
 

Abstract—Delta3D  is  a  GNU-licensed  open  source  game 
engine with an orientation towards supporting “serious games” 
such as those with defense and homeland security applications. 
AI is an important issue for serious games, since there is more 
pressure  to  “get  the  AI  right”,  as  opposed  to  providing  an 
entertaining user experience. We describe several of our near- 
and longer-term AI projects oriented towards making it easier 
to build AI-enhanced applications in Delta3D.

Keywords: Artificial Intelligence, Game Engines 

I.INTRODUCTION

Delta3D  is  a  open  source  (Lesser  GNU  Public  License 
(LPGL)) game engine created at the MOVES Institute, part 
of  the  Naval  Postgraduate  School  in  Monterey.  While 
originally  designed  for  military  game-based  simulations, 
Delta3D can  be  used  as  the  underlying architecture  for  a 
wide  range  of  game  applications.  Until  recently,  one 
difficulty  in  this  was  that  Delta3D  lacked  a  specific 
capability  to  produce  artificial  intelligence  (AI)  for  either 
control  of  non-player  characters  (NPC’s)  or  for  any other 
aspect  a  designer  would  require,  e.g.,  evaluating  player 
performance. We have added such a capability to version 1.4 
of  the  Delta3D  engine,  greatly  expanding  the  scope  of 
applications which can be built using Delta3D. 

We provide an overview of the Delta3D engine in section 
II, and the basic AI functionality that the engine provides in 
section III. In sections IV through VII, we give views into 
more  advanced  types  of  AI  that  we  are  investigating, 
including  planning,  perceptual  modeling,  learning,  and 
infrastructure to support educational games.

II.THE DELTA3D GAME/SIMULATION ENGINE

A.Delta3D Philosophy
In  recent  years,  the  military  training  and  operational 

industries have begun to use solutions from the entertainment 
industry [1]. Many of the proprietary solutions in the military 
game and visual simulation industry do not meet the needs of 
all  developers.  Licensing  costs  and  restrictions  make  it 
difficult to produce the large number of applications required 
for the myriad of training applications the military requires 
[2]. Delta3D was created to meet the need for an open source 
commodity game and simulation engine. 

In examining the problems or proprietary solutions for this 



space, we came up with a four-part philosophical credo upon 
which we based building our game and simulation engine:

1. Maintain openness in all aspects to avoid lock-ins 
and increase flexibility. 

2. Maintain the capability to support multiple genres, 
since we never know what type of application it will 
have to support next.

3. Build the engine in a modular fashion so that we 
can swap anything out as technologies mature at 
different rates.

4. Build a community (or leverage existing ones) so 
the military does not have to pay all the bills.

The  first  of  these,  “Maintain openness  in  all  aspects  to 
avoid lock-ins and increase flexibility”, addresses two of the 
problems in  the  current  paradigm.  By keeping  everything 
open, no vendor would be able to lock the military into its 
technology. This would allow any follow-on applications to 
be  bid  on  by  multiple  companies,  with  the  resulting 
competition  reducing  the  costs.  Additionally,  because  the 
tools are open, developers have access to the source code. 
This  means  that  if  the  tools  don’t  meet  the  developers’ 
requirements, the developers can change the tools as needed 
for their applications without waiting for a vendor to decide 
to do so.

The second principle, “Make it multi-genre since we never 
know what  type  of  application  it  will  to  have  to  support 
next”,  is  designed  to  ensure  that  Delta3D  can  meet  the 
developer’s needs, whatever they are. Within just one of the 
military  services,  the  Navy,  the  number  of  training 
applications is immense. When he was the commander of the 
Navy Education and Training Command (NETC) in 2004, 
Vice Admiral  Alfred Harms estimated that  he would need 
approximately 1,500 training games to meet his requirements 
of  performing all  individual  training  (as  opposed  to  team 
training) within the Navy [3].  There is  no single genre of 
games that will be able to meet all those requirements, which 
are just a small portion of all those in the military, not to 
mention  the  entire  spectrum  outside  the  military.  While 
traditionally game engines have been built for a single genre 
or even a single game, that model would not work for the 

Game AI in Delta3D

Christian J. Darken
MOVES Institute/CS Dept.
Naval Postgraduate School

cjdarken at nps dot edu

Bradley G. Anderegg
Alion Science and Technology Corp
banderegg at alionscience dot com

Perry L. McDowell
MOVES Institute

Naval Postgraduate School
mcdowell at nps dot edu



military and those  interested in a  commodity solution.  By 
having one engine which can meet all requirements it is easy 
to standardize the production pipeline and reuse content for 
multiple applications, thus reducing the cost involved.

The third of these tenets, “Build the engine in a modular 
fashion so that  we can swap anything out as  technologies 
mature at different rates”, will allow the engine to be state of 
the  art  for  a  long  period  of  time.  Each  of  the  various 
elements  of  the  engine  consists  either  of  an  open  source 
library or code developed in house. In either case, we have 
kept the different modules as separate as possible. Therefore, 
if one of the modules making up Delta3D is surpassed by 
another  open source project  and is  no longer  the “best  of 
breed”, it is possible to replace that module with the better 
one. This can continue with only minor modifications to the 
Delta3D  API,  thus  allowing the  engine  to  remain  current 

significantly longer than most existing game engines.

While longevity was the primary motivation for Delta3D's 
modularity, it has led to a near-term advantage as well. In 
some cases, the commodity solution provided by the open 
source  Delta3D  module  does  not  meet  the  needs  of  the 
developer. For example, in a close quarters battle simulation, 
it might be required to use more advanced avatars than those 
provided by Delta3D and the developer may wish to use a 
proprietary  solution,  such  as  Boston  Dynamics’™  DI-
Guy™. Because Delta3D is licensed under the LGPL, such 
proprietary  solutions  can  be  integrated  without  the 
requirement of being released as open source, such as would 
be  required  under  the  GPL  or  other  viral  licenses.  This 
flexibility gives the developer the freedom to choose the best 
solution in creating an application.

The  final  part  of  the  credo,  “Build  a  community  (or 
leverage existing ones) so the military does not have to pay 
all the bills”,  is another factor driving us towards an open 
source solution. The power of open source projects is that 
the energy of a huge development team can be brought to 
bear upon problems without actually employing such a large 
team. By building a well designed system that  people  are 
interested in using for their own applications, they will also 
add improvements to the original system. Over time, these 
may add up to have significantly more value than the original 
system. However, building such a community takes a great 
deal of time. Leveraging existing open source communities 

by  incorporating  current  open  source  projects  with  large 
developer bases into the engine creates a built-in group of 
developers.  The  advantages  this  accrues  will  be  discussed 
more below.

B.Delta3D Architecture
While  building  the  Delta3D  game  engine,  we  had  to 

determine how and what functionality we needed to add to 
the engine. Our preferred method of adding functionality was 
using other open source projects which met our requirements 
and used a license compatible with the LGPL. For example, 
we used  OpenSceneGraph  for  Delta3D’s  rendering,  Open 
Dynamics  Engine  for  its  physics,  etc.  Often  there  were 
multiple projects meeting these criteria, and in these cases 
we evaluated the projects for inclusion using two criteria: a 
project’s  technical  merits  and  its  user  support  base.  The 

rationale for choosing projects upon their merits is obvious 
and considering a project’s base has allowed Delta3D to gain 
many “indirect  developers”,  i.e.,  developers  who improve 
Delta3D by improving one  of  the underlying open source 
projects.  Additionally,  projects  with  large  user  bases  are 
more likely to remain current and state of the art than those 
with only a small base, reducing the likelihood of needing to 
swap  a  module.  This  allowed  us  to  build  a  robust  game 
engine while  minimizing the work required  to  be  done  in 
house.

As far as determining what to add to the engine, we have 
tried to keep Delta3D extremely lean and have added only 
those  features  which  are  required  for  the  majority  of 
applications. As the use of the engine has expanded, it has 
become obvious that additional functionality was required, 
and the need for AI has necessitated adding such a module to 
Delta3D. 

For a more in-depth discussion of the process of creating 
Delta3D, see McDowell et al. [4]. The initial modules using 
open source projects, along with the specific projects used 
for that module, are shown in Fig. 1. 

C.Projects Built Using Delta3D
Delta3D has been used as the underlying architecture for 

several games and simulations, most of them in the serious 
games arena.  Here  is  a  short  description of  just  a  few to 
demonstrate the scope and capability of Delta3D.

1)  FOPCSIM: FOPCSIM  is  a  simulation  created  by 
USMC students  at  the  MOVES Institute  to  train  forward 

Fig. 1: Delta3D's architecture, showing the external open source libraries and the type of functionality they provide.



observers  in  the  process  of  controlling  artillery.  It  is 
extremely  militarily  accurate,  with  the  player  forced  to 
follow exactly  the  correct  military  procedures  in  order  to 
successfully  complete  the  mission.  FOPCSIM  has  been 
adapted for training by many different agencies in both the 
US Army and Marine  Corps  [4].  FOPCSIM lacks certain 
typical characteristics of games produced for entertainment: 
there is no background story, the player is unable to move, 
there is no exploration, etc. Even though FOPCSIM cannot 
be classified as a true game, it is an example of how game 
technology  can  be  used  for  military  training  outside  of 
traditional games. A screen shot from FOPCSIM can be seen 
in Fig. 2.

2) Cleared Hot!: Cleared Hot! is a simulation created by 
USMC students  at  the  MOVES Institute  to  train  FACA's 
(Forward Air Controllers,  Airborne).  Like FOPCSIM, it  is 
extremely  militarily  accurate,  with  correct  adherence  to 
procedures required for successful completion of the tasks. 
Similarly, it is being adapted for training use in the military 
[5].  Cleared Hot! has more characteristics of a game than 
FOPCSIM,  such as  a  background story and the  ability to 
move throughout the environment and explore, nonetheless 
the design gave very little thought to making the game fun 

for the player. Therefore, Cleared Hot! cannot be considered 
a true game. A screen shot of Cleared Hot! is shown in Fig. 
3.

3) Driving  Trainer: SIMEXAM  is  a  game  created  by 
SIMSPACE™, a Spanish company. It is designed to be used 
by potential  drivers  preparing for  their  driving test  at  the 
Spanish equivalent of a department of motor vehicles. This is 
much more of a game than either FOPCSIM or Cleared Hot! 
The  user  is  allowed  to  follow the  routes  expected  in  the 
driving  test  but  can  also  explore  the  environment. 
Additionally, the user may “play” by performing actions that 
would be inadvisable in the real world, such as driving head 
on  into  traffic  to  see  the  results.  A  screen  shot  from 
SIMEXAM is shown in Fig. 4.

III.BASIC AI SUPPORT

Delta3D  offers  three  basic  facilities  to  support  the 
development  of  AI,  namely  a  finite  state  machine  class, 
traditional waypoint-based navigation, and the ability to code 
AI  in  a  high-level  scripting  language.  All  three  types  of 
functionality  have  been  widely  used  in  the  video  game 
industry, so there are multiple example implementations to 
draw from. Furthermore, the usefulness of this functionality 
is  widely  acknowledged.  Of  the  three  items,  finite  state 
machines are perhaps the most universally adopted.

Finite  State  Machines  (FSM's)  are  one  of  the  principle 
models used in theoretical computer science. They have also 
been  widely  adopted  for  use  in  game  AI.  FSM's  are 
composed  of  a  finite  set  of  states  and a  set  of  transitions 
amongst  them. There  is  also a  finite  set  of input symbols 
(“events” in Delta3D) that cause the state to change. Each 
transition is labeled with an input symbol. At any moment, 
the AI is said to be ”in” one of the states. When a new input 
symbol  is  sent  to  the  FSM  for  processing,  the  set  of 
transitions from this state to any other is checked to see if 
any of them is labeled with the new symbol. If one transition 
is, the current state is changed to be the one indicated by the 
transition. Implementing a FSM is no great challenge for an 
experienced  programmer,  but  FSM  support  belongs  in  a 
game engine because the small amount of time required for 
implementation  multiplied  by  the  number  of  projects  that 

Fig. 2: A screenshot from the FOPCSIM forward observer trainer.

Fig. 3: A screenshot from the Cleared Hot! FACA trainer. The 
panes at right allow the trainee to communicate with the AI-
controlled pilots.

Fig. 4: A screenshot from the SIMEXAM driver training 
game.



need the functionality (likely to be a large number) would be 
considerable.

Some  sort  of  navigation  infrastructure  is  necessary  to 
allow  AI  to  move  about  a  game  level.  Navigation 
infrastructure does for the AI what the player's eyes do for 
the  player:  allow  it  to  move  around  the  level  without 
colliding  with  walls  and  other  obstacles.  The  navigation 
infrastructure  implemented  in  Delta3D  is  based  on 
waypoints,  i.e.  mathematical  points  in  a  level  that  can be 
used as intermediate destinations within a longer path. The 
waypoints  constitute  the  nodes of  a  navigation graph.  For 
each waypoint, a directed edge is added to the graph for each 
other waypoint that can be moved to along a straight line. 
Navigation  infrastructure  generally  has  an  off-line 
component  that  is  used  when a  level  is  built  in  order  to 
construct  the  navigation  graph,  and  an  on-line  component 
used at run-time to actually plan paths.

Delta3D's  level  editor,  STAGE,  has  been  enhanced  to 
allow the user to add waypoints. This is accomplished via a 
manual graphical editing process. Waypoints are visualized 
as simple billboards, and the user locates them in the level 
just as he would locate an object such as a tree or rock. Upon 
saving  the  level,  a  ray is  traced  between nearby  pairs  of 
waypoints,  and  if  the  ray  does  not  intersect  anything,  a 
directed edge is added to the navigation graph. This is an 
inexpensive substitute for a more exact test of the ability to 
move between the waypoints in a straight line that is accurate 
enough, if a little care is exercised in waypoint placement.

At runtime, the API provides a function that will attempt to 
plan a route between any two points (not just waypoints) in 
the level. This is accomplished by searching the navigation 
graph  using  the  A*  algorithm.  The  Delta3D  A* 
implementation is resumable, so the computation of difficult 
paths can be split over multiple frames. The function returns 
the shortest path to the goal location in the form of a list of 
waypoints. Actual use of the waypoints to move an agent is 
done  by  user  code.  The  waypoints  can  be  traversed  in  a 
simple  “connect  the  dots”  manner,  or  by  skipping  earlier 

waypoints on the path in favor of the latest visible one,  a 
trick known as “string pulling” [13], which often looks more 
natural, though its success in arbitrary level geometry cannot 
be taken for granted. Note that run-time collision checks with 
the static geometry (walls, etc.) of the level can be skipped 
while on the navigation graph, as movement is only between 
pairs  of  waypoints  determined to  be  traversable  when the 
level was built.

Delta3D  allows  the  user  to  write  partial  or  complete 
programs in the high-level  scripting language Python.  Not 
every  game  engine  provides  a  scripting  language.  The 
arguments  for  doing  so  are  that  scripting  languages  are 
typically easier to learn and faster to use, at least for smaller 
programs. This translates into a lower bar for contributing to 
the code base, allowing people with a much broader range of 
backgrounds to  modify a  simulation in fundamental  ways. 
Less time is often required to produce a given behavior. And 
since scripting languages tend to be dynamically typed, code 
can often be re-targeted more quickly, since the overhead of 
dealing with types is avoided.

The Python language has been widely adopted for a wide 
range of uses, one of which is  as a scripting language for 
games and simulations. Python is very widely used, and has a 
large and useful standard library. It has a streamlined Java/C-
like  syntax that  is  very concise,  making codes small,  and 
bugs easier to locate. It has excellent list and associative map 
(dictionary) support, which are of particular importance for 
developing  AI.  It  features  “just-in-time”  compilation,  so 
there is no explicit compile step, resulting in a fast modify-
and-test cycle.

Delta3D  provides  Python  bindings  corresponding  to 
many, but not all, of the calls in its C++ API. Boost Python 
is the tool  used to add new bindings.  Python bindings for 
some functions are not  easy to produce. Conceptual  effort 
may be required, since there is a considerable gap between 
the data types and memory management of C++ and Python, 
and  Boost  Python  is  a  very  sophisticated  tool  whose 
behavior is not always easy to understand and manipulate. In 
the  vast  majority of  cases,  however,  Boost  Python makes 
producing the bindings quick and straightforward. 

IV.PLANNING

Most games and simulations produced to date do not use 
any  technology  from  the  field  of  AI  as  the  top-level 
architecture for the AI in favor of some flavor of Finite State 
Machines or a custom software design. In 2005, Monolith's 
game  F.E.A.R.  became  the  first  AAA  title  to  use  a 
streamlined version of AI planning for this purpose [12]. Jeff 
Orkin,  one of  the  developers  of  F.E.A.R.'s  AI,  found that 
Finite State Machines did not scale well to large AI's [11]. 
Delta3D is perhaps the first game engine to offer a form of 
planning built in to the engine.

Delta3D's  planning  facility  is  based  on  forward  state-
based  search  conducted  by  the  A*  algorithm.  We  chose 
forward  state-based  search  because  it  is  well  suited  to 

Fig. 5: Manual waypoint placement in the STAGE level editor. The 
currently manipulated waypoint is red, and the others are gray.



domains  with limited  continuous-valued  resources  such as 
fuel or ammunition. The planner's API requires the user to 
represent all actions that are possible to the agent in terms of 
Operator  objects.  Operators  describe  the  necessary 
preconditions to take the action as well as its effects, and any 
events that would necessitate re-planning (“interrupts”).

Delta3D's planning capability was used for the first time in 
the Cleared Hot! trainer, where it was used to represent the 
AI fixed-wing and helicopter  pilots.  As in Orkin [11],  we 
used a small Finite State Machine to bridge between the plan 
and  the  rest  of  the  game engine.  We  found  the  planning 
infrastructure very well suited to representing the complex, 
multistage,  doctrinally  prescribed  interactions  amongst  the 
pilots and the trainee. 

Delta3D's C++ planning API is  expected to  be released 
soon. In recent work, we have prototyped the capability to 
describe  the  planning  problem  in  a  custom  scripting 
language. An example appears as Fig. 6. User code is used to 
make the operators specified in the script affect the state of 
the  game,  e.g.  to  actually  move  the  agent  around.  An 
example planning script for an agent that continuously hides 
whenever he becomes visible is provided below. There are 
multiple goals that can be switched among by user code at 
run time. The numbers attached to the goals are estimated 
total cost to achieve the goal. The “Idle” goal is the default, 
and results in the agent doing nothing and waiting for the 
“IsHidden” goal to be made active.

Hider Planning Script
NPC Hider
[

WorldState [Idle(true), 
      HideFailed(false),
      HavePlaceToHide(false),
      HavePathToWaypoint(false),
      IsHidden(false)]

operator FindPlaceToHide
 preconds []
 interrupts []
 effects [ HavePlaceToHide(true) ]
 cost 1
 

operator FindPath
 preconds [HavePlaceToHide(true)]
 interrupts []
 effects [ HavePathToWaypoint(true) ]

  cost 1

 operator Hide
   preconds [HavePlaceToHide(true),
        HavePathToWaypoint(true),
        HideFailed(false)]

 interrupts [ HideFailed(true) ]
 effects [ IsHidden(true) ]
 cost 1

operator ReHide
 preconds[ HideFailed(true) ]
 interrupts []
 effects [ HideFailed(false) ]
 cost 1 

Goals [ Idle(0, true), IsHidden(3, true) ] 

]
Fig. 6: A planning script for an AI-controlled character who continuously 
hides.

V.PERCEPTUAL MODELING

For games with a military flavor, the traditional approach 
to  determining battlefield  visibility is  lacking,  with severe 
consequences  for  the  AI  [14].  Most  video  games  use  a 
simple  Line-of-Sight  (LOS)  trace  from  the  eye  of  the 
observing agent to the top of the target to make a visibility 
determination. If the LOS does not intersect any polygons, 
the agent is considered to be fully aware of the target. Of 
course,  this  is  a  drastic  oversimplification,  and  there  are 
many instances in which LOS visibility is far too generous or 
too conservative.  The result  is  AI that  sometimes engages 
targets that are invisible to a human player and sometimes 
fails to engage obvious targets. We are exploring alternative 
methods  of  modeling  visibility  based  on  a  military-
developed algorithm called ACQUIRE [16]. ACQUIRE was 
developed in order to model night vision equipment, so it is 
not  the  perfect  tool  for  modeling  target  detection  by  the 
unaided human eye. Nonetheless, there is a long history of 
using ACQUIRE for this purpose in military modeling and 
simulation. The advantage of ACQUIRE over LOS is that 
ACQUIRE considers the amount of exposed surface area of 
the  target  and  its  contrast  with its  background.  However, 
ACQUIRE has never been previously applied to video game-
like simulations.

We  have  produced  and  tested  a  version  of  ACQUIRE 
called  GBBA  (Graphics  Buffer  Based  ACQUIRE)  in 
Delta3D [15]. GBBA performs two tight “mini-renders” of 
the target from the agent's point of view: one in normal color 
and  other  with  the  target  in  false  color.  The  false  color 
render  is  used to  segment the mini-render  into target  and 
background. The depth buffer is  then accessed in order  to 
remove “background” pixels that are actually in front of the 

Fig. 7: An illustration of some of the problems with using 
traditional Lines of Sight for target detection. The figure at 
left is invisible according to LOS, since the line is drawn to 
the top of the target, which is obscured behind a tree limb. By 
contrast, the figure at right, completely obscured except for 
the top of the head, is visible according to LOS. 



target.  The  resulting  sets  of  foreground  and  background 
pixels are then used to determine visible target surface area 
and  contrast.  Area  and  contrast  numbers  then  feed 
ACQUIRE,  which  then  produces  detection  probabilities. 
While the superiority of GBBA to LOS as a model of target 
detection  is  unquestionable,  we have  found  many fidelity 
issues with GBBA stemming mostly from factors that are not 
considered in ACQUIRE such as color, shape, and texture. 
We are continuing our efforts to  enhance GBBA to solve 
these problems.

Fig. 8: A wider shot of a figure at a window (left), a minirender of the same 
figure (middle), and a false color minirender with the target in red and the 
background in green, except for the part that is closer to the camera than 
the target (the edge of the window), which is colored blue (right).

VI.LEARNING

Game AI that is self-programming in the sense that it can 
autonomously learn from experience has been a continuing 
interest  of  many in  the  game industry.  Many approaches, 
such  as  neural  networks,  genetic  algorithms,  and  so  forth 
have been explored.  To  date,  learning has  not  established 
itself as a standard tool for game AI. Some possible reasons 
for  this  failure  include the difficulty of understanding and 
coding the learning algorithms, loss of control perceived by 
game  developers  turning  over  aspects  of  the  AI  to 
autonomous software, difficulty in testing adaptive AI due to 
the broader range of possible behavior and the difficulty of 
reproducing problems, and just general poor performance for 
the intended application. Some of these problems might be 
ameliorated by building learning into the game engine level 
building tool set, and by focusing on learning those parts of 
the AI that  seem to have the greatest  payoff and the least 
risk. This is the approach we are taking with Delta3D. Most 
of our learning work currently focuses on the task of learning 
to navigate around a level.

As described above, Delta3D's waypoint-based navigation 
system requires a level designer to place waypoints on the 
level  manually.  We  are  working  on  removing  this 
requirement  by  generating  the  set  of  waypoints 
automatically.  Our  approach  seems  to  be  similar  to  that 
taken  by  multiple  game  industry  groups,  though  our 
approach  was  conceived  of  and  developed  completely 
independently, and the algorithms used by others have not 
been published as far as we are aware. In our approach, the 
level  designer  places  at  least  one  single  waypoint  on  the 
level. Multiple waypoints may be placed if desired. An off-
line  exploration  process  then  takes  place  where  the  AI, 

driving one of the same motion models available for human 
users, explores the level and learns where it is possible to go 
in the level and how to get there. At the end of the run, this 
information is then saved off as a waypoint graph in the same 
format as generated by a human level designer constructing a 
waypoint  graph  manually  in  STAGE,  the  Delta3D  level 
editor.

Level Exploration Pseudocode
For each waypoint

For each direction that is a multiple of 60°
Attempt to move the waypoint spacing 

distance out from the waypoint
Monitor progress and fail if too slow
If close to the goal and not falling or 

sliding, add a waypoint at goal (if not 
already there) and add the appropriate 
edge to the waypoint graph

Fig. 9: Pseudocode for the level exploration algorithm.

Fig. 10: The level explorer (green cylinder roughly at center, with its 
facing indicated by the yellow "beak") in the early stages of exploring 
a level, dropping orange waypoints as it goes.

Fig. 11: The same level being navigated by a figure at run-time. The 
waypoints have been made visible for illustrative purposes. Most are 
blue, except for the green ones, which are part of the current path, 
and the red one, which is the goal.



We plan to enhance the explorer with the ability to evaluate 
waypoints found as firing or hiding positions. A fine grid of 
waypoints fixed at level build time, while still prone to some 
types  of  problem  we  have  previously  described  [6]  [10], 
would be highly useful for near-term simulations and games. 
Note  that  this  grid  is  built  finer  than  needed  for  merely 
moving about  the level  in order  to  support  behaviors  like 
moving into cover.  With a fine grid, the covered positions 
can be taken to be a subset of the waypoints. 

At  a  more  fundamental  level,  we  are  investigating  the 
application of  general  predictive  models  in  the context  of 
games and simulations. The idea is to apply the predictive 
models  to  produce  agents  that  are  more  proactive  than 
current  generation agents.  These  models  require  a  generic 
representation  of  game  events.  Given  a  stream  of  such 
events, they learn to predict what events are likely to be next. 
We have prototyped this idea using a text-based MUD game 
[8]  [7]  as  well  as  a  next-generation  analytical  military 
simulation [9].  We see no barrier  to its  application to 3D 
games of all sorts.

VII.OTHER APPLICATIONS OF AI
The  traditional  place  where  AI  fits  into  games is  in 

controlling NPC’s, building behavior into characters so that 
they appear human (if human) or give the player a realistic 
challenge to overcome (whether human or not). We will be 
using the AI added to Delta3D to add this behavior to games 
and simulations created by Delta3D, but we also see this AI 
being  used  to  add  capabilities  to  make applications  work 
much better in a serious game environment.

Currently, most instances of using games for learning 
involve using the game as a separate entity or, at best, efforts 
where  games were  not  fully integrated  into  the  non-game 
portions  of  a  class.  Additionally,  other  than  fairly  simple 
games where the game can adequately assess the player, the 
behavior  of  the  student  in  a  game  environment  must  be 
evaluated  by  an  instructor.  This  prevents  the  game  from 
being fully utilized for the training required.

A. Integration into Coursework
In order  to fully integrate games into a class, especially 

one being taught via distant learning, the game must be able 
to  work  seamlessly  with  a  learning  management  system 
(LMS).  LMS’s are essentially databases  which contain all 
the information required for a class, such as syllabi, reading 
lists and material, written assignments, and generally run in a 
browser window. Quite often, the LMS is used to give on-
line quizzes and tests. Additionally, they often serve as the 
teacher’s  gradebook,  where  all  the  students’  scores  are 
recorded and tabulated.

To make a game which is fully integrated with the LMS, 
the game must be able to be launched from inside the LMS. 
That  is,  the  student  logs  into  his  LMS to  find  his  class 
assignment; on this day, it  is to play a game. The student 
clicks  on  a  link  which  starts  a  game  on  the  student’s 

computer. Once complete, the student’s performance should 
be sent to the LMS, which then adds the performance to the 
gradebook. Delta3D has recently added the capability in its 
1.4 version.

However,  there are still  significant  improvements which 
can  be  made  to  improve  the  performance  of  games  in 
educating students.  For  example,  the scenario in the game 
could be tailored to the student, that is, the LMS provides the 
game a list of the capabilities of the student and the game 
automatically  creates  a  scenario  based  upon  these.  In  the 
course of the play, the game will adjust its level of difficulty; 
if the student is struggling, the game becomes easier, while if 
the student is not being challenged the game can increase it 
difficulty. At the end of the game, the game determines the 
objectives the student has demonstrated mastery and reports 
this to the LMS. These technologies will require a significant 
AI  capability.  We  are  planning to  use  the  AI  capabilities 
added to Delta3D to investigate these areas.

B.Automated Tutoring Support
Another improvement required to help games meet their 

potential as educational tools is to allow the games to tutor 
the students. One of the biggest worries is that students will 
take  away  the  wrong  lesson  from  a  training  simulation, 
which  is  referred  to  as  negative  training.  As  Dr.  Jeff 
Wilkinson,  program manager  for  the  Institute  of  Creative 
Technologies (ICT), said at the 2006 Serious Game Summit, 
“Experiential  learning is  not  effective;  guided  experiential 
learning is effective.” Without some sort of feedback, it is 
easy for  the  user  to  learn  behavior  which could  result  in 
problems in the real world.  Unfortunately, except for very 
simple tasks, games don’t currently have that capability. This 
is mainly because evaluating students’ behavior  requires a 
great  deal  of  intelligence  to  fully  understand  whether  the 
objective was met and, if not, what the cause of the student’s 
failure was. Additional  AI capabilities make it  possible  to 
begin investigations into how to evaluate student’s behavior 
and tutor the student.

VIII.CONCLUSIONS

Where is the best place to draw the line between the AI 
functionality provided by a game engine, and that which the 
user  must  provide  on  his  own?  We  have  described  the 
Delta3D view of basic AI support, and we expect that line to 
move  a  lot  as  the  entertainment  and  serious  game 
communities  continue  to  gain  insight  into  which  AI 
techniques are the most robust and widely applicable.

REFERENCES

[1] M. V. Capps, P. L. McDowell, & M. Zyda, A future for 
entertainment-defense research collaboration. IEEE Computer 
Graphics and Applications 21(1), 37-43.

[2] R. P. Darken and P. L. McDowell, “Open Source Game Engines: 
Disruptive Technologies in Training and Education”, Proceedings of 
the 2005 Interservice/Industry Training, Simulation and Education 
Conference (I/ITSEC). Orlando, Florida: National Defense Industrial 
Association.  November 28 – December 1 2005



[3] A. G. Harms Jr., “Investing in people”, presentation given April 6, 
2004, Pensacola Fl.

[4] P. L. McDowell, R. P. Darken., R. E. Johnson, & J. A. Sullivan, 
Delta3D: a complete open source game and simulation engine for 
building military training systems. Proceedings of the 2005 
Interservice/Industry Training, Simulation and Education Conference 
(I/ITSEC). Orlando, Florida: National Defense Industrial Association. 
November 28 – December 1 2005. 

[5] D. Kunde and C. Darken, “A Mental Simulation-Based Decision-
Making Architecture Applied to Ground Combat”, Proceedings of  
BRIMS 2006. 

[6] C. Darken and G. Paull, “Finding Cover in Dynamic Environments”, 
Game AI Programming Wisdom 3, Charles River, S. Rabin editor, 
2006.

[7] C. Darken, "Heuristic Speed-Ups for Learning in Complex Stochastic 
Environments", Proceedings of IJCAI 2005 Workshop on Planning  
and Learning in A Priori Unknown or Uncertain Domains.

[8] C. Darken, "Towards Learned Anticipation in Complex Stochastic 
Environments", Proceedings of AIIDE 2005.

[9] D. Kunde and C. Darken, "Event Prediction for Modeling Mental 
Simulation in Naturalistic Decision Making", Proceedings of BRIMS 
2005. 

[10] G. Paull and C. Darken, "Integrated On- and Off-Line Cover Finding 
and Exploitation", Proceedings of GAME-ON 2004.

[11] J. Orkin, “3 States & a Plan: The AI of F.E.A.R.”, Proceedings of the  
Game Developer's Conference 2006.

[12] J. Orkin, “Agent Architecture Considerations for Real-Time Planning 
in Games”, Proceedings of AIIDE 2005.

[13] P. Tozour, “Search Space Representations”, AI Game Programming  
Wisdom 2, Charles River, 2004.

[14] C. Darken, “Visibility and Concealment Algorithms for 3D 
Simulations”, Proceedings of BRIMS 2004.

[15] B. Jones, “A Computer Graphics-Based Target Detection Model”, 
Master's dissertation, MOVES Institute, Naval Postgraduate School, 
Monterey, CA 2006.

[16] D. Reece and R. Wirthlin, “Detection Models for Computer 
Generated Individual Combatants”, Proceedings of the 6th  
Conference on Computer Generated Forces and Behavioral  
Representation, 1996.


	I.INTRODUCTION
	II.The Delta3D Game/Simulation Engine
	A.Delta3D Philosophy
	B.Delta3D Architecture
	C.Projects Built Using Delta3D

	III.Basic AI Support
	IV.Planning
	V.Perceptual Modeling
	VI.Learning
	VII.Other Applications of AI
	A.	Integration into Coursework
	B.Automated Tutoring Support

	VIII.Conclusions

