

"termination event" corresponding to terminate(p), denoted by "pl".
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Figure 2.5-%. Example of a Process System.
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For the purposes of proving determinacy, no generality is lost by
associating all input operations with the initiation of p and all out-
put operations with the termination of p. The reason is that such a
proof relies only on the assumption that p is determinate — i.e., that
the class assigned to an output file depends uniquely on the classes
of p's input files, as long as no input file classes change during p's
execution; exactly when the classes ;f output files are updated is,
therefore, irrelevant.

An execution sequence of a process system II = <P, <« > is a string
P =7¥) Ty ... Tp, n being the number of processes in P, and each Ty
(1<i < 2n) being a process initiation or termination event such that:

1) For each p € P, "[p" and "pl" appears exactly once in p,

2) "[p" precedes "p]" in p, and

'" in p when p < p'.

3)  "pl" precedes "[p
A valid execution sequence for the system of Figure 2.5-1 is

[p1 [pz p1] oy [p5 2,1 [pg p5] pg) lo; [p3 p3) Pl Byl
More than one valid execution sequence will exist for Il unless < is a
linear ordering relation.

Let o(p) = S0S1 +++ Sy, denote the state sequence corresponding to
an execution sequence p; that is, 50 is the initial state, and
S; = 83.3°T; (1 <1 <2n).

Define a class sequence c(a,p) for each file a € F to be the
sequence of classes €1€p...cy to which a is assigned during the execu-

tion sequence p. Letting A denote the empty sequence, we have:
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( c(an) = (a),
clarry. . m) = (elaryeery ;) (a)) ifr =plendac R,
cla,ry.ury 1y otherwise

where (5-)1 denotes the class of a in state S;. A condition for deter-
minacy is formulated in terms of the final value of a class sequence
cla,p) = eyepeeec . Letting v(a,p) denote ¢,» & protection system is
defined to be determinate if v(a,p) = v(a,p') for all files a e F
and all execution sequences p and p'. An example of a system with two
independent processes that is not determinate is illustrated in
Figure 2,5-2. Here v(b,p) # v(b,p') for file b end sequences p and p'.
We have intentionally defined determinacy in terms of final classes
rather than class sequences (as is done analogously in Ccffman and
Denning). Determinacy with respect to final classes is importent for
two reasons. First, the final class of a file a written by processes
Pl" «e9Pp should be uniquely determined by the information P1seeesPy
write into a and not by the order in which Py,.. 5Py execute. Second,
an observer should not be able to obtain unauthorized information by
testing the final class of file a (e.g., by attempting a read or write
operation on a). Determinacy with respect to class sequences is not
important if no observer is allowed to examine the class sequence of

file a.

Theorem 2.5-1. A process system I = <P,<« > is determinete if for all
P and p' € P one of the following conditions is true:
a) p<p'orp <p,or

b n = = g.
) R,0 Dy =D, N Ry =6
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=l
"

0

Dpl = a, RPl =1b {i.e., Py inputs from a end ovtputs to b)

Dp2 =c, Bp, =D (i.e., Py inputs from ¢ and outputs to a)

°
[

= [py p1] [pp 2ol

lpp 22l [p ]

Tables showing the classes of the files &, b, and ¢ and of the
and sz after each operation is performed for p

working stores Wp
and p': 1

[
[py »,1 [p, p,]

a LI|L|L|L|H

Wpl

sz L |[L{L |HI|H

Class sequences for b:

v(b,p)

L
H v(b,e')

>
>

ISR

o) =
c(byp') =
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]

=

{a,b,c}; (a), = (=1, (y=k8

Wpl

W,
Py

[p, 2o [py ;]

o'

L |L H|H
L |L L|H
H |4 H| H
L |L H H
L |H H H“

Exsmple of a Non-Deterministic System.
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proof. The proof proceeds by considering a sequence of subsystems
Myseee »I, in which n = <{pl}= @> for an initial process py of P

(1.e., Py has no predecessors), IIn =1, and nk+l = <Pk+l’ ‘k+l >
where P,

(o is obtained from Py by adding any process p € P - Pk

all of whose predecessors (if any) are in P and <, is the

restriction of < on the subset Pk+l' Hl is determinate under the

assumption that individual processes are determinate. Assume that

T, is determinate, and let D be the process added to Pk to obtain
fakes

Pk+l' Let a € F have initial class A and suppose l'!k leaves file a
with final class a. We wish to show that, in nk-i—l’ the final class
of a is a if a ¢ RP and a ® Hp if a e RP’ where WP is p's working
store. We must also show that 2 is not affected by the presence
of p and that W, is 'mique. Conditions (a) and (b) both imply
that p cannot alter domain classes of any p' € Pk prior to the
initiation of p'; therefore, E-P' is unique for all p' ¢ Py. Hence,

& cannot be altered by the presence of p. Since the classes of Dp

are produced by Il and since p is determinate, the class Ep when p
performs its last write operation on a is unique.

Now, for a ¢ Rp it is clear that, in Ti41s the final class of
a is a. For a € Rp the final class of a, in Metps is
20 (Ol | p' c Py maee Ryi]]

A0 [@y |2 epy and ae Ryl oy,

=a® Wr»
Therefore, the subsystem Hk+1 produces unique final classes for
every file and is determinate. Repeating the argument for k =

1, 2, ..., n-1 establishes the determinacy of I,



(gD

(&)

If one wants to guarantee class sequence determinacy, it is suffi-
cient to add the condition Ry N Ryt = @ to condition (a) of the theorem
statement. In this case, the determinacy proof resembles that given in

Coffman and Denning [CD73: Theorem 2.1, p. 39].

2.5.2 Single-Class, Static and amic Bindin

Let F° denote those files statically bound to security classes,
and let F denote those files dynamically bound to security classes.
Also, let P° denote those processes whose working stores are bound

statically, and let 1’d denote those processes whose working stores

-are bound dynamically. We first observe that any file in FS can be

ignored from determinacy considerations, since its class is invariant
and therefore completely independent of the behavior of all processes.
Second, the interaction between two processes p and p' both in P° can
be ignored since ﬂp and W—P' are predetermined by clearance(p) and
clearance(p') respectively (see Section 2.4.1), and therefore unique for
all execution sequences. Hence it is not necessary in this case to
account for the conditions RP 0 Dyt # @ or D:p N Rpt # ¢. However, the
interaction between & process p e pPS and p' € P4 cannot be ignored since
V_f_p- is determined by DP' , and therefore is affected by the behavior of
P if R0 DLi0 Fd # ¢ (although the condition D,0 Ryi # ¢ cannot
affect W—P)' Finally, the interaction between two process p and p' both
in pd cannofc be ignored since RP 0 DP' n Fé # @ affects V—’P' and

Dp 0 Rp| n Fé # @ affects V_lp as before. These observations lead to the

following theorem.
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Theorem 2.5-2. A process system I = <P, < > is determinate if for all
p and p' € P one of the following conditions is true:

a) p, p'ePS, or

b) p<p'orp' <p,or
c) HPnDpv(‘)Fd=¢forp:Psa.ndp'sPd,or

d) RpN DpiN F&=Dp0 Ry ¥ = 4 for p, p' e BY

2.5.3 Multi-Class, Dynamic Binding

This type of system would appear to be more difficult to analyze
since processes may share objects in their working stores (i.e.,
W 0 Wp' # @ is possible) and since a transfer operation replaces
(rather than extends) the contents of the receiving object in the case
of a scalar variable, for example. We deal with the first problem by
partitioning the set of objects in the working store W into those that
are shared, denoted WSh, and those that are private, denoted Wpr, and
defining each process p to be a computation from a domain Dp CFu wsh
to a range Ry CF U WSD using its private working store, Wi, 0 WT, for
intermediate results. We deal with the second by taking into account
the interaction between two processes p and p' when Rpﬂ RP' n WP # 2,
where WP C W is the set of replacable objects (since the final
class of an object a € WX®P may depend on the order in which the

processes write into a). The determinacy requirements now follow:

Theorem 2.5~3. A process system I = <P, <« > is determinate if for all
p and p' ¢ P one of the following conditions is true:
a) p<p'orp <p,or

b)  RyN Dyr =Dy DRy = Ry N Ry WP = g,
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Note that the above requirements are identical to those of the
single~class, dynamic binding cese except that processes must also be

mutually non-interfering with respect to replacable objects.
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PROGRAM CERTIFICATIGN UNDER STATIC BINDING

Chapter 3

In Section 2.h.h we specified the security requirements of a multi-
class system with static binding of security classes. We examined a
run-time mechanism proposed by Fenton [Fe73,FeTha] that guarantees the
secure execution of a program in this environment, and we stated that
security can also be guaranteed with a compile~time mechanism that
certifies the secure execution of a program before it executes. The
purpece of this chepter is to present such a mechanism.

Program certification mechanisms have several advantages over run-
time verification mechanisms in protection systems. One important
advantage is that the execution of a program is guaranteed to be secure
before it executes; hence a program cannot leak information by purposely
causing security violations (see Section 2.2). Another is that it does
not impair the execution speed of a program, since all security checks
are performed prior to program execution (although some run-time support
may still be necessary or desirable for reliability reasons). Of course
this would be of dubious value if the certification mechanism added sub-
stantially to the cost of compilation! The mechanism proposed here,
however, does not and indeed adds suprisingly little overhead to the
compilation process. A third advantage is that the certification proc-

ess itself can be specified in terms of higher level language

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-

9

structures, rather than low level hardware instructions. In this form
it is more understandable, and correctness is more easily established.

The principles of program certification were first formalized by
Floyd [F167] end Naur [Na66] in an effort to develop a methodology for
proving progrem correctness. The basic idea is that the programer
specifies "invariant assertions" about the state of the variables at
various steps of the program. Program certification then is the process
of proving that these assertions will hold for every possible execution
of the program (1.e., for every set of input values). This cen be done
manually or (in principle at least) automatically by & theorem-proving
program. Since it is & slow and tedious manual task, a considersable
amount of research effort has been directed toward the construction of
efficient automatic certification mechanisms. However, progress in
this area has been slower than expected. A complete survey of
techniques for proving program correctness has been given by Elspas et
al. [ELT2].

This chapter demonstrates the construction of an automatic compile~
time mechanism that certifies the secure execution of a program under
static binding of objects to security classes. In this case, only one
form of assertion must be proved at each step in the program, ramely,
that the information o stored in a variable a satisfies the property
o> a.

This is not the first time compiler certification mechanisms %o
verify security properties have been proposed. Conway et al. [CMT2]
investigated compile-time procedures for controlling a program's dats

independent accesses to objects in a data base (data dependent accesses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



N

80

are controlled by run-time procedures). Moore [MoTk] investigated e
compile-time mechanism that constructs an "information flow graph"
showing the flow of information between variables of a program and the
conditions under which such flow occurs. Our results complement Moore's.
In our case, the flow relation on the security classes is given, and the
objective is to verify that the program satisfies these flow require-
ments. In his case, the objective is to construct a representation of
possible flows among the variables of the program. Other related work
in the general area of protection and programming languages can be

found in [GST3,MCTh,Mr73].

The approach we take is to show how to incorporate a certification
mechanism into the analysis phase of a syntax-driven compiler. We do
this by examining various syntactic constructs typicael of high level
languages (most of our constructs are tsken from PASCAL [WrTl], Algol-60
[Na63], ana PL/I [IB71]). For each syntactic type, we specify one or
more actions to be performed (along with other semantic actions such as
type checking and code generation) when a string of that type is recog-
nized; these actions are referred to as the certification semantics of
the language.

To control the complexity of the presentation, the mechanism will
be introduced stepwise in six stages:

) Expressions, assignment, and I/0 of elementary data structures,
)  Conditional statements,

)  Gotos,

) Interrupts, -

)
)

Complex data structures, and
Procedure calls.

OV EW N
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The objective of stage (1) is to certify all explicit flows among
simple data objects. Implicit flows, such as those arising from condi-
tional statements axd gotos, are deferred to the later stages (see Sec~-
tion 2.4.L for a discussion of implicit v. explicit flow). At stage (1)
it is also necessary to assume that programs are uninterruptible — i.e.,
their execution cannot bz interrupted for exceptionsl conditions such as
end-file or cverflow. The reason is that the occurrence of an interrunt
may cause the subsequent execution of statements to be conditvioned on
the data that caused the interrupt and thereby result in an implicit
flow.

At stage (2) we consider the certification of implicit flows that
arise during the execution of three common conditional control state-
ments: if-then-else, while-do, and repeat-until. As will be seen, the
technique used actually applies to any conditional statement, such as
the PASCAL case statement [Wr7l] or tie Algol for statement [Na63]. At
this stage, we are therefore able to certify simple "structured pro-
grams".

At stage (3) we consider the rather unattractive complications
begotten by the allowance of a goto statement. Since the goto state-
ment permits unrestricted transfer of control, locating all statements
conditioned on a particular expression becomes considersbly more dif-
ficult. Indeed, it is necessary to perform a complete control flow
analysis of a program before its security can be certified. Since the
use of unrestricted go_ﬁa_s is of questionable value anywey, we do not
consider all of the intricacies of therequisite control flow analysis.

The purpose of this analysis is %o illustrate the general principle
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involved in certifying generel control. flow structures. The fact of
its excessive complexity further justifies the practicality of the sim-
pler, structured approach taken et stage (2).

At stage (4) we suggest two viable epproaches for guaranteeing
security in an environment in which interrupts can occ.ur. The first
approach — program structuring — requires a program to conform to a
rather restricted structure: it must assign values to security classes
in a monotonically increasing order (i.e., it must first compute all
its lowest security results, then its next lowest, and so on). The
second approach — interrupt inhibition — permits a program to define its
ovn "interrupt headlers" with an on-statement and inhibits ell inter-
rupts for which no such action is defined. This latter approach allows
greater flexibility than the former, though it does require modest run-
time support.

At stage (5) we consider three complex data structures: arrays,
records, and lists. Whereas the clements of a record can belong to
different security classes, the elements of arrays and lists must belong
to the same class, since in the latter cases there is no way of deter-
mining at compile~time which element is being referenced.

At stage (6) we consider procedure calls and observe that it is
not generally possible for the compiler to complete the certification
of a program which calls external procedures. However, the compiler can
generate information which when subsequently used by a linker (i.e., a
linkaege editor or linking loader), will verify that the collecti:on of
subroutines bound together is secure. In the special case vhere a call

is made to an external procedure that derives all of its results from
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the input parameters and data in the lowest class L, the compiler can

complete the verification of the procedure call.

3.1 FExpressions, Assignment, and I/O of Elementary Data Structures
Consider a language which allows only the elementary data types
known as "constants” — i.e., integers, reals, characters, and Booleans —

and which allows only the elementary data objects known as "scalar
variables" and "files" of the elementary data types. All constants are
assumed to belong to the lowest security class L, and all variables and
files are assumed to be assigned to a security class by en explicit
declaration, such as

a: integer of class A.
(Observe that we are in effect treating security classes as data typeS.)
Arithmetic and Boolean expressious are formed from these data structures
in the usual way.

We shall employ the notation <exp> to denote the security class of
an cxpression; for example, the security class of the expression
"a * Db+ c" is <exp> =a @b & c. In general, we denote by ;y the
security class associated with a string of syntactic type <x>.

There are only three statement types to consider at this point:

assignment, input, and output. An assignment statement has the struc-
ture

<var> := <exp> .
Since this statement represents &« flow from <exp> to <var>, security
requires that

(2(2) -+ <m> .

For cxample, the statement "¢ := & + b" has the structure
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<exp> = "a + b" snd <var> = "e", with corresponding security requirement

26D >c. An input statement has the structure
input <inlist> from <file>

where <inlist> is a list of input variables <var>y,... s<var>,. BSince

this statement represents a flow from <file> to <var>i (1 <iz<n),

security requires that

<file> » <var>. (1 <i <n).

Letting <inlist> = <var>; 8 ... @ <V.£;“_>n’(by Proposition 2.3-5) this
requirement is equivalent to

<file> + <inlist> .
For example, the statement "input a, b from c" has the structure
<file> = "c" and <inlist> = "a, b", with corresponding security require~
ment ¢ > & ® b. An output statement hes the structure

output <outlist> to <file>
where <outlist> is a list of expressions <exp>1,.g.,<exp>n. Since this
statement represents a flow from <exp>; to <file> (1 < i < n), security
requires that

<exp>; + <file> (1 < i <n).
Letting <outlist> = <exp>; ® ... @ <exp>,, (by Proposition 2.3-2) this
beccomes

<outlist> -+ <file> .
For example, the statement "output a, b¥e to d" has the structure
<outlist> = "a, b¥*c" and <file> = "d", with corresponding security
requirement a®boc~> 4.

Syntex and certification semantics for the above statement types

is summarized in Figure 3.1-1. If a rule contains two occurrences of a
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{ syntactic type <x>, we denote the second occurrence by <x>' so
that the semantics are not ambiguous. The interpretation of the cer-
tification semantics for a rule

<X> 1= w
where w is a string of terminals and non-terminals is straightforwerd.

" with root

When & string of form w is recognized—i.e., a "syntax tree
node <x> is constructed, the action specified by the semantics is per-
formed. If this action includes an assignment of the form <x> := c,
vhere ¢ is a security class, “hen the class c¢ (derived from nodes of
subtrees of <x>) is associatéd with the root node <x>. If the action
includes a security test and that test fails, the security error is
reported and the program is not certified. The reader unfamiliar with
such specifications may wish to consult Gries [GiTl: Section 12.2] for

(’ similar semantic routines that transform infix expressions to quad-
ruples. The implementation of the parser and certification routines is
not important {though clearly, some parsing techniques are more suitable
than others).

To illustrate the certification process, we consider a bottom-up
parse of the assignment statement "d := a ¥ b + c¢". As the expression
on the right side is recognized, the classes of the operands a, b, and
¢ are combined using ®. This proceeds as follows: when "a * b" is
reduced to a <term>, a ® b is assigned to <term>; then when "<term> + c"
is rsduced to an <exp>, <term> & c is assigned to <exp>. The security
of the assignment statement is easily verified when "<var> := <exp>" is
reduced to an <essign stmt> by testing <exp> + <var>. The details of the

process are illustrated by Figure 3.1-2 which shows the syntex tree for
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R
28bec>dr
<essign stmt>
<var> [d] = <exp> [2®Db © cl
d <sexp> [2® b 6 cl
<aexp> [a ® b] <addop> <term> [c]
<term> [a @ ] + <factor>[c]
<term>[a] <mulop> <factor> [b]
c
T
<factor>[a] * <var> [b]
<var> [a] b
a

di=a*h+e

Figure 3.1-2. Certification Tree of an Assignment Statement.
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the expression; the security classes (in brackets [ ]) have been asso-
ciated with each node of the tree, and the nodes at which flows must be

verified are indicated. Such a tree is defined to be a certification

tree.
The certification of input and output statements is similar. In
the case of an input statement, the varisbles constituting the input
list are combined using ® as the reduction o <inlist> is performed.
Figure 3.1-3 displays the certification tree for the statement "input
a, b from c¢". 1In the case of an output statement, the expressions con-
stituting the cutput list are combined using ® as the reduction to

<outlist> is performed.

3.2 Conditional Statements

We now extend the syntax and the corresponding certification seman-
tics described in the previous section to include three conditional
statements:

if <exp> then <stmbt>; [else <stmt>,]

while <exp> do <stmt>j

repeat <stmt>; wuntil <exp>
vhere <stmt> is sn elementary statement (assignment or I/0), conditional
statement, or compound statement (begin-end statement). These state-
ments all have the underlying abstract structure (see Section 2.kh.k4):

<exp>: <stmt>; [,<stmt>p].

Since this structure specifies an implicit flow from <exp> to all var-
iables and files acsigned values in <stmt>; [and <5tmt>2], security
requires (in addition to the independent security of the substatements)

that all implicit flows from <exp> be secure. Letting V(<stmt>) denote
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b}
<input -stmt>

input <inlist>[a ® b] from <file>[c]

\

<inlist>[a] , <var>[b] c
<var>[a] b
a

input a, b from ¢

Figure 3.1-3. Certification Tree of an Input Statement.
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the set of variables and files assigned values in a string of syntactic
type <stmt> (see Section 2.4%.4), this meens that for a conditional
statement <stmt> with structure

<stmt> = <exp>: <stmt> [, <stmt>2]
the following property must hold:

<exp> * D Vb e V(sstmt>)) [UV(<stmt>,)]
or equivalently:

<exp> *b Vb e V(<stmt>).
For if-then-else and while-do statements, this property could be veri-
fied during the analysis of <stmt>l [and <stm’c>2] since <exp> is recog-
nized before these substatements are parsed. However, this technique is
not suitable for the repeat-until statement since <exp> is recognized
after <stm‘c>l is analyzed. Therefore, it is necessary to verify the
above property after the complete conditional statement is recognized.

To see how this can be done, observe that (by Proposition 2.3-5)
the above property is equivalent to

<exp> » @ {b | t c V(<stmt>)}.
This suggests a set of actions that forms @ {b | beV(<stmt>)} for each
statement (non-conditional as well as conditicnal) as it is recognized.
These actions, shown in Figure 3.2-1, supplement the actions specified
in Figure 3.1-1. In Figure 3.2-1 we have used <stmt> to denote the
class ®{_’t_)_ [ beV(<stmt>)} since no other class was preyiously associated
with <stmt>.

The alert reader mey recognize a syntactic ambiguity in the gremmar
for an <if stmt>; this does not affect our analysis and can be dealt
with by the usual techniques of resolving ambiguities in programming

language syntax [GiTi].
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The certification process is illustrated in Figure 3.2-2 for the
statements

a) while a > 0 do
begin
b i=Db+ 1
cutput b to ¢3
a:=a~-1
end
b) ifa=0
then while b <cdob :=Db+ 1
else 4 := 1.

It should be clear that this certification process is equally epplicable
to all statements with an underlying abstract structure

<exp>: <stmb>,,...,<stmt>, (n > 1).

This includes case s ts, for s 1ts, ete. (see also Section

2.4.4).

3.3 Gotos

If the language is extended to include a goto statement, the task
of certifying implicit flows becomes considerably more complex. This is
because goto statements give rise to arbitrary control flow structures
that are not isolated by syntactic elements, meking it more difficult
to determine the set of statements immediately conditioned on an
expression. To illustrate, consider the program in Figure 3.3-1.
Because of the extensive use of gotos, it is practically impossible to
tell which statements are conditioned on the test "b = 0" at the state-
ment labelled "4". 1In general, with gotos, the set of statements condi-
tioned on an expression may be scattered throughout en entire program.
(It is interesting to note that these considerations forced Fenton to

introduce a "call" instruction into his Minsky machine, so that the
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<while stmt>[b 8 c & &]

7

while

"e s> Q"

<stmt list>[b ® c] 3

<stmt 1list>[p]

<stmt> [b]

|

<assign stmt>[b]

|

1
"o = b 4 1"

a) while a > 0 do begin b :=

Figure 3.2-2.
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<exp>[a]

N

do <stmt>[b 8 ¢ 8 a]

<compound stmt>[b @ c @ a]

begin <stmt list>[b 8 ¢ @ a] end

<stmt>[a]

<stmt>[c] <assign stmt>[a]

<output stmt>[c] "a 1= a - 1"

"output b to c"

b+ 1; output b to c; & := a - 1 end

Certification Trees of Conditional Stetements.
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9k

_<if stmt>(b 6 4]

] X

if  <exp>[a] then  <stmt>[b] else <stmt>[d]

a=0" > <while stmt>[b] <assign stmt>[d]

vhile <exp>[b 8 c] do <stmt>[b]

"y o< oM <assign stmt> (]

"y iz b o+ 1"

b) if @ = O then vhile b<cdob :=b+ 1 else d := 1

Figure 3.2-2, cont.
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1: input &, b from f1;

05 & = " = QY

if a = 0 then goto k;
f: _a— i +1; Tttt 02; 52-'»!\.’,‘.11
3: output; or2; T 77

faco = "a < p"
f:_éb::(}@@@gg; B ®y; &, ="b=o0"
5: b= ay Tttt

¢5; &5 = null

output a, b to 2 %5 &g = null

o f2;
- c>3; 53
then goto 2 else goto 6;

Program Partitioning into Basic
Blocks

Figure 3.3-1. Example of a Program with Gotos.
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scope of a condition could be limited — see Sectiomn 2.4.4) For this
reason, it is not possible to certify implicit flows until the entire
program is analyzed and a control flow analysis performed. Only then
can the underlyirg ebstract conditional structures

£ 01,euus0

" be determined, end implicit flows from the expression £ to the objects

(i.e., variables and files) assigned values in the program substructures
®15000,9, be verified.

We now outline a general procedure for performing this control flow
analysis and verifying the security of all implicit flows. This analy-
sis is performed not because we believe the mechanism should support

gotos, but rather to illustrate the general characteristies of all con-~

ditional structures and to justify the approach taken in the preceding
section.

The first step is to partition the program into a set of substruc-
tures Dpseee ,@n each of which is a basic block. A basic block is a
sequence of statements with exactly one entry point (the first statement
in the sequence) and exactly one exit point (the last statement in the
sequence). It is important to note that each basic block ¢; contains at
most one conditional statement (e.g., if-then-else statement), which
must be the last statement of @i. The conditional expression in this
statement (if it exists) will be denoted &5 Figure 3.3-1 shows the
partitioning for the semple program. A thorough treatment of basic
blocks and the control flow analysi; to be described can be found in

[A170,1M69 ,TaTl].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Let V(¢) denote the set of variables assigned values in basic
block ¢. Associate with each biock ¢ a class 2,
@ | v e V(o)) if V() # ¢
H otherwise
where H is the highest security class and therefore an identity element
over ). Note that the process of partitioning a program into basic
blocks and of associating classes with the basic blocks can be performed
during the analysis phase of compilation, using techniques similar to
those described in the preceding section.
The next step is to construct a control flow graph of the program;
that is, a directed graph whose nodes are the basic blocks and whose
to ©.

J k
if control cen flow directly from ¢:] to Qk' Figure 3.3-2 shows the

edges represent the control flow paths. There is an edge from ¢

control flow graph of the sample program of Figure 3.3-1. Here we have
labelled each node ¢ with its class 2 (in brackets [ ]). For those
nodes with more than one outgoing edge, we have also shown the condi-
tional expression that determines which edge will be selected.

The final step is to use the control flow graph to determine the
set of basic blocks {nodes) conditioned on each expression E,‘i. Let
‘l‘i denote the set of basic blocks conditioned on £5. All implicit flow
from Ei is then certified for security by verifying that

- ®le|eew)

For basic block LA associated with expression §;, the immediate
forward dominator IF‘D(Qi), is the closest block to 0]._ among the set of

all blocks lying on every path from ¢; to the exit block of the graph.



[H]

[bec]
L “ e
®
O
IE‘D(¢1) =2 \vl = (@2, 03, 2, 455}
IFD(e3) = ¢¢ ¥3 = {95, 93}
IFD(e),) = o ¥y, = {9, 23, 95}

Figure 3.3-2. Control Flow Graph of Program of Figure 3.3-1,
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{ It follows that
¥; = {2 | ¢ lies on a path from &; to IFD(¢;)}.
This follows from the observation that all control flow paths origi-
nating with @; join at IFD(9;); hence, the only blocks directly condi-
tioned on £ are those that lie on some path from ¢, to IFD(‘Di). (see
Figure 3.3-2.) Of course, a block ¢ executed after IFD(fPi) can be
indirectly conditioned on £; if an assignment is made to some variable
b in ¢'e Y5, and ¢ is directly conditioned on the value of b. Because
the flow relation is transitive, we do not have to worry aebout such
indirect conditioning: the flows from Ei to b and from b to all varia~
bles assigned values in ¢ will be verified.
It is now easy to jJustify the mechanism of the preceding section
for certifying the conditional statements
( if <exp> then <stmt>; [else <stmt>,],
vhile <exp> do <stmt>,, and
repeat <stmt>l until <exp>
since in all cases, the immediate forward dominator (of ¢ ) is

<exp>
precisely the next statement, and therefore w<exp> is precisely the
conditional statement itself. Hence, it is possible tc determine the
underlying abstract conditional structures of these statements without

performing a global flow analysis.

3.4 Interrupts

Additional mechanisms are needed to guarantee security in the
presence cf interrupts. This is because an interrupt may cause the
execution of subsequent statements to be conditioned c;n the data that

caused the interrupt, giving rise dynamicaelly to implicit flows that
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enism. Consider, for example, the

{ 80 undetected by our present ms
execution of the following program in an environment where an overflow

interrupt can result in program termination:

Assume 1 =D = L (the lowest security class) and x = sum = H (the
highest security class). Our present mechanism would certify this pro-
gram, since the iteration appears to be conditioned on the Boolean
constant false which is associated with L, and L+~ 1 ® sum 8 b.
Should the variable sum overflow, however, the iteration would be

terminated by the overflow interrupt, whereupon the iteration will have

)

been conditioned on sum and en invalid flow from sum to b will
have occurred (since sum = H# b = L). Indeed, in this case file b
contains information about x: the value cf x can be approximated by
computing MAXVALUE/LASTb, where MAXVALUE is a constant representing the
largest value a variable could assume before overflowing, and LASTb is
the last value of i written into file b. However, this violates secu-
rity since x # b. Our present certification mechanism would have
detected this had the programmer made explicit his intentions:
repeat
begin
sum := sum + X;
i=q 41

output i to b
end

until sum overflows
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There appear to be four general approaches to solving this problem.
The first two are too drestic to be viable; the third reduces the prob-~
lem to the single-class case of Section 2.l4.1; and the fourth, which
inhibits all interrupts except those for which the programmer has speci-
fied explicit actions, is the most attractive in the context of the
mechenism under consideration ia this chapter. Bach will be considered
below.

The first possible solution is a run~-time mechanism that receives
control when a program interrupts. It would abort the program, erase
its entire memory (including all files it had written), and "sound an
alarm". This soiution is unacceptable for at least two reasons: first,
there is no good way of determining at run-time whether or not an inter-
rupt caused a security violation; and second, a program should be able
to process, without "sounding an alerm”, any interrupt that does not
cause a violation.

The second possible solution is based on the principle of restruc-
turing a program so that the certification mechanism can verify
‘the correctness of interrupts. The idee is to have the compiler insert
conditional expressions, corresponding to conditions thet might cause
interrupts, at the appropriate points in the program. These conditions
are then used to verify the security of all interrupts. For example,

the preceding program could be modified to:
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()

if sum + x < MAXVALUE then

begin
sum := sum + X3
if i + 1 < MAXVALUE ther
begin
is=1i4+1
output i to b
end
eise halt
end
else halt

end
until false

The compiler would now detect the security violation in this program
since the dependency of i and b on x is explicit. This solution is
unattractive because it seriously complicates the compilation process,
possibly to the point of rendering the entire certification mechanism
( . too cumbersome te be useful.

The third possible solution is based on the principle of imposing
S0 many restrictions on program structure that interrupts cannot cause
the problem discussed sbove. One method of doing this is to require
that the program be specified as a collection of modules, in one-to-one
corregpondence with the security classes. If ¢, is the program module
corresponding to class A, the following cons{resints must be observed:

a) ¢, may assign values only to objects in class A;

b) If x is an input parameter to ¢ then x + A;

e
¢) Ify is an output parameter from fbA, then A » y;
a) If ¢, transfers control to ¢y, then A + B.

Under these restrictions, an interrupt occurring in @A can be condi~

tioned only on those objects z for which z + A, so that the prcblem is
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elimineted. It should be noted that these restrictions meske the problem
isomorphic to the single-class case considered in Section 2.L4.1, where
files are used to transmit parameters among processes. In this case
there is no need for compiler certification of the modules, so we shall
not consider it further.

The fourth solution is based on the simple observation that no
security violation can occur in an environment that inhibits interrupts,
since the only way a statement can in this case be conditioned on the

state of a variable is by explicitly testing its valne. However, a

cempletely interrupt-free eavironment is impractical, as a program
should be allowed to process certain interrupts such as end-file or
overflow, should it desire to do so. We therefore propose to 1) extend
the language to include a construct for specifying interrupt conditions
and procedures for handling them ("interrupt handlers"), 2) modify the
certification process to certify programs in the extended language, and
3) inciude a run-time mechanism that invokes (as a procedure) the inter-
rupt handler of a specified interrupt but inhibits an unspecified inter-
rupt.

The langusge construct we add is similar to the PL/I ON statement
[IB71], and has the following structure:

on <condition> <ident> do <stmt>,
where <condition> names an interrupt condition (e.g., cverflow, zero-
divide, or end-file), <ident> is the variabie or file name to which it
applies, and <stmt> is the statement to be called when the interrupt
occurs (after execution of the statement, control returns to the place

where the interrupt occurred). Examples of on statements are:



{ on endfile b do moredata := false

on overflow x do begin x := MAXVALUE; flag := true en

The scope of an on statement is not important; i‘.e. , it could be a
single statement, a block, or the entire program.

It should be clear from our preceding analysis of conditional
structures (Sections 3.2 and 3.3) that the on statement is just another
example of a conditional statement; hence the security requirements are
simply

<var> -+ <stmt>,
which leads to the certification semantics

<on stmt> := <stmt>
if <var> # <on stmt> then SECURITY ERROR .

To illustrate the mechanism, consider again the program that divulged
the value of varisble x by causing the variable sum to overflow. In

\, the present context, failure to specify an on statement for the condi-
tion "sum overflows" will not ensble this interrupt, whereupon the pro-
gram will go on executing forever (or until the program exhausts its
ration of processor time). In this case, the last value of i written
into file b contains no information whatsoevcr about x. On the cther
hand, if the overflow condition is specified explicitly:

on overflow sum do flag := false;
flag := true;

until — flag
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the security violation will be detected when the compiler verifies the
conditions sum + flag and flag > sum © i ® b.

This last solution is the most attractive, since it permits a pro-
gram to process selected interrupts without requiring substantial over-

head or imposing undue restrictions on program structure.

3.5 Complex Data Structures

3.5.1 Arrays

Let a be an arrsy having n dimensions (subscripts). The elements
of a must all belong to the same security eless, since there is nc way
of determining at compile-time which element (or even which row or
colum) is referenced by an expression like alip,... »ipl.  Therefore, an
array is bound to a single class.

The certification semantics for array references, shown in Figure
3.5-1, are based on the principle that an array reference

<array> [ <sublist> ]
is secure only if

<sublist> + <array> ,
where

<sublist> = <exp>; & ... ® <exp>
and <exp>y,... »<exp>, are the subscripts constituting <sublist>.

The semantics for the rule "<array ref> ::= <array> [ <sublist> 1"
include the generation of code to check that <sublist> specifies sub~
scripts within the range of <array>. Without this check, it would be
possible for a statement like "a[i] := b" to cause an invalid from

varigble b to a veriable ¢ if i is out of range (i.e., a[i] references
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variable c rather than an element of a). In case the programmer has
specified actions for handling invalid subscripts, the methods of
Section 3.4 can be used to verify the security of the corresponding
interrupt. In case the programmer has not specified such actions, the
comp'iler cen generate code that causes the invalid reference to refer to
the first element of the array, for example, so that no invalid flow
can occur.

Note that we have also defined (Figure 3.5-1) the syntactic type
<var> to be a simple variable or array reference now. Whereas
<array ref> is determined when the structure is recognized, <simple var>
is obtained directly from the symbol table.

It should be noted that, in principle, there is a slight difference
between array references sppearing in an expression and those appearing
oa the left side of an assignment statement. In the former case, it is
necessary only that

<array ref> := <array> ® <sublist>
but not that

<sublist> -+ <array>
{which is a stronger requirement). We did not consider this distinction
important enough to present the more complicated sementics required to
identify whether the array reference is the left part of an assignment
or not. However, the semantics of Figure 3.5-1 can be extended to this

case if need be.

3.5.2 Records
Define a record r to be a structure consisting of n eiements or

fields; Xj,...,%y, the element x5 being identified by the compound name
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TeXs. Unlike an array, the elements of a record can belong to different
security classes, since they are always referenced by unique names. In
fact, record elements can be treated exactly as other variables of syn-
tactic type <simple var>. However, doing so requires some care in the
specification of the certification semantics for records (see Figure
3.5-2).

The stetement "input r from a" where a is a file evidently requires
a2 r.x;, for 1 <i < n, or equivalently that

a>r.x, 8 ... ®r.x =@r.
Similarly, the statement "output r to b" requires that

Or=rx 6...06r.x b
An assignment "r := s", which is valid syntactically only if r and s
have identical structure, is secure only if

s.x, *r.x. (1<i<n).
Note that the apparently simpler check @g*@ r does not work in this
"

case since, for example, it will reject assignments "r := s" in which

r:%; = s.%; for all i bubt s.x; # s:xy for some i # J.

3.5.3 List Structures

Define a list structure 2 to be a set of one or more records of
identical structure. A record in % is referenced by a pointer varisble
P, associated with & in the declaration. We denote by 24p the record of
% pointed to by p, and by %.xtp the element x in the record of % pointed
to by p.

The security requirements are a combination of those for arrays and
records. As for arrays, a pointer p can select an arbitrary member from

the aggregate; therefore, it is necessary that 2.xtp be a single cless,
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irrespective of the value of P, for any given field x. Also, the secu-
rity of the reference f£.xip requires that p + 2.x, and the security of
24p requires p > ® L. Since p + ®2 implies p + 2.x for each field x,
verifying that p + Q2 is sufficient for all references to elements of
list 2. In addition to these security requirements for record refer-
ences, the security requirements for fiows to and from the records of &
(see Figure 3.5-2) apply here also. Because of these similarities we
have not shown the certification semantics for list structures in a
separate figure. As with arrays, it is necessary to generate code that

checks whether the pointer p always designates an element of the list &

s

after each assignment to p.

3.6 Procedure Calls

Let £ be a procedure with formal input parameters Xpseees¥y and
formal output parameters Yyoeees¥pe Consider an elementary statement
of the form

call f(al,. ces8p3 Dyyeaasby),
where aj,... »8y are the actual input parameters of f, and bl,... ,'bn are
the actual cutput parameters of £, It is easy to see that the security
requirements of this statement are simply:

a) f must be secure,

b) g >x (L<ic<m), end

ey (1<y ).

As usual, if the call statement is conditioned on an expression £, it is
necessary to verify the implicit flow from £ to the output parameters:

a) E*bj8...8D.
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For the moment we assume f does not write into any objects that are

global or have a "lifetime" exceeding the activation of f (e.g., Algol
own varisbles [Na63]), so that there are no other implicit flows from
an expression £ as a result of the call to procedure f. Later we show
how to remove this restriction. Now, condition (d) can be verified by
the same technique used to verify any implicit flow, namely by computing
'gl ® ... 8 b, as the output parameters are recognized and associating
this with the representative statement type, <proc call stmt> (see
Figure 3.6-1). However, conditions (a) - (c) cannot be verified until
after procedure f is compiled and its security esteblished. Hence, it
is necessary to save the classes of the parameters (see Figure 3.6-1)
and check these conditions at the time f is linked to the calling pro-
gram. To handle the case where f is compiled independently, it is
(, therefore necessary to extend the certification mechanism to include a

mechanism in the linker for certifying explicit flows not "bound" at

compile~time. This implies that the certification of a program is not

feza.lly complete until all external procedure calls are verified by the

vlinker.

There is a serious limitation to the above approach when the pro-

cedure f(xl,. .o ,)Lm;yl,. .o ,yn) is supposed to handle arbitrary classes

of information (as is typical of library routines). Then Xyavees¥y
must be assigned to the highest security class H so that a + x;
(1 <i < m)is guaranteed to hold for all calls. But this implies that
Viseees¥n must be assigned to the highest security class H, since their
values are derived from XpseeesXpe This in turn requires that the

caller of f must also assign by,...,b to H (even if 8500058y BT in

n
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{: the lowest class L!) so that Yy > by Q < J < n) also holds. By now
the limitation should be obvious — it is impossible to obtain low secu-
rity results from unrestricted procedures designed to handle data in
arbitrary security classes.

One sclutign to this problem defines different versions of the
procedure f for different security classes; the appropriate version is
then selected at the time f is linked to the calling program. This is
analogous to the GENERIC procedure in PL/I [IBT1] which operates on
different data types (i.e., integer, real, etc.).

Another solution restricts the procedure f so that the output
parameters are derived entirely form the input parameters and data
belonging to the lowest security class L (e.g., constants). If f is
known to satisfy this property, then security can be established com-

(’» pletely at compile-time by verifying

2 ®...0a *Db) 8 ...0D
(see Figure 3.6-2). An interesting special case of such procedures is
the "function" type procedure (SQRT, SIN, LOG, eic.). Here a procedure
f is called during expression evaluation (by a call f(al,... ,am)) and
returns with a single result, derived entirely from the input parameters
8150 e 5y and constants. Since there are no .output parameters, there
are no side effects and no implicit flows. Figure 3.6-2 also shows
syntax and certification semantics for such function calls.

Consider now the case where the procedure f writes into objects
21,..+,2, that are global or have a "lifetime" exceeding the activation
of f. For example, f could be a “"monitor" procedure for controlling

access to a shared message buffer [HoTh]. To guerantee the secure
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execution of f, it is now necessary to also verify implicit flows to
275+ 5% that result when a call to f is conditioned on one or more
expressions El,u. ,Er. This can be done at the time f is linked to the
calling procedure as follows. Associate with the procedure f an addi-
tional formal parameter z, where z = z; 8 ... @ z, and with the call
to f an additional actual parameter &, where £ =£; 6 ... 8 _E_r The

linking mechanism then verifies that g - z.

3.7 Applications

The ebility to certify programs snd procedures for security using
the methods of this chapter resolves several open questions about infor-
mation security. It implies that it is possible to prevent leakage on
many of the so-called "covert channels". It implies that the selective
confinement problem has a solution. It implies that it is possible to
design processes that can process confidential files, but cannot output
information giving correlations between these files. It implies that
data base query programs having security clearances can be properly
designed. What is most important, all of the above can be handle? with
a simple, automatic certification procedure. These points are developed

in the following subsections.

3.7.1 Covert Channels

The mechanism we have proposed will prevent leakage on any "stored
information channel". By this we mean that if a process q is not per-
mitted access to information in some class A, then q will be unable to
obtein information in A by examining the contents of some storage

object. ‘"This implies that it is possible to prevent leaskage on many
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{ "covert channels". For example, a process p would not be able to leak
a confidential value x by opening x files 8 aeeesBy under the observa-
tion of a process g not authorized to see x (i.e., x4 q). To see why
this is 50, let b; denote the "state variable" associatied with file a3
that is, bi indicates whether or not a; has been opened for reading or
writing, etc.. We assume that 8 = ‘_n_i. If the certification mechanism
certifies p, it must be true that x » by (1 <1 < x), since the value of
each bi depends on the value of x. But then q will not be zble to
access these variables as a means for determining the value of x unless
b * g and, therefore, x * q.

Of course this does not prevent p from leaking the valiue of x to
q if p can alter the performence of the system in a way that is observ-

able to g but not to a "security monitor". This is still en open prob-

lem.

3.7.2 Confinement

Lampson defines the confinement problem toc be that of constraining
a "service process" so that it cannot leak confidential information
about & "customer process" [La73]. He outlines a solution to the prob-
lem that constrains the service process from retaining any information,
confidential or not, after it ceases to operate on behalf of the cus-
tomer process. This is also true of the solutions proposed in [AnTk,
JoT73]. For this reason, the confined service process is referred to as
"memoryless".

A more flexible solution to the problem would be to permit a con-
fined service process to save non-confidential informetion in global

variables and files. For example, a confined income tax computing
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scrvice could then save address and billing information on its use by
customers, though not information on its customers' incomes. Schroeder
has svggested that a solution to this problem may be possible with a
mechanism for certifying the process to be confined [ScT2]. We now
show how this can be done with the mechanism proposed in this chapter.
(Fenton also shows how this problem can be solved with his run-time
mechanism [FeThal).

Let q(XN, XC; YN, YC) be a service process, where XN and XC are
sets of input parameters for receiving non-confidential and confi-
dentiel data respectively and YN and YC are sets of output paremeters
for returning non-confidential and confidential results respectively
(XN, XC, YN, YC may contain single data elements, ccmplex dabta struc-
tures; or files). Also let the information class of non-confidential
data be A and that of confidential data be B (i.e., x € XN => x = A and
X € XC=>x-= B), where A * B but not B+ A. Then q is guaranteed to
not 1e$.k confidential information about a customer p if it is secure
and does not write into any global varisbles or files in a class C such
that B > C. (We will assume its local memory is cleared and deleted
when it terminates.) The methods of this chapter show that a compiler
can certify q not only for security but also for confinement. Note
that q may invoke other procedures, as long as they are also certifierl
for confinement, and that the linkage to such procedures can be guar-
anteed secure.

‘he mechenism is also applicable to a more general case in which
there may be more than two class of confidential information and the

prcblem is to constrain & service process from leaking data belonging
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to some of these classes. Here we let q(Xy,e..,X;3 Yp,ees ,Yn) be a

service process, where xl,...,xn are sets of input parameters for
receiving data in classes LSETREEY. W respectively and Yl,. «o5Y, are sets
of output parameters for returning results in classes Al"' .,l\71 respec-
tively. Suppose that q is not permitted to leak data belonging to some
set Z of classes (Z does not necessarily have to be a subset of
(Al,... »Ay}). Then q may be certified for confinement if it is estab-
lished that q is secure and does not write into any global variables or
files in a class B such that ©2Z - B.

A problem where this more general confinement mechanism is useful
is that of constraining a service process from leaking any information
that links information in two classes Al and A2 together (i.e., infor-

mation derived from data in both Al and AZ) while permitting it to re-

[

tein information in classes A; and A, separately. This can be &achieved
by letting Z = {A; © A2}, so that the confined process cannot write into
any class B such that A A2 + B. TFor example, A; may contain a list

of names and Ay a list of salaries. A confined service process, such as

the above, would be able to process data in both Al and A, but it would

2?
not be allowed to output information that associated names with sala-
ries. The utility of this, in solving the usually vexing problems of
preventing outputs resulting from cross-correlations of files in data

banks, is obvious.

3.7.3 Date Bases and Data Banks

Suppose a system (or network of systems) has a large data base

containing different classes of informetion aoout individuals. For
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example, one class may contain employment records, a second health
records, a third credit reports, a fourth criminal records, and so forth
forth. We assume that all access to the data base is restricted to a
set of procedures P, so that if a process q requires information from
the data base, it must issue a query that in turn invokes e procedure

p € P, Now, suppose that associated with q is a clearance level, g,

meaning that q is not permitted access to informatior in class A unless
A>gq (see Section 2.4.1). To guarantee the security of the system,
it is therefore necessary to prove that no response r returned to q is
derived from information in classes Aj,...,A, unless Ay & ... & Ay +g.
Clearly, this property is guaranteed to hold as long as each p € P is
certified secure. The significance of this result must not be over-
looked — it says that we caen guarantes the security of the system.

We do not claim our mechanism is sufficient to handle all of the
security requirements of a data base system. For example, it dces not
appear to be applicable to certain "data dependent" access requirements
where access to a datum (e.g., the SALARY field of an employee's record)
may depend on the value of the datum (e.g., SALARY < 10000). See
[CHTS ,CMT72,HfT71,TsTh] for a general discussion of the security require-
ments of data base systems. Future research is needed to determine the

applicability of our mechanism to these systems.
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PROGRAM CERTIFICATION UNDER DYNAMIC BINDING

Chapter 4

In Section 2.4.5 we examined the security requirements of a multi-
class system with dynamic binding of objects to security classes. We
observed that this type of system requires both a run-time mechenism
that dynamically updates security classes and a compile-time mechenism
that inserts special code into a program (so that all impiicit flows are
accounted for) and certifies the secure execution of the transformed
program. The purpose of this chapter is to describe these mechanisms.

As in the previous chapter, we restrict attention to highly struc-
tured programs (even for which, as will be seen, certification is not
easy). Define a progrem (or statement) ¢ recursively by:

1. ¢ is an assignment statement "b := f(al,...,ah)", where

f(al,. .. ,e,ﬂ) denotes an wxpression with operends 81508y

2, ¢ is a compound statement (or concatenation)

"begin ¢;...;0, end", where ¢;,...,&, are progrems.

3. ¢ is a selection statement "if e then ¢; [else 051", where e

is a Boolean variable and ¢, and 02 are programs.

L. ¢ is an iteration statement "while e do ¢,", vhere e is a

Boolcan varisble and 01 is a program.
No generality is lost by restricting the "e" in selection and iter-

ation statements to a Boolean varieble, since "if £ then ¢, else @,
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(vhere £ is an expression) is equivalent to "begin e := &; if e then 'bl

else ¢ end" end "while £ do ¢;" is equivalent to "begin e := £;

vhile e do begin ¢1; e := £ end end". Likewise, no generality is lost

by excluding a case statement, for statement, or repeat-until statement:
a case statement can be transformed into a sequence of nested if-then-
else statements; for statements and repeat-until statements can be
transformed into while-do statements. (For example, the statement
"repest 9 watil e" is equivalent to "begin #1; while e do #; end".)

A given statement ¢ of a program is said to be at nesting level k
(k > 0) if it is textually enclosed by k selection or iteration state-
ments. DNote that if a program ¢ is at nesting level k, then execution
of ¢ is conditioned on the values of exactly k Beolean variables, and
all implicit flows to varisbles assigned values in ¢ occur from these

{' k Boolean variables.

The hardware support is described in Section 4.1, Tt consists of
tags for dynamically binding objeets to security classes and a stack for
storing the classes of Boolean varisbles. Each register of the machine
contains a tag field that holds the class of the information stored in
it. Immediately prior to execution of a statement ¢ at nesting level k,
the stack cortains the classes of the k Boolean variebles on which the
execution of ¢ is conditioned. A special hardware mechanism updates the
tag field of a register receiving a result, using the tag field of the
input operands (explicit flows) end the classes on the stack (implicit
flows) to derive the new teg setting.

The software support is described in Section 4.2. It consists of

& compile-time procedure (called "Algorithm T1") that transforms & given
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program into a secure sequence of. instructions for the hardwsre. This
is done by inserting update instructions into the program. These
instructions cause the tag field of a register receiving an implicit
flow from a Boolean verisble tc be updated even if no explicit assign-
ment is made to the register. Algorithm T is easily incorporated into
the analysis phase of a compiler and does not substmtially_incz-ease
the compilation time of a program. However, it may substantially
increase its execution time (because of the update instructions).

The run-time inefficiencies wrought by Algorithm Tl lead us in
Section 4.3 to investigate a more sophisticated transformation pro-
cedure ("Algorithm T2") that analyzes the flow of information through a
program and generates update instrictions only where security cannot
otherwise be guarenteed. This works as follows. Beginning with assump-
tions about the initial classes of the input garameters of the program,
Algorithm T2 simulates information flow as it will occur during program
execution until it is able to determine upper and lower bounds on the
class of each varisble after each statement is executed. It theu
inserts an update instruction into any statement which can cause an
implicit flow from a Boolean varisble e to a variable b and the bounds
on ¢ and b are such that ¢ + b is not otherwise guaranteed to hold.

In this case, run-time support is necessary to verify the correctness
of the initial classes of the input variebles when the program is
entered, Algorithm T2 hes the adventage of adding a smaller factor to
the time and space requirements of a program (indeed, it may not be
necessary to generate any update instructions at all) but the disad-

vantage of being considerably more complex.
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In Section h.k we consider poscit extensions to the mechanism for

supporting files, arrays, procedures, interrupts, st= binding, end

& proposed verify statement. Files and arrays are easily handled

minor modifications to the hardware and software mechenisms. Procedures
are also easily handled provided they do not reference global variables.
Interrupts are more difficult, however, since the possibilivy of an
interrupt must be considered during the transformation of a program.
Support for objects that are statically bound is easily added, so that
the mechanism is applicable to progrems which reference both statically
bound and dynamically bound variables. The proposed verify statement is
2 language extension allowing greater flexibility in the specification
of the initial classes of ihie input parameters (for Algorithm T2).
Although useful, this feature greatly complicates the implementation of

T2. Further investigation is needed to determine its feasibility.

4.1 Hardware Mechanism

Under dynemic binding we need an efficient mechanism for obtaining
and updating the security class of an object. This cbjective is
achieved with a tagged architecture [Fu73] that includes tags, & stack,
and a class updating mechenism.

With each register u there is associated a tag field whose contents
identify the security class bound to u — i.e., the value of the function
tag(u) described in Section 2.1. For an object a stored in location

loc(a), we shall employ the ususl notation

'a" to denote the tag field
of loc(a) end simply "a" to denote its valuc field. Tags are associ-

ated with both arithmetic and storage registers.
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A hardware stack HS is used for saving and restoring the classes
of Booleen variables. As noted earlier, a statement ¢ at nesting depth
k is conditioned on the values of k Boolean varisbles €105y (unless
k = 0), and informetion flows from these variables to any variable b

assigned a value in ¢. Rather than storing *he classes 8ys. -+ 8y Sepa-

rately in HS, it is convenieati tc initialize HS with & =1L (the lowest
class) and place & 8 ... 0 e at stack position i (G < i < k), so that
the top of the stack is the least upper bound of {gl,... ,gkl . This is
done as follows. Denote by HS the class on the top of HS, and let
push(e) be an operation which computes HS ® e and adds this to the stack.
(To an observer, this has the effect of setting HS := HS & e.) After
@1,...,8 have been pushed onto HS, HS = e ® ... ® g. Isis then
possible to update the class of the variasble b to reflect the implicit
flows from O ERREE LN to b by performing the single operation b := b ® HS.
The operation pop removes and discards the value on top of HS. (To an
observer, this has the effect of restoring HS to the value it had prior
to the corresponding push operation. )

The push and pop operations are to be performed when (and only
when) a selection or iteration statement is executed as follows:
Statement Execution

if e then o [else ,] push(e); if e then 97 [else 152]; pop.

vhile e do ¢ push(e); while e do begin 4,3 pop; push(e) end
pelei:

For the present we leave unspecified how the push and pop operations are
associated with these statements; in the next section we shall show how

this can be done with a software mechanism.
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{ Assume HS = A immediately prior to the execution of a program ¢.
It is easily verified from the specifications above and the definition

of a program that the following propositions hold:

Proposition b.1-1. HS = A immediately after execution of ¢ (since

selection and iteration statements both restore HS on termination).

Proposition 4.1-2. A + HS during execution of ¢ (since the operation
push(e) sets HS := HS 6 e).

Proposition 4.1-3. If ¢ = "begin ®3++.30, end”, then HS = A immedi-

ately before and after execution of eack LA (1<i<m).

Proposition b.1-k. Tf & = "if e then ®, [else ¢,]", then HS = A ® ¢
immediately before and after execution of &) [or ;). Furthermore,

cince ¢ > A ® e, e > HS during execution of & [or ‘1’2]-

Proposition 4.1-5. If ¢ = 'while e do ¢,", then HS = A & & immedi-~

ately before and after execution of ¢, on the i®M iteration, where g_i

is the class of e on the itl iteration. Furthermore, since gi +A® g_i,
gi + BS Quring execution of ¢;. Since A & gi is popped from HS at the
2

end of the ith iteration, the size of HS is always k + 2 (where k is

the nesting depth of ¢) immediately before and after execution of al.
Proposition 4.1-6. A = L if ¢ is at nesting level O.

The class updating mechanism automaticaily updates the class of an
object b when an assignment statement ¢ = "b := f(al,-..,an)" is execu-
ted, using the classes of the operands and the top of the stack. Speci-

fically, it sets b i=g8) @ ... @ &, © HS.
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i As an illustration of how this can be done, suppose the statement
"a i=b ¥ ¢ + d" is translated into the following code for a single
accummulator machine:

LOAD b

MULT ¢

ADD 4a

ST0 a
Letting ACC denote the accwmulator, the hardware would be designed to
perform the following operations for each instruction:

Instruction  Operation on Data Operation on Tags

LOAD b ACC := b
MULT ¢ ACC := ACC # ¢ HS
ADD 4 ACC ACC + d HS

STO0 a a = ACC

It is especially important to note that the used at every
step to update tags. This insures that implicit flows are properly
accounted for when new values are produced.

Given an assignment statement ¢ = "b := f(al,...,an)", the update
operation "p := 2) ® ... 8a ©HS" clearly has the effect of setting b
to be at least as great as the classes of all variables thet explicitly
flow into b. That it also sets Db to be at least as great as the classes
of all veriables that implicitly flow into b has been suggested earlier
and will be established rigorously below by Theorem b.1-1, which states
that HS is the least upper bound of the classes of all valuss on which
¢ is conditioned. To prove the theorem, we need the result of the fol-

lowing lemma which states that for an iteration "while e do @l", e can

only increase from cne iteration to the next.
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% Lemma 4.1-1. Consider the execution of an iteration statement ¢ =
‘while e do ¢,". 1If el is the class of e immediately prior to the iR
iteration of ¢y (i > 1), then ¢i~1 + el (1 5> 1),

proof. By Proposition 4.1-5, gi"l + HS during the (i-1)5% iterae-

tion of @1. We then have

{gi"l if e is not assigned a value on the (i-1)St iteration,

1818 ... ® g, ®A if the last assignment to e on the

(i-1)5% iterstion associated with e some value
£(al,...,8p) when HS = A.

But el » 4, so that &3 » &l
Theorem 4.1-1. Consider the execubtion of a program, and let ¢ be the

next statement to be executed. Let E(®) be the set of values on vhich

thy

@

execution of ¢ is conditioned. Then HS = E(9) immediately before

and after execution of &, where

=

fe | ecE(0) irE(Q) #¢
E(s) =

L otherwise
proof. If ¢ is a member of a sequence "begin L . end"
(vhere m = 1 implies that begin and end need not be present),

E(¢) = E(21); and by Proposition k.1-3, HS = E(¢9) prior to execu-

ting ¢ if and only if HS = E-Qi-) prior to executing 4’1. Therefore
we may assume without loss of generality thet ¢ is the first mem-
ber of a sequence,

Now, if the nesting level k of ¢ is 0, the initial conditions
imply E(¢) = ¢ and HS = L (by Proposition 4.1-6), so that the
theorem holds. As an induction hypothesis, assume the theorem

holds for ¢ at nesting levels k < K and consider ¢ at level K.
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There are two .possibilities. First, suppose there is a statement

4

@' = "if e then 0, [else 02]‘, where @ is the first member of
sequence ¢; [or @], élearly E(9) = B(¢') U {e}. Since ¢' is at
nesting level K-1, the induction hypothesis implies HS = E(9')
prior to executing #'. Since HS ® e is pushed onto the stack HS
before executing ¢; [or &PZ], we have

E(@) = E(@')V {fe} = E(0') 8 e =HS ® e

as required. Second, suppose there is a statement ¢' = "while e do

th

91", where ¢ is the first member of sequence ). At the r'? itera-

tion,
2(6) = E(¢') U {el,...,el,...,eT}

(since execution of each iteration is conditioned on the preceding),

2

vwhere e' is the value of e prior to the ith iteration. Whence,

E(9) =E(e) oc o ... 0"

By Lemma 4.1-1, el > ¢l (1< i < 1) so that el @ ... 8 ¥ = eT.
By Proposition 4.1-5, HS & e will be on the stack just prior to
the rth iteraticn; and by induction HS = E(¢'), so that

E(e) =

=

(0') 6 ¥ =HS @ F

as required.

Figure )-6‘. 1-1 illustrates the operation of the hardware mechanism
by tracing the execution of the insecure program cited in Section 2.4.5.
The two traces shown illustrate the claim made earlier, that b = a on
termination of the program , while b =L even though a = H (hence,
a# b as required). This program demonstrates that the hardware mech-
anism is insufficient to guarantee security, and that a software mech-

anism is required.
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4.2 Software Mechanism

The hardware mechanism outli;xed in the previous section is not suf-
ficient to guerantee security since an implicit flow from a Boolean
varisble e to a variable b can occur in the absence of any explicit flow
to b (b is updated only when an explicit assignment is made, but e flows
implicitly to b even when the statements assigning values to b are not
executed). In general, this may occur during execution of a selection
statement, "if e thﬁ@l lelse (92]", if there is an assignment state-
ment "b := f(ay,...,a,)" in &; [or ®5] and that statement is not execu-
ted. This mey also occur during execution of an iteration statement,
"vhile e do #,", if there is en assignment statement "b := £(ay,. cosay)"
in ¢, since no statement in °l is executed after the final evaluation
of e (which necessarily leaves e = false).

This problem can be solved with a compile-time mechanism that
inserts into the compiled code an operation "update b", having the
effect

b :=D e &S,
at all locations where an assignment to b is conditioned on one or more
Boolean variables SEXEERLN (recall from Theorem 4.1-1 that S =
& ® ... @pg at that time). Then all implicit flow to b is guaranteed
secure irrespective of whether or not the assignment statement is
executed. The mechanism also inserts into the compiled code ell neces-
sary push and pop instructions.

Rather than show the details of the compilation process, we have
expressed the mechanism as a high level recursive procedure T1(¢, V)

which transforms an arbitrary program ¢ into an equivalent secure one
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by inserting all necessary push, Pop, and update instructions (see

Figure L.2-1). The parameter V returns the set of varisbles that
appeer on the left side of assignment statements in & (i.e., Vis
equivalent to the set V(?) introduccd in Scction 2.%.% and referenced
in Chapter 3); it is used to generate update instructions. (We have
written update X to denote a sequence of update instructions, one for
each member of the set X.) The languege used to express Tl resembles
PASCAL [Wr71] and includes the types "progrem" and *varieble"; their
use should be clear in Figure L.2-1. The initial call to T1 is T1(¢,V)
where ¢ is an entire program. T1 returns the transformed (secure) pro-
gram in ¢ and the set of variables that appear on the left side of
assignment statements in V. Update instructions are generated as needed
for elements of V (the proof that this is done correctly is given

below).

{

Figure 4.2-2 (a) shows the results of the transformation when T1
is applied to the sample program of Figure 4.1-1. The reader may
easily verify that the update instructions cause b to be identical to
2 on termination of the program, whereupon the "leak" hes been plugged.
Figure 4.2-2 (b) siows an equivalent program, where the same leak 2en

occur using iteration statements; in this case also, the transformed

program is secure.

Theorem 4.2-1. Let ¢ be a given program. After execution of &
T1(9,V) the following will be tiue:
1)  V will be the set of all veriobles appearing on the left side

of assignment statements in ¢; and
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La' T1: procedure (¢: program, V: powerset variable);

V1, V5: poverset variable;
is integer;

do case ¢ of

£la1,.0.,an)": {Assignment}
¢ = "begin ®3;...;05 end": {Concatenation}
begin
V= @
for i := 1 to m do begin
TT(en)y

V:=VUV] end

?5]": {Selection}

1
if 4’ # (6 then T1(%,Vp) else Vo := @

\7— v v "2'
] 'begin  push(e); if e then °], [else 2513
update V - V3 n Vp; pop end'
e end;
~ ¢ = "while e do @": {Iteration}
egin
T1(%,

V)3
¢ := "begin push(e); while e do begin Ql, pop; push(e) end
update V; pop end”
end

endcase

end T1

Figure U.2-1. Transformation Algorithm TL.
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Insecure Source Programs Trensformed Secure Program
a) begin begin

b = 03 ° 03

c := 03 c 0

e := (a=0); e (a=0);

if e then ¢ := 1; begin push(e); if e then ¢ := 13
ugdate €3 Pop end,

e = (c=0); (c =03

if e then b := 1 beﬁ:m push(e); if e then b := 13
update b; pop end

end end
) begin

b :=0;

c := 03

e := (a=0); =0);

vwhile e do begin begin push(e);

c :=1; e := false end whlle e do begin begin ¢ := 13
e false end; pop; pus! (e) end;

upda’ce c, ej uﬂd_

e :=(c=0); e = (c=0);

while e do begin begin pus! sh(e);

b :=1; e := false end w}ule e do begin begin b := 13
e := false end; pop; push(e) end;
npdate b, e; pop end
end end

Figure 4.2-2. Trensformation of Insecure Programs.
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2) ¢ will be secure. 3Specifically, all necessary push, pop, and
update instructions will have been inserted into ¢ so that
after any execution of ¢, HS + b will hold for all variables
b € V. Therefore, if @ is conditioned on Boolean variables
€500 €y €5 TR (1< i <k)is guaranteed to hold for all
b €V (since HS = e ® ... ® g on entry to ¢ by Theorem
4,1-1). Moreover, if ¢ is a selection or iteration statement
with Boolean variable e, HS & ¢ » b will hold for ell b e V.

proof. Define the "structure index" d of a program to be the

number of concatenation, selection, and iterastion structure opera-
tions used to construct it. We proceed by induction on the value

d of o.

BASIS {d=0): In this case ¢ is an assignment "b := f(al,...,an)".

On termination, T1 leaves ¢ unchanged and V = {b}. Since the

hardware updating mechanism guarantees that HS - b after the

assignment is performed, Tl correctly processes &.

INDUCTION: ILet ¢ have structure index d = D and suppose the

theorem holds for d < D. There are three cases.

i) @ = "begin ®73...3% end". In this case, Tl may be assumed
begin @5

™

to correctly process &; (1<1i < m), since 9; has structure
index d; < D. By Proposition 4.1-3, if HS = A prior to exe-
cution of ¢, then HS = A prior to execution of each ¢i.

Therefore, for b e Vy (where Vi is just the set of veriables
assigned values in ﬂ’i), HS + b will hold after execution of
wi.. Hence, for b ¢ V] U ... VU ¥y, HS + b will hold after

execution of @. Since Tl réturns V=V, U ... UVy and no
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{ push, pop, or updaite instructions need be inserted into ¢,

T1 correctly processes &.

ii) ¢ ="ife then 97 [else ¢5]". In this case, T1 may be assumed
to correctly process ¢4 {and 0)2] since 9; and L2 have d; < D
and d, < D. Therefore V = ViU Vo. The transformed progrem
is "begin push(e); if e then 2, [else 9,]; update V - V; N Vp:
pop end". Therefore, if ¢, is executed, then for b € Vq,

HS ® e + b will hold after execution of @l; if '1’2 is executed,
‘then for b € V,, HS ® b + b will hold after execution of V,-
Hence, the update instruction guarantees that for b e V,

HS + HS & e + b will hold after execution of ¢, irrespective
of whether or not &, [or 'Pa] is executed.

iii) ¢ = "vhile e do ¢,". In this case, Tl may be assumed to
correctly process &) since dy < D. Therefore V = V;. The
transformed program is "begin push(e); while e do begin 973
pop; push(e) end; update V; pop end". 1In this case it is
trivially true that for b e ¥, HS + HS ® e + b will hold
after execution of &, since the class of each b ¢ V is updated

by the update instructicn.

The reader may have wondered if insertion of push and pop instruc-
tions is necessary. If the hardware is designed to automatically push
the stack on execution of any conditional branch, there wiil be no need
Tor the compiler to insert push instructions into the compiled code. To

see this, consider the trauuslation of selection and iteration state-

ments. Assume that Boolesn false is represented internally by O and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



135

{ true by any non-zero value. Let B be ar unconditional branch instruc-
tion and BZ a braach on zerc imstruction. The translation of selection
and iteration statements into code for a machine with a single accummu-

lator (ACC) is:

a) begig push(e); if e then ¢y else ¢,; update V - Vy N Vo3 pop
en

LOAD e
PUSH
BZ Il
code for ¢;
B L2
L1 code for 9p
L2 code for update

FOP
b) begin push(e); while e do begin ¢,; pop; push(e) end; update V;
2op end
L1 LOAD e
PUSH
BZ L2
code for ¢
POP
B L1
L2 code for vpdate
POoP

The PUSH instruction pushes HS ® ACC ontc the stack. Since no other
statement types generate conditionsl branch instructions, it is cleer
from the above that the PUSH operation can “e performed automatically
when the BZ instruction is executed. Note, however, that the compiler
must still generate code for the POP operetion, since there is no
instruction analogous to the BZ instruction that is always paired with
POP.

Heresfter, we will assume without loss of generality that the
operation push(e) is performed sutematically and adopt the simpler

forms for transformed iteration and selectior. stabtements:
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begin if e then ¢, [else ¢,]; update V - V1 0 Vo3 pop end

¢4

begin vhile e do begin &3 pop end; update V; pop. end

The mechanism outlined sbove may substantially increasc the time
and space requirements of a program. For example, the progrsm

if el

then if e2 then & := 0 else b := 0
else ¢ := 0

would be transformed into

begin
if el
then begin if €2 then a := 0 else b := 0; update a, b; pop end
else c := 0
update a, b, cj
bop.
end

Execution of the transformed program results in as many as five update

operations being performed, when only onc assignment operation is per-

N

formed. Furthermore, none of the update operations need be performed
at all if el = e2 = L (since they will have no effect). The software
mechenism introduced in the next section provides a means for elimi-

nating some (or all) of the update operations when they are not required.

4.3 Software Mechanism for Selective Updating

The mechanism of this section improves on the onme of the previous
section in two ways: it generates fewer update instructions, and it
permits the programmer to declare initial classes for input perameters.
Again, our approach is to describe an algorithm that transforms a given
program into a secure one.

The syntax of PASCAL is convenient for declaring initial classes

for input paremeters. For example.
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2rocegure 7

f: procedure (x: integer of class A, y: integer of class L; z: integer)

specifies initial class of A and L for formal input parameters x and

¥ respectively. A run~time check must verify the classes of the actual
parameters. Thus, if f is invoked by an operation "call f(a, b, )",
the run-time mechanism would check that & = A end b = B before calling
f.

The transformation algorithm T2 accepts a program ¢ as input,
transforms ¢ into a secure program, and then returans the set V of vari-
ables to which statements of ¢ assign values. It also returns tables,
denoted & and h, specifying the lowest and highest possible classes
for each variable. In particular, if %[a] and h[a] are the lowest
and highest classes of variable a before T2 processes &, then 4[a] and
hla] will be updated by T2 so that they represent the lowest and highest
possible classes of a after an execution of ¢, The initial call on T2
for a program ¢ is of the form T2(¢, V, %, h), where % and h are
initialized as follows: if a is an input variable of declared class A,
then 2[a] = h[a] = A; otherwise #[a] = L and h[a] = H. Algorithm T2 is
given in Figure L.3-1.

For each call, T2 simulates information flow during possible exe-
cutions of the program ¢ until bounds on the classes of all variables
are uniquely determined. This is done by simulating the effect of ¢ on
the machine's stack and the classes of all varisbles. A globaJ: varizble
S8 ("software stack") is used by T2 to represent the hardware stack HS,
but with one difference: SS contains pairs of classes corresponding to

the lowest and highest classes that could be pushed onto HS during an
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T2: procedure (¢: program; V: powerset variable;
%, h: array [varieble] of class);

Vi, V2: powerset variable;

21, %2, h1, hp: errsy [variable] of class;

i: integer;

change: boolean;

UPDATE: procedure (X, Y: powerset varisble);
b

Y:={beX]|ssh+ep

]
for all beY do begin &[b] := &[b] ® 55.%; h[b] := h[b] © SS.h end

end UPDATE;

do case ¢ of {Assignment, Concatenation, Selection, Iteration}

¢ ="b := flag,...,an)": {Assignment}

¢ = "begin 913...30y end": {Concatenation}
begin
Vo= ¢;
for i :=1 tomdo
begin
12(05, V1, £, h);
V= VUV
end
end;

Figure b4.3-1., Transformstion Algorithm T2.
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p 9= 1f e then 8, [else 921" or {Selection}
"i "oegin if e then @7 [else ¢2]; update U pop end":

1, L2 := &3 hj, hp := hy
2015 vy, t1, h1);

if 92 # § then T2(%p, Vp, %2, hp) else Vs := g
Ti=vyu T,

for all b e Vdo

e in
2[b] := 21[b] © 22[b];
h[b] := h1[b] ® ho[b]

end;
UPDATE\V vin Vo, U);
POP
'begin if e then ¢; [else ¢2]; update U; pop end"
end;
¢ = whlle e do 97" or {Iteration}
qs

"begin while e do begin ®1; pop end; update U; pop end'

begi
21 :=2%; ny :=h;
repeat
. begin
L PUSH(e); V := 83
T2(¢1, V> 23, hy);
for all b € V do
begin
if h[b] # n[v] 6 n 1[b] then
begin hb] := h[b] ® hy[b]; change := true end;
if 2[b] # 2{b] ® £1[b] then
begin &[] := &[b] & 27[b]; change := true end
end;
POP; PUSH(e)
end
until — change;
UPDATE(V, U);
POP;
¢ := "begin while e do begin ®1; pop end; update U; pop end"
end -
endcase
end T2
Figure 4.3-1, .unt.
-~
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execution of ¢. Denoting by SS.% and SS.h the lowest and highest pair

on top of SS, the function PUSH(e) pushes (SS.2 ® 2[e], SS.h @ hlel)
onte SS. Corresponding, POP removes the top pair from SS and discards
it. The main complication of the simulation process occurs for itera-
tion statements, ¢ = "while e do ¢;". For such a statement, the value
of ¢ (and thus HS) may increase from one iteration to thke next. There-
fore, & program ¢ already transformed by T2 msy require reprocessing
to guarantee all variables in need of updating have been detected.
Such reprocessing will terminate as soon as the £ and h tables have
the same values before and after processing an iteration statement —
that is, as soon as the values of % and h "stabilize".

The details of the operation of T2 are explained fully by the

following theorem which establishes its correctness.

Theorem 4.3-1. Let @, 2, h, and SS be given such that prior to any

execution of ¢

2[a] + a ~ hla] for each varisble a of ¢, and

§5.4 - HS + SS.h.

After execution of a call T2(%, V, £, h) the following will be true:

1) V will be the set of all variables appearing on the left side
of assignment statements in ¢;

2) ¢ will be secure; that is, all necessary push, pop, and update
operations will have been inserted into ¢ so that after any
execution of ¢, HS + b will hold for all b ¢ V. Gherefore, if
¢ is conditioned on Boolean variebles €50 0058k, €5 * B
(1 <1< k) is guaranteed to hold for all b e V (since

4 HS =e) & ... & g¢ on entry to ¢ by Theorem 4.1-1). Moreover,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[

)

1kl

if ¢ is a-selection or iteration statement with Boolean
variable e, HS ® e + b will hold for all b ¢ V.

3) % and h will be vvpdated by T2 so that after any execution
of ¢

2[a] + a > h[a] for all variables a of 9.

Proof. The proof is by induction on the "structure index" d of 9,

as in Theorem 4.2-1,

BASIS {d = 0): 1In this case ® = "b

£(a1,0.0,8y)", and V = {b}.
The hardware guarantees that b = 2) © ... 0 8, 6 HS after an exe-
cution of ¢, so that HS + b is guaranteed to hold. Since 88.4 >

HS » 88.h and 2[a;] > a; + hla;] (1 < 1 < n) prior to an execution
of ¢, the lattice properties (see Section 2.3) imply that 2[b] =

a0 ... 6 4[a;]1 8 5.4 > b > hla;] 8 ... 8 hlay) ® 55.h = n[b]
after an execution of ¢, esteblishing the correctness of the % and

h tabies returned by T2.

INDUCTION: Let ¢ have structure index d = D, and assume T2 catis=-

fies (1) - (3) for eny algorithm whose level is 4 < D. Ther: are

three possibilities.

i) ¢ = "begin ¢73...30; end®. In this case each ¢; has 4; < D,
So we may asswie that T2 transforms it correctly. Thereicre,
if 2[a)] + a + h[a] prior to an execution ¢’ o; (L<di<m),

[]

the call T2(4’i, Vi. &, h) properly updates the & and h tables

so that %{a] + a » h(a] after an execution of ¢;. Hence, the

% and h tables returned by T2 for ¢ ave correct. Moreover,
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q V=Y U ...U Vy vhen T2 completes processing ¢. ¥Finaelly,
the induction assumption guarantees that HS + b for b e Vi
(1 < i< m), vhereupon HS + b for all b e V (since HS is not
modified by begin-end statements).
ii) @ = "if e then ¢, [else ¢5]" or

¢ = "begin if e then 9; [else %p]; update U; pop end".

Since @) and ?, have dy< D and dp < D, the induction assump-
tion implies that %; and h; contain correct clas bounds after
T2 processes 91, and £, and hy contain correct class bounds
after T2 processes 9p. Since #; (or %) and %, and hy (or hp)
and h ¢z ditfer only for b e V3 v Vo,

2[b] = 29[b] 8 25[b] > b > hy[b] & hp[b] = hib]

must hold if either ¢ or ¢2 is executed, esteblishing the

[

correctness of the & and h tables returned by T2. Now, T2
correctly simvulates HS, so that SS.h @ h[e] is a correct upper
bound on HS @ e when UPDATE is called. Since UPDATE
generates an update instruction for any b e V - V1 0 Vz for
which S8.h & h[e] # &[b], this guarentees thet

H +~HS ® e ~55.h @ hfe] + 2[b] + b
will hold after an execution of ¢. (Note that, if b € V10 V2
the induction assumption implies that HS - HS ® e » b must
hold if either ¢; or ®p is executed; therefore update instruc-
tions will not be generated in this case, as for algorithm T1).
The call on UPDATE also correct the tables & and h to reflect
changes that can occur when en update instruction is exzecuted,
establishing the correctness of the & and h tables returned by

T2.
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1ii) ¢ = "while e do &" or

¢ = "begin while e do begin #;; pop end; update U; pop end".
Since ¢ had dj < D, the ianduction assumption implies that the
first call T2(9;, Vi, 29, hy) 1y @, There-
fore, if @l is executed (or iterated) at least once, the first
iteration of 01 is guaranteed secure, and for allb e V = vy,
21[6] b > hl[h] will hold after the execution of ¢;. Hence,
if ¢ is iterated exactly O or 1 times,
4b] 8 29[b] > b > n[b] 6 ny[b]

will hold after the execution of ¢, establishing the correct-
ness of the % and h tebles after T2 has processed 9; once.
Now, to determine bounds on b after m > O iterations of 93, it
is necessary to repeat this procedure until 2[b] and hlb]

{ stabilize; that is, until further calls to T2 yield bounds for
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41 end hj that fall between & and h. Clearly this process
must terminate after a finite number of steps, since A4[b] and
h[b] cannot change beyond L and H in a finite lattice. After
% and h have been stzbilized, the top of the stack S5 con-
tains the upper bound SS.h @ hle], where h(el is the (stabi-~
lized, maximal) class of e. The cell on UPDATE then guaran-
tees that updete instructions are generated for all b e V for
which 8S.h ® hle] # &[b], so that

HS +~ HS ® e + 55.h 6 hle] + 2[b] + b
will hold after, sn execution of ¢. The call on UFDATE also
corrects the £ and h tables to account for bcund changes

ceused by the update instructions.
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Figure 4.3-2 illustrates the result of applying Tl to a sample

program, and Figure 4.3-3 illustrates T2 applied to the same program.
In Figure 4.3-3 we have traced the simulation process showing the
changes to the outermost % and h tables and the stack SS. We assume
the classes A, B, and C are linearly related hy A » B + C. Note that
the body of the while statement requires two applications of T2 for
stabilization. T2 produces three less update instructions than T1
for this program.

The procf of Theorem %,3-1 suggests that the execution time of
T2 can be considershle in comparison with that of Tl. The following

theorem gives a bound on the most time consuming part of T2.

Theorem 4.3-2. Let ¢ be an iteration "while e do #;". Then

T72(¢, V, £, h) will complete after at most (6+1)lv| simulations of e,

s
~

where § is the maximum path length (i.e., depth) in the precedence graph

of the security class lattice, and IVI is the number of elements in V.
proof. As noted in the proof of Theorem 4.3-1, each simulation of
®1 can alter &[b] or h[b] for b € V only. Let 2®[b] and h™[v]

denote the value of &[b] and h[b] after the m'!

iteration. Since
#[b] = 2% 1[b] 8 2, [b] and wB[b] = W-1[b] & hy[v], ve nave
L+ 48] + g 1[b] > ...+ g2b] &
B:[o] +.. + % H[b] > n%[6] > B,
From this it is clear that for each b € V, £[b] and h[b] together

can assume at most & distinct classes, and %£[b] = h[b] is possible

for at most one class. Hence m < (5_,.1)“7].
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i Therefore, we shall make nc claims to the effect that T2 is effi-

cient! At this stage in our research, we are primarily interested in
the feasibility of performing such a transformetion, and so we have
sought a representation relatively easy to understand and prove correct.
Making an implementation of T2 practical is a matter for future study.
An investigation of the techniques used by compilers to analyze the
flow of data in a program for the purpose of code optimization (see, for
example, [A170,GiT1]) mey suggest some approaches.

It is iateresting that despite the complexity of T2, it cannot be
guaranteed to generate the minimal number of update instructions; that
is, it mey insert update instructions into a program that have no effect
when executed, independent of the values of the input parameters. This
could result, for example, by simulating the body of a while statement

Iy more times then it could ever execute, and thereby arriving at £ and h
bounds on a variable that are either too high or too low. Ancther way

in which this could result is illustrated by the following program:

where 2[a] = L, hla] = H, and $S.h = $5.% = L on entry to T2. After T2
processes the first two assignment statements, 2[b] = gle] = L and
h(b] = hle] = H. Therefore, when T2 processes the if Statement, it
pushes (L,H) onto S8. Since $5.h # #[b], it will generate an instruc-
tion "update b" to be executed on compistion of the if statement. How-
ever, this is unnecessary since b will be the same as g, and therefore

HS, for any execution of the program. This problem msy be solved with

[ a more complicated mechanism that keeps edditional information on the
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classes of the variables, but we leave this for future study. Here
again, the techniques used by optimizing compilers to analyze data flow

may prove applicable to this problem.

4.% Extensions

4.4.1 Files and 1I/0
Files and I/0 operstions are easily handled with minor extensions
to the basic hardware and software mechanisms. Within the tagged archi-

tecture, hardware tags can be associated with files (e.g., as part of

a file descriptor [Fu73]) just as with scalar variables. r a file a,
we let a denote the tag associated with a.

For an input statement:

input by,...,b, from a,
the class updating mechanism sets

by :=a®H (1<i<n)
For an output statement

output ay,...,ay L0 b,
the class updating mechanism sets

bi=b®a & ...88 6HS.
Note that in the case of output the prior class of b derives the new
class of b, because the contents of b are extended (rather than
replaced) to include 81300058y, The requisite modifications to the
certification algorithms Tl and T2 are straightforvard. For example,

update instructions must be generated for filee ss for scelar veriebles.
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q 4.b.2 Arrays

Although it is possible under dynamic binding to permit the ele-
ments of an array to be bound to different classes, this approach can
be rejected for at least two reasonz. First, the usual semantic deri-
nition of an array in programming languages requires all elements to be
of the same data type — e.g., in PASCAL

a: array [index] of type.

The same semantic reasons motivating this can be used to motivate uni-
formity of security classes within an array. Second, the implementation
of T2 would become hopelessly complex, for the % and h tables would
have to contain entries for each array element. We therefore require
arrays to be bound to a single class and assume that the tag of the
array is a component of the array descriptor. As usunel, the value of
the tag for erray « is denoted a.

Associate with array a the class variable ra, which is set to
contain the class of an array reference a[ij,. ..,in]; corresponding to
any such reference,

ra = a® i) &...041,.

The variable ra might be stored in the arrey descriptor and updated
sutomatically by hardware when an array element is addressed [FuT3].
Whenever a{il,... ,iy] appears on the left side of an assignment state-
ment, the hardware performs the operation

& := a®rabHS.

As in the case of files, a is updsted from a prior value of a, since the

array is being modified rather the.\n replaced.
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Extensions to T2 are simple in this case. Arrsy references must

be treated as outlined above.

L4.4.3 Procedure Calls

Let f(xl,. s XYy se e ,yn) be & procedure with formal input para-
meters Xj,...,Xp and formal output parameters yj,...,y,. Consider a
statement

call f(ay,..esay307,000,5bp),
where aj,...,ay are the actual input parsmeters and by,...,b, are the
actual output parameters. On entry to f, the run-time mechanism sets

% =a 6H (1<icm
and verifies that s; = A; if x; was declared to have initial class A;
in procedure f. On exit, the run-time mechanism sets

by =y 8BS (1 <3 <n).

As usual, if the call statement ic conditioned on the value of one or
more Boolean variables, it may be necessary to update some of the jb_j by
HS on completion of the conditional statement(s). As in Section 3.6,
for the moment we assume that procedure f does not write into ¢hjecis
thet ere global or have a "lifetime" exceeding the activation of f.

Although the modifications to Tl to allow procedure calls are
straightforward, those for T2 are more complex if T2 does not have
bounds for yj,...,f, when the cell statement is proces;ed (since it is
then unsble to determine the upper bounds for by,... ,by). The diffi-
culty is resolved in the restricted case where the output parameters are
derived entirely from the input parameters and data belonging to the

lovest class L. In this case, the bounds on by,...,b, are determined by
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% 2[by] := 5.2, end
nlby] :=hle;] ® ... ® hley) 6 S5.1 (1z 3¢ n).
Consider now the case where f writes into objects zj,...,2,
that are global or have a "Jifetime" cxceeding the activation of f.
There are two reasons why our present mechenism is inadequate %o deal
with this case. First, if £ writes into such objects and the call to £
is conditioned on Boolean varisbles €15..+,8k> Then 2j,.. ¢»Z, must be
updated by e o ... 8 &k even if the call is not executed. To do so
requires a considerably more complex mechanism than we have outlined
here. Second, if f writes into global objects, the & and h tables com-
puted by T2 for a program ¢ cannot be guaranteed to give lower and upper
bounds on the classes of all varisbles of ¢, vhence the execution of ¢
cannot be guaranteed secure. Clearly further research is needed te de~

(’ termine whether or not it is feasible to support global veriebles that

are bound dynamicelly,

L.k.b Interrupts
Following the approach taken in Section 3.k, we congider the

alternative whereby all interrupts are inhibited except those specified
by an on statement

¢=on cado 9,
where r names an interrupt conditien (e.g., overflow or end-file), a is
the variable to which it applies, and 97 is the statement to be invoked
when the interrupt occurs.

Since execution of 9) is conditioned on (some property of) verisble

@, the operation push(a) must be performed when ¢, is invoked (i.e.,
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vhen variable a causes an interrupt of type z) and pop must be performed

when ¢3 completes and returns. This guarantees that all objects
essigned velues in &) are automatically updated by a.

Just as with any other conditional structure, it is necessary to
insert update instructions into a program to account for implicit flows
caused by the ncncccurreuce of en interrupt. As an example, consider
the insecure program used earlier, modified to use on statements; it
copies a € {0,1} to b while preserving b = L even when a=H:

on overflow

x
on overflow y do
=13 ¢ =

H
x 03 := 03
X i= a'+ KiAXVALUE;
¥ := ¢ + MAXVALUE

do c :=

0
0

g

(=3

To eliminate the problem, the program must be modified as follows:

. on overflow x do ¢ := 03

( on overflow y do b := 03
- b 1; ¢ :=1;
X 0; y:=0

H 5
a + MAXVALUE; push(x); update c; pop;
¢ + MAXVALUE; Eush(y); update b; pop

¥
The example suggests what must be done to deal with the general
case. For ¢ = "on ¢ a do ¢,", the certification mechanism must process
2, and determine V; it must then identify all points in the progrem at
which "¢ a" can occur and insert there the sequence:
push(a); update Vi pop.
(Of course T2 can be used to reduce the update set V, but the principle
is the same.) This obviously poses a serious complicaticn for either
Tl or T2: these algorithms must now determine if any declared interrupt

can occur during tihe execution of each statement. At present, our

research has yielded little insight into this problem. A sclution to
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the dynamic binding cese will evidently depend on a viable solution to

the interrupt problem.

L.4.5 Static Binding

It is possible to extend the basic hardware and softwere mechanism to
guarantee the secure execution of a program that references some stati-
cally bound objects. Let N° aad pd denote, respectively, the statically
and dynamically bound objects. The hardware extensions include an
extension of the tag field of a register (or descriptor) for distin-
guishing objects in NS from those in N4. It also includes & modifice-

tion tc the class updating mechanism so that for en object a e ¥%, a is

not changed when information flows into a. It could also verify the
validity of the flow; however, this is unnccessary if we assume that
some certification program verifies that only valid flows into objects
of N° can occur.

Since algorithm T1 performs no information flow analysis, it is not
easily extended to handle the certification of flows into objects of ns.
On the other hand, only two modificstions to T2 ave needed. (See Figure
k.4-1.) They assume that for an object a € N°, an initia (fixed) class
is specified on the declaration for a, and that this class is assigned
to 2[a] and hla] (which remain constant). The first modification is to
the code for processing assignment statements "b := f(aj,...,an)". For
boe N° it is uecessary to verify the security of the explicit flow from
the expression to b. This is done by testing that the upper bound on
2 ® ... an © HS flows into b. The second modification alters the
UPDATE procedure rasponsible for guaranteeing the security of all

implicit flows thet arise from selection and iteration stetements. Here
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a) Revised Code for Processing Assignment Statements:

¢ ="o := flag,...,a )"

begin
if b e Nd
then
begin
L15] := 2lag]) 0 ... @ 2[a;] @ S5.2;
h[b] := hla)] & ... ® hay] ® 5S.h
end
else if hla;] @ ... @ hlay] ® 55.h +# 2[b] then

SECURITY ERROR;
Vi=tb
end
b) Revised Code for UPDATE Procedure:

UPDATE: procedure (X, Y: powerset variable);

Y :={bexnnd | ss.n+2lpl};
fo;ra_.lib €Y do
begin £[b] := 2[b] & 55.2; h[b] := n[b] & 55.h end;
ifbexn nxe | ss.h # Ceivl) # @ then SECURITY ERROR
end UPDATR

Figure h.h-1. Modifications to T2 to Support Static Binding.
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it is necessery to verify that the upper bound cia HS flows into b for
all b € N° that are assigned a value in the selection or iteration

statement under consideration.

4.h.6 Verify Statement
Consider the following

max: integer procedure i{x

if x > y then max :=
if z > max then max :=
end max.

Since the initial values for x, y, end z are not specified, T2 will
insert the instruction "updatc max" after the second if statement so
that z + max is guaranteed to hold when the program terminates (_)5* mex
and y - max will hold after any execution sequence). Clearly this is
not necessary if x = y = z irrespective of the value of x. However, our
present mechanism has no provision for specifying such a constraint
unless the value of x is known.

Generalizing, we see that the need for update instructions mey be
reduced, even when the precise initial classes of the input parameters
are unknown, if additional information is available about the flow
relations that hold on the classes of these variasbles. We propose that
such additional information be declared by means of a new statement

verify £j,... ,Ejn,
where each £; (1 < i < n)is a "class expression" specifying constraints
on the input classes. Figure 4,k-2 shows the syntax of this statement.
The operands of a class expression may be either "absolute" or "rela-

tive"; absolute operands reference specific security classes (e.g., L)
5 P
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<class op> ::= @ ] [}
= > | =

<flow op> :

<class factor> ::= <security class> | class ( <ident> )

<class term> ::= <class factor> | <class term> <class op> <class factor>
<class exp> ::= <class term> ] <class exp> <flow cp> <class term>

<verify list> ::= <class exp> [ <verify list> , <class exp>

<verify stmt> ::= verify <verify list>

Figure 4.4-2. Syntax of Verify Statement.
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and reletive operands reference the class of objects (e.g., class(a)).

Examples of verify statements are:

verify class(x) = cless(y) = class(z),

verify class(a) = L, class(») > B,

verify class(a) @ class(b) + class(c) =
The first of the sbove examples corresponds to a relation on classes
which, if true, obviates the need for the update instruction in the
earlier program.

The class expressions of & verify statement are evaluated on pro-
cedure entry, and execution of the procedure is conditioned on all con-
straints being satisfied. (It might also be possible to use a verify
statement to control entry to a block of statements, but we have not

explored this possibility.)
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needed to determine its viebility. Since precise classes are not known
for the input veriables, it is necessary to find an alternative method
for determining upper and lower bounds on the classes of all variables.
One possible approach would be to develop an "algebra" of class expres-—
sions. Here the entries in the % and h tebles would be class expres-
sions, and T2 would manipulate these entries according to the rules of
the algebra. For example, consider the following progrem:

S"Twl&——cii‘ii S )

sum = a +

end,

To compute £[sum], T2 would form the expression

tfal ® 2[] 8 55.4 = class(a) @ class(b) @ 55.%
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If 58.% = L initially, this would then be reduced to

class(b)

(since L - class(a) + class(b)). The computaticn of H[sum] would be

the same. We leave for future reseerch the task of determining the

feasibility of this approach (or some other).

4.5 Applications

The applicaticns discussed in Section 3.7 for static binding, such
- 8s the confinement problem, are also suitable for the mechanism proposed
in this chapter. In fact, more flexible solutions to these problems are
in principle possible since the security classes of all objects do not
have to be bound at compile-time. For instance, the compiler could
certify a progrem for confinement with respect to some of its input

parameters, without knowing their precise security classes (which could

C

vary from one call to the next). However, the increased flexibility may
be more than offset by the increased cost for the tagged architecture
and the more complex certification procedure. Further research is

required to resolve these matters.
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CONCLUSIONS

Chapter 5

5.1 Summayy

In Chapter 2 we developed a model of information flow consisting of
three components: an information flow structure specifying security
classes and valid flow paths between these classes, states defining
possible system configurations, and transition operators specifying
state changes. We defined a secure system to be one that did not permit
communication along invelid flow paths and showed theab security can be
obtained by keeping the system in a safe state. An investigation of the
mathematical properties of the model led Yo the conclusion that under
certain assumptions, justified by the semantics of the problem, the flow
structure forms a lattice. This result is significant in two respects:
1) it permits concise formulations of the security requirements of dif-
ferent systems and 2) it admits efficient implementation mechenisms. It
serves as a foundation for the results reported in this thesis.

We examined the security requirements of five inereasingiy complex
systems: 1) single-class, static binding, 2)single-class, dynamic bind-
ing, 3) single-cless, static and dynemic binding, 4) multi-class, static
binding, and 5) multi-class, dynamic binding. The results of this
analysis showed that our model provides a unifying theory of secure

information flow in that sll known systems that restrict information
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flow fall into these classes. Of particular interest are the two multi-
class cases, previouzly investigated only by Fenton in the context of o

Minsky machine [Fe73,FeTlka,FeTlb]. Fenton proposed a hardware mechanism

for performing run-time checks during the executi

a program,
proved that his mechanism guarantees security under static binding, but
conceded that it did not guarantee security under dynemic binding. In
Chapters 3 and 4, we made significant extensions to, and improvements
on, these results.

In Chapter 3 we introduced a compile-time mechanism for certifying
the secure execution of a program under static binding. We formulated
the mechanism in terms of semantic actions to be performed during the
analysis phase of compilation. The significant contribution of this
work is twofold: 1) It permits the security of a progrem to be estab-
lished before it executes. This eliminates the need for costly hard-
ware support and/or inefficient software run-time mechanisms. It also
eliminates the possibility of programs purposely causing security
violations as a means of leaking information. 2) It demonstrates the
feasibility and practicality of constructing automatic program certifi-
cation mechanisms for proving security properties.

In Chepter 4 we investigated the more complex problem of guaran-
teeing the secure execution of a program under dynamic binding. We outw-
lined a hardware mechanism, based on tagged architecture, for dynami-
cally binding objects to security classes. We presented two possible
compile-time mechanisms for transforming an arbitrary program into an
equivalent secure one. Both mechanisms operate by inserting instruc-

tions into the original program. The first mechenism is considerably
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less complex than the second, but the second produces better code. The

significant contribution of this work is that it proves the feesibility
of guaranteeing security under dynamic bindiug; whether or not it is

practical, however, is au open question we leave for future study.

5.2 Areas of Future Research

1. Appiication. We have not offerred & complete set of guidelines for
applying our model and mechanisms to the design of a system. For
example, we have not suggested a method for cons%ructing a suiteble
set of security classes when the usual government and military
classification system is not applicable. We have not spacified the
design of an "operating system kernel" that guarantees the correct
implementation of the mechanism. We have said little sbout the

r applicability of the mechanism to data base systems.

2. Dynamic Binding. Although we demonstrated the feasibility of
certifying the security of = nrogram under dynemic binding, we
left many issues uzresoclved. For example. the question of whether
or not it is possible to conmstruct a transformation procedure pro-
ducing optimal code (in the sense of inserting the minimal number

of update instructions) is open. We did not provide an adequate

mechanism for dealing with interrupts. We left unresolved the
problem of handling global varisbies. We barely hinted at a method
for dealing with the verify statement.

3. Program Development and Debugging. The program certification pro-
cedures enalyze the flow of infvrmation in a program for the pur-

pose of verifying security. The procedures may also be applicable
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to a completely different problem: progrem development and debug-

ging. For example, it weuld be possible to determine the variables
affected by a change to some cther verisble. It msy be possible to
determine the best modularization of a program in the sense of
minimizing the number of variables common to several modules, while
keeping the code expansion due to modularization as small as

possible [BaT3].

~
L
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