
Visibility and Concealment Algorithms for 3D Simulations

Christian J. Darken
MOVES Institute and Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

831-656-2095
cjdarken@nps.navy.mil

Keywords: Terrain Reasoning, Visibility, Perceptual Modeling, Cover, Concealment, Line-Of-Sight, Hiding

ABSTRACT: Many military simulations and computer entertainment products share a need to model the ability of
individual entities (men, tanks, planes, etc.) to see one another and to hide from one another in a 3D virtual
environment. The traditional line-of-sight (LOS) visibility model can cause serious problems with hiding behavior.
Three alternative visibility models and corresponding algorithms for computing the locations of concealment
opportunities are described. Under additional assumptions, these algorithms can compute locations that provide
cover from direct fire as well. Our experience implementing one of these algorithms is described.

1. Background

Commercial computer game technology, with its
gorgeous, first-person views of highly detailed
environments, and custom-built systems aiming at a
similar degree of visual fidelity are increasingly under
consideration for military training applications. An
unintended consequence of providing such a clear view
of the environment is to highlight flaws in the behavior
of the software agents that simulate soldiers.

Simulated soldiers must have the ability to hide. No
matter how realistic the soldier appears at first glance,
the illusion of reality will quickly be shattered if it
cannot duck behind a nearby rock, tree, or vehicle to
escape hostile fire. In the world of computer
entertainment, where soldiers are almost as ubiquitous
as in military simulations, products are often touted on
the basis of their AI, and sometimes specifically on
their ability to exploit cover. Nevertheless, we have
found that the best of these products are highly flawed
with regard to cover, often running by excellent nearby
sources of cover to exploit an inferior one in the
distance. Furthermore, when cover is reached, the
agent may not conceal its entire body from view. This
paper concerns approaches to solving these two
problems.

How serious are these problems? Accurate simulation
down to the individual combatant level of resolution is
a goal of many training and analytic simulations. For
training applications, failure to exploit cover clearly
has the potential to destroy the immersiveness of the
simulation and the emotional involvement of the
participants. For analytic applications, it would seem
that inefficiency in exploiting local cover might result
in inaccurate results. As an extreme example, consider
an assault on a unit that starts in cover. The entire

burden of finding cover is on the assaulting side, and if
their ability to hide is poor, their success rate will be
unrealistically low.

When failures of AI such as those above are noted, the
layman’s lament is that today’s software agents are
“still not smart enough”. We believe that the real
problem here is not that agents are not smart enough,
but that they are not perceptive enough. Software
agents generally have far less information about their
world than any human player gets from looking at the
screen. The problem is not that agents are doing the
wrong thing with the information they have, but rather
that they have hopelessly little information to begin
with. We believe that, at least in part, the reason why
more information is not provided is because algorithms
for generating and exploiting it have not been
available.

In this paper, we explore algorithms for determining
visibility and finding opportunities to hide that can
efficiently exploit varying amounts of environmental
data. The most simple and computationally
inexpensive of them is capable of avoiding the worst
gaffes one sees in current generation agents in the
entertainment sector. The most complex is a rigorous,
complete calculation of all opportunities to hide in a
given region. The emphasis in this work is not on
psychological fidelity, but rather on locating
concealment as efficiently as possible given a certain
type and amount of environmental data. The
component techniques used in the algorithms have
their origins in the fields of computer graphics,
computer vision, robotics, and computational
geometry. Much of this material has been described
previously by Morgan [10].

 The models of each entity as well as of the
environment consist of sets of polygons that exist in an
abstract mathematical space we call “object space”.
Whereas alternative approaches always involve
approximation, the goal of the object space approach is
to calculate precisely which parts of the model are
visible from a given viewpoint.

2. Related Work

The traditional method applied in military applications
[5] [6] [8] to determine the visibility of an entity from a
particular viewpoint is to trace (“cast”) the ray between
the viewpoint and a single point located somewhere,
typically top center, on the entity. This ray is known as
a “line of sight” (LOS). Inspection of released source
codes, e.g. [12], and informal experimentation
convinces us that LOS is used as a visibility model for
many commercial entertainment products as well.

Point Light Source

Shadow Volume

Point Light Source

Shadow Volume

As pointed out by Champion, et. al. [11], the visibility
of an entity is really a question of the visibility of the
entity’s surface, and not of a single point. The obvious
problem is that it may be the case that only a tiny
region of the surface that includes the LOS target point
can be obscured while most of the entity is visible.
This leads to the behavior described previously, where
an agent “hides” in a position that is largely visible to a
known threat. Champion’s approach was to
empirically determine the average fraction of surface
that is visible as a function of range and type of
vegetation. The estimated visible surface area is then
used to estimate the detection probability using a
modified version of the empirical formula of Johnson
and Lawson [13]. We will present algorithms that can
be used to determine the actual fraction of surface
visible for agents situated in a 3D environment.

Figure 1: The shadow volume of a single triangle.

Imagine that all sources of light in the environment are
removed except for a point source placed at the
viewpoint of the observer. Then the parts of the entity
model that are lit up correspond to those parts visible
from the viewpoint. There are existing algorithms for
efficiently computing shadow volumes (that part of the
total volume of the environment that is in shadow) that
can be directly applied to this calculation [1] [2]. The
shadow volume is represented by the polygonal faces
that bound it, and the parts of the model that are visible
will constitute some of the faces. (This assumes that
the optimization that only allows polygons that face
away from the light source to cast shadows is not
implemented.) If the shadow volume algorithm is
implemented such that polygons that are part of the
entity are labeled, then the parts of the entity’s
polygons that are used as shadow volume faces are
visible. For example, the black triangle in Figure 1 is a
face of the shaded shadow volume, and is therefore
visible to a viewpoint positioned at the light source.

Concealment opportunities are computed in [5] [6] [7]
by determining the visibility of an entity at a square
grid of locations. For the complex geometry and
constrained computational environment typical of
entertainment products, Liden [4] describes a technique
where visibility is computed only at a set of hand-
selected navigation nodes (waypoints).

3. Modeling Visibility

In this section, we consider three different approaches
for determining what parts of one entity are visible
from the viewpoint of an observer idealized as a single
point (a more accurate approach would require
representing two viewpoints, one for each eye). The
algorithms for computing concealment opportunities
presented later correspond to these visibility models.

In a 3D simulation, the environment consists of a set of
polygons. Likewise, the physical form of an entity is
represented as a set of polygons.

3.1. Object Space Approach

Figure 2: Illustration of the visibility models
overlaid on a small part of a scene. The object

space approach computes the exact portion of the
entity’s surface visible from the viewpoint. In the
picture, this portion is indicated by a white
boundary line.

Figure 3: The raster approach computes a binary
image where pixels whose center ray intersects the
entity (white disks) are distinguished from those
that do not (white circles). Note that the rays at the
center of the two circles at the cheeks just miss
intersecting the entity.

Figure 4: The multiple ray casting approach checks
a selected set of rays for intersection with the entity.
Here the selected rays include the one traditionally
used for line-of-sight (LOS) at the top center of the
entity, and several others at the corner and sides of
a box centered around the entity. Note that for
some box sizes, such as that above, the approach
may result in a determination that the entity is
visible when it actually is not.

3.2. Raster Approach

Another approach to determining what parts of an
entity are visible is to perform the early steps of
rendering a window just large enough to include the
entire entity model from the viewpoint. The entire set
of polygons in the scene is pared down to those that
could possibly be visible using standard techniques

(back face, view frustum, and occlusion culling), and
then rasterized, i.e. put in the form of a discrete pixel
matrix [15]. An extra buffer (matrix of bits the same
size as the raster) may be used to record which pixels
are part of the entity model. All pixels flagged as
being part of the entity after all polygons have been
rasterized correspond to visible points on the surface of
the entity.

3.3. Multiple Ray Casting Approach

Instead of computing the visibility of the entity over a
regular grid (i.e. a raster), an alternative approach is to
compute the visibility of multiple representative points
instead. Some obvious candidates include the position
of the feet, the head, and these same points displaced
horizontally half the width of the model to either side.
The visibility of these points is determined by
constructing the ray that originates at the viewpoint
and determining whether it intersects any polygon of
the environment. This functionality is typically
provided by the engine used to render the environment.
If the ray between the viewpoint and the target point on
the entity does not intersect any polygon that is not part
of the entity, then the target point is visible.

4. Concealment Algorithms

In this section, we present algorithms for computing a
set of positions where an entity will be completely
concealed from one or more observer viewpoints by
objects in the environment. Each concealment
algorithm computes concealment that corresponds to
one of the visibility models presented above, i.e.
shadow volume concealment corresponds to object
space visibility, depth map concealment corresponds to
raster visibility, and sensor grid concealment
corresponds to multiple ray casting visibility. We make
assumptions where necessary to simplify the
presentation. Many of these assumptions can be
relaxed.

Note that to be useful, concealed positions must be
simultaneously:

1. Invisible to the observer.
2. “Standable” e.g. not be located in the air, or

on a surface so far from horizontal that we
cannot maintain our position there.

3. Unobstructed, i.e. the entity must be able to
occupy the position without intersecting any
solid object.

We do not discuss algorithms for obstruction testing
(usually called collision testing) or for determining
whether a line between two points in the environment
intersects objects in the environment, since these

capabilities are typically provided by a 3D simulation
engine.

Obstacles in the environment may render some or all of
the concealed positions computed inaccessible to the
entity in the sense that there is no feasible path from
the entity’s current location. Checking accessibility is
beyond the scope of this paper. See Reece [5] for a
discussion of the most salient path planning
algorithms.

An important parameter of the first two algorithms is
the approximate maximum distance that we are willing
to travel to a concealed position. We call this
parameter the “maximum distance of interest”. The
notion is that concealment that is further away from us
than this distance is not interesting and not worth
computing. This is a practical assumption which
saves computing time and allows the application of
computer graphics algorithms that we make to be in a
context very similar to the usual one of rendering a
view of the environment.

4.1 Shadow Volume Concealment Algorithm

The goal of the shadow volume algorithm is an exact
computation of the entire set of concealed positions
within a local region of the environment. For the sake
of specificity, we make several modeling assumptions
in the course of developing the algorithm. We believe
that these assumptions match current generation
systems well, and that the algorithm should be fairly
straightforward to extend to systems based on similar
but different assumptions.

The principle of the shadow volume algorithm is
simple. If you imagine that the environment is
completely unlit, and a point source of light is located
at the viewpoint of each observer, then every location
that is lit up is visible to the observer. Similarly, the
unlit (“shadowed”) locations are not visible. Efficient
algorithms for shadow volume computation have been
developed for computer graphics applications [1] [2].
For our application, there is no need to actually render
the shadows. We will merely take the shadow volume,
in the form of one or more connected regions bounded
by polygons, and process it further to include
standability and accessibility considerations, as
discussed above.

The algorithm begins just as if we were preparing to
render the environment from the point of view of the
observer. A square-based pyramid is constructed with
its apex at the observer’s eye and it’s base behind all of
the geometry of the environment, i.e. effectively at
infinity. The edges of the pyramid are chosen so as to
be center the base on the entity’s feet and to include the

entire region of environment that is of interest, i.e. all
points within the maximum distance of interest as
defined above.

Let S be the “standable” set, i.e. the union of the set of
all polygons we can stand on (either polygons must be
tagged, or else we must sort through all polygons in the
level according to some rule, for example, excluding
those of excessive pitch). The key modeling
assumption here is that the entity can stand in a certain
location without falling if and only if its location is in
S.

The next step is to compute the shadow volume, V.
Typically, this potentially highly complex region is
returned to us stored in a BSP (binary space-
partitioning) tree. Efficient algorithms exist for
computing Boolean operations (union, intersection,
and complement) on regions stored in this form [3].

Let O be the set of all obstacles, i.e. the union of all
polyhedra that are checked during collision detection.
For concealment computation, points in O and V have
the same interpretation: we do not want the the entity
to intersect either. Therefore the set B, defined as O
union V, the set of “bad” points, is computed. The
concealed positions are the set of locations and
orientations of our entity such that it does not intersect
B. In robotics, this is known as the set of free
configurations, and algorithms to compute it are known
[9]. Since this computation is complex, one might
consider computing a close, conservative
approximation by solving the corresponding 2D
problem instead. This can be done by approximating
the model of the entity by a vertical cylinder with a
polygonal base. S can be cut apart and projected on a
plane, and likewise with the set of points in B that are
potentially reachable by the cylinder. The problem has
now been reduced to finding free configurations of the
polygon in a plane, and can be solved with simpler
algorithms such as those in Berg et. al. [14].

Figure 5: A 2D concealment computation. The
black square is located at the viewpoint. The
irregular polygons are objects in the environment.

The shadows cast by these objects are gray and
include their white interiors, which represent
concealed positions assuming the entity is
represented by a bounding square the same size as
the one at the viewpoint.

4.2. Depth Map Concealment Algorithm

One displeasing characteristic of the shadow volume
algorithm is that the complexity of the concealed
location representation grows with the number of
edges in the scene. The depth map algorithm removes
this dependence by rasterizing (putting into the form of
a discrete matrix) the representation of the surface that
blocks the observer’s view. The price paid for this
simplification is that the algorithm is able to provide
only a discrete subset of concealed positions rather
than the whole set.

This algorithm involves constructing a depth map from
the point of view of the observer. If there are multiple
observers, we select a centrally-located one to begin
with, and consider the others below. The construction
of such a map is a standard part of rendering a 3D
environment for a player. The depth map is used to
determine the parts of the environmental geometry that
will be visible at each pixel location. Each polygon
that could possibly influence a pixel is rasterized, and
if it is the closest polygon to the viewpoint so far, the
distance to the polygon (the depth) is recorded.

This algorithm begins like the shadow volume
algorithm, by constructing a viewing pyramid centered
on the feet of the entity large enough to include the
region of the environment in which we wish to search
for concealment opportunities. Instead of dealing with
the full complexity of the environment’s geometry in
this region, the pyramid is rasterized. Conceptually,
we can imagine intersecting the viewing pyramid with
a plane perpendicular to the line connecting the
observer’s eye and the entity’s feet. This square is then
evenly divided along both axes to produce an array of
smaller squares. The number of divisions determines
the resolution of the technique. In ordinary rendering,
each of the small squares corresponds to a single pixel.
For our current use, the ray originating in the eye of the
observer and passing through the center of each square
is used to test for concealment along the ray. Rather
than analyzing each ray individually, a more efficient
approach is used.

For computer graphics applications, the z-buffer
algorithm [15] is used to compute the distance at which
each ray described above intersects a polygon in the
environment. This is the closest distance at which the
entity might hide while being behind the first object
intersected by the ray. The matrix containing these

distances is our depth map. Note that some rays may
not intersect any object. The depth at these rays is
infinite. For all but the coarsest buffer resolutions, the
z-buffer algorithm can be expected to be faster than a
sequential analysis of individual rays because it
processes each polygon in the environment only once.

The next step is to determine the size of the silhouette
of the entity at various relevant distances. At a
minimum, we compute the silhouette size at the
entity’s actual range from the observer minus the
radius of the region of interest. For better performance,
the silhouette size at multiple ranges can be considered.
The silhouette at the selected ranges is approximated as
a rectangular grid of “pixels”. For each possible
placement of a silhouette over the depth map, the
maximum of the silhouette’s range and all depths
under the silhouette is calculated. If the resulting
distance is less than infinity, then the ray that passes
through the bottom of the silhouette may contain a
concealment opportunity at some range greater than
this result. This ray is constructed starting at the
calculated minimum distance and is then intersected
with the set of “standable” surfaces. If an intersection
exists, it is tested for possible obstruction. The
generated position is concealed from the viewpoint of
the representative observer we started with. If there are
multiple observers, the position is now tested for
visibility to the others using one of the visibility
models previously described.

Figure 6: Intersecting the ray with the “standable”
surface to find a concealed position.

Consider the example depth map below. This depth
map corresponds to a view of a flat surface on which
two roughly rectangular obstacles are standing at
depths of approximately 40 and 60 units. “inf” stands
for “infinite” and corresponds to sky. The horizon is at
100 units. Assume that the entity is currently located
at a range of 60 units, and that the maximum distance
of interest is 10 units. Then the closest cover
opportunity of interest would be at 50 units. Assume
that the silhouette of the entity has a width of two
pixels and a height of three at a depth of 50 units.
Consider the 2x3 rectangle outlined in black. If the
entity were located with its feet along the ray passing
through the bottom center of this rectangle at any
distance nearer than 63 units, part of the entity would
be exposed to view. Thus ray casting to find a
concealed position will begin at 63 units. Consider the

gray rectangle. The maximum of the values inside the
rectangle is 42, but not only would a location at this
distance be outside the maximum distance of interest,
but at this range the entity might not fit behind the
rectangle being checked. For this reason, ray casting
for this rectangle will begin at range 50.

inf inf inf inf inf inf inf inf inf inf
inf inf inf inf inf inf inf inf inf inf
inf inf inf inf inf inf inf inf inf inf

inf inf inf inf inf inf 57 inf inf inf

inf inf inf 42 inf 58 59 60 inf inf
100 100 40 41 100 63 62 100 100 100

65 65 42 40 65 60 61 65 65 65

45 45 40 40 45 45 45 45 45 45
30 30 30 30 30 30 30 30 30 30
20 20 20 20 20 20 20 20 20 20

4.3. Sensor Grid Concealment Algorithm

Like the previous approach, the sensor grid approach
works by looking for concealed positions by sampling
the area around the entity. Unlike the previous
approach, the specific concealment opportunities
investigated are not determined by a square grid placed
over the view of the observer, but rather by a grid with
circular symmetry fixed with respect to the entity. This
grid acts like a set of sensors testing whether the
observer is visible from their location, thus the name of
the approach.

The first step in the algorithm is the calculation of the
absolute horizontal coordinates of each sensor from the
relative coordinates of the grid template. A ray can
then be traced vertically starting from the height of the
entity’s feet to intersect the closest standable surface.
If this surface is too high or two low such that it is
likely to be inaccessible, the sensor can be removed
from further consideration. Visibility is tested by
tracing multiple rays to the entity as if it were located
at the sensor, for example to the eyes and four corners
of a bounding square drawn from the perspective of the
observer. A sensor is hidden if no ray from any
observer viewpoint reaches the entity.

If any sensors are hidden, these represent concealed
positions. These positions can then be tested to ensure
that they are “standable” and unobstructed.

5. Implementation

The sensor grid approach was implemented on top of
America’s Army version 1.6. In addition to using the
grid locations as candidate concealed positions, they
were used to plan a path to the concealed position, by

searching for paths between the entity’s location and
concealment that are either straight lines or two-
segment paths via the position of a second sensor. The
concealment testing and motion planning running on
top of the standard game proved to be nearly
instantaneous on our tests on a laptop with 1.7 GHz
Pentium IV and Geforce4 440 Go graphics card.
Informal testing showed successful hiding in
environments featuring various types of objects
including as rocks, trees, vehicles, and buildings.

Figure 7: Construction of the sensor grid. (Left)
Five circles of sensors uniformly spaced in depth
and angle. (Right) The same sensors staggered in
angle to form the sensor grid that was implemented.
Note that the area closest to the entity is most
densely covered by sensors (approx. 1.5m spacing
close in versus 3m at the edge of the grid).

6. Extensions and Optimizations

6.1 Extension: Large Numbers of Observers

Generally, there will be more than one observer for the
algorithms to deal with. When the number of
observers is sufficiently small and their positions are
known, we can represent them by the list of locations
of their eyes. When there is a large number of
observers or we only have a rough estimate of their
position, one possible approach is to select a small set
of representative viewpoints to deal with, for example,
two viewpoints on the edge of the observer-occupied
region of the space and one in the middle.

6.2 Extension: Partially-Transparent Polygons

We have assumed that polygons in the environment are
either blocking or not blocking in their entirety. But a
traditional trick is to model objects with a lacy, open
structure (e.g. a tree branch) as a single polygon
overlaid with a partially-transparent (alpha) texture.
Taking partially-transparent polygons into account is
straightforward for the depth map and sensor grid
approaches, though it naturally involves extra
computation to determine whether the precise location
where a ray intersects a polygon is transparent. In the
case of the shadow volumes, there is an additional,

possibly large, increment in the complexity of the
geometry of the shadowed region. As environmental
models become larger and involve greater numbers of
smaller polygons, there is a trend towards modeling
even fine structures with polyhedra instead of
transparent textures. This will make the expedient
solution of treating partially-transparent polygons as
either completely blocking or completely transparent
increasingly acceptable.

6.3 Extension: Computing Cover Opportunities

“Cover” implies protection from fire while in the
covered position, whereas “concealment” merely
implies that one cannot be seen. With only very rare
exceptions (e.g. bullet-proof glass), all covered
positions are concealed, but not vice versa. When the
assumption that some subset of environment polygons
block fire is an acceptable approximation, all of the
algorithms we present can be applied to compute
positions that provide cover from direct fire, i.e. from
projectiles that travel on trajectories that approximate
straight lines. This is accomplished simply by running
the algorithms on the set of fire-blocking polygons,
instead of the set of opaque polygons.

When the algorithms are applied to the computation of
cover, the assumption that fire is blocked by polygons
is at best an approximation. Polygons are infinitely
thin and cannot themselves block fire. A completely
realistic computation of cover would therefore involve
the details of the velocity and material of the projectile,
the stopping power of the material, and the length over
which the trajectory intersects the material. The
algorithms described in this paper cannot be trivially
extended to handle ballistics to this degree of accuracy.
Note that this concern does not affect their application
for the computation of concealment. Also, one might
still consider using the algorithms presented here in a
preprocessing step to determine promising candidates
for a more accurate cover computation.

6.4 Extension: Multiple Postures

If the model of the entity is capable of adopting more
than one posture (e.g. standing, crouching, prone), the
most straightforward way to take this into account is to
handle each posture separately, while keeping track of
the posture that corresponds to each concealment
opportunity. Further investigation may yield
optimization opportunities.

6.5 Optimization: Use of Graphics Hardware

The raster/depth map approach requires computations
very similar to those used to render a view of the
environment for a human user. These computations

are normally delegated to a specialized graphics board
for normal rendering, and in fact it may be possible to
do the same for the algorithms described here. Note
however that bandwidth from current graphics boards
back to the main CPU is quite limited, and this
consideration may force the computations to be done
by the CPU.

6.6 Optimization: Amortized Ray Casting

When multiple rays are cast to determine visibility,
note that there is no absolute need to cast all these rays
in one agent decision cycle. Instead, the most critical
of the rays may be cast first, for example visibility of
the top of the head, and an initial choice of concealed
position may be made on that basis. In later decision
cycles, additional rays can be cast, and the agent can
re-plan its motion if it determines that its initial choice
was bad.

7. Analysis and Conclusions

The visibility models presented can be used directly as
a conservative (from the point of view of the hiding
entity) acquisition model, i.e. if any part of the entity is
visible, then the entity can be considered acquired as a
target. Note that entertainment products and many
simulations treat target acquisition as an atomic
process, i.e. the target is acquired at all levels from
detection to identification simultaneously.
Alternatively, the algorithms could be easily modified
to produce an estimate of the visible surface area of an
entity that could be incorporated into the variant of
Johnson’s probabilistic detection model presented in
[11].

In terms of performance, i.e. the accuracy with which
the exposed surface of the entity model is computed, it
should be clear that the object space approach is the
best, followed by the raster approach, with the multiple
ray casting approach generally being most prone to
failure. All approaches can clearly exceed the
performance of the single ray cast of the traditional
line-of-sight. We call failures of the visibility model
Type I if they label an entity is visible when it is not,
and Type II if the reverse is true.

Visibility Possible Errors
Model Type I Type II

Object Space no no
Raster no yes
Multiple Ray yes yes

Improved performance generally comes with increased
computational cost. In general, one would expect the
object space approach to cost more than the raster

approach and the the raster approach to cost more than
multiple ray casting. But clearly if as the raster
becomes finer and finer (higher and higher resolution),
eventually it must overtake the object space approach
in computational cost. Likewise, the raster can be
expected to cost more than one or two ray casts.
However, as the number of ray casts grows, at some
point a sufficiently coarse raster will be cheaper. After
all, computation of the raster with the z-buffer
algorithm involves finding the set of polygons that may
affect visibility only once, whereas each ray cast must
perform this task.

All of the algorithms we discuss have in common that
they rely on “observer’s eye views”, i.e. on the
computation of what can or cannot be seen by a
particular observer. Obviously, this is not a realistic
assumption, though clearly human beings are capable
of estimating what another person is able to see to
some extent [7]. Nonetheless, this assumption is
typical of engineering approaches to concealment
detection, and we make it as well.

More realistic models of concealment finding that
avoid computing visibility from an observer’s point of
view are clearly desirable. For example, it may be
possible to build general techniques for hiding based
on a depth map computed from the agent’s own point
of view. The agent might detect the presence of object
edges as discontinuities in depth and move so as to
occlude the observers with the object. In environments
containing familiar cover- and concealment-providing
objects like boulders, trees, or foxholes, object
recognition (perhaps simulated simply by object
labeling) should be included.

Additional investigation should be done to determine if
an additional layer of processing on top of the raster
visibility algorithm described here could yield a new
empirical predictive model of the target acquisition
ability of the human eye that is superior to Johnson’s
[13]. Such an algorithm could handle cases when the
entity’s surface is visible to the observer, but is not
detectable because of shadows or camouflage.

Finally, the asymmetric manner in which multiple
observers are handled by the depth map algorithm may
lead to failure to find existing concealment
opportunities when the observers are widely dispersed.
Further research is necessary to address this issue.

Computing visibility is already a major component of
the computational budget devoted to AI for both
military simulations and entertainment products.
Nonetheless, we believe that further investment in
perceptual modeling, together with careful algorithm
optimization, can yield large benefits.

8. Acknowledgements

This work was supported by funds from the Naval
Postgraduate School, the Navy Modeling and
Simulation Management Office, and the U.S. Army
Training and Doctrine Analysis Center, Monterey.

9. References

 [1] Chin, N. and Feiner, S., “Fast Object-Precision

Shadow Generation For Area Light Sources Using
BSP Trees.” Proceedings of the 1992 Symposium
on Interactive 3D Graphics. March 1992.

[2] Chrysanthou, Y. and Slater, M., “Shadow Volume
BSP Trees for Computation of Shadows in
Dynamic Scenes.” paper presented at the 1995
Symposium on Interactive 3D Graphics.
Monterey, CA, 1995.

[3] Schneider, P. and Eberly, D., Geometric Tools for
Computer Graphics, Morgan Kaufman, 2002.

[4] Liden, L., “Strategic and Tactical Reasoning with
Waypoints.” AI Game Programming Wisdom. pp
211-220. Charles River Media, 2002.

[5] Reece, D., “Movement Behavior for Soldier
Agents on a Virtual Battlefield.” Presence, Vol.
12, No. 4, pp. 387—410, August 2003.

[6] Reece, D., Dumanoir, P., “Tactical Movement
Planning for Individual Combatants”, Proceedings
of the 9th Conference on Computer Generated
Forces and Behavioral Representation, 2000.
Available at http://www.sisostds.org.

[7] Kelly, J., Beall, A., and Loomis, J., “Perception of
Shared Visual Space: Establishing Common
Ground in Real and Virtual Environments”, to
appear in Presence.

[8] Richbourg, R., and Olson, W., “A Hybrid Expert
System that Combines Technologies to Address
the Problem of Military Terrain Analysis,” Expert
Systems with Applications, Vol. 11, No. 2, pp.
207—225, 1996.

[9] Latombe, J., Robot Motion Planning, Kluwer
Academic, 1991.

[10] Morgan, D., “Algorithmic Approaches to Finding
Cover in Three-Dimensional Virtual
Environments”, Master’s Thesis, Naval
Postgraduate School, 2003. Available at
http://www.movesinstitute.org

[11] Champion, D., Fatale, L., and Krause, P., “Effects
of Vegetation on Line-Of-Sight (LOS) for
Dismounted Infantry Operations”, TRAC White
Sands Technical Report TRAC-WSMR-TR-99-
001(R), June 1999.

http://www.sisostds.org/
http://www.movesinstitute.org/

[12] Epic Games, UnrealScript Source to “Unreal
Tournament”, 1999.

[13] Johnson, J. and Lawson, W., “Performance
Modeling Methods and Problems”, Proc. of the
IRIS Imaging Systems Group, Jan. 1974.

[14] Berg, M., van Krevald, M., Overmars, M., and
Schwarzkopf, O., Computational Geometry:
Algorithms and Applications (2nd Ed.), Springer,
2000.

[15] Foley, J., van Dam, A., Feiner, S., and Hughes, J.,
Computer Graphics: Principles and Practice in C
(2nd Ed.), Addison-Wesley, 1995.

Author Biography

CHRISTIAN DARKEN is an Associate Professor of
Computer Science at the Naval Postgraduate School,
where he also collaborates intensively with the
MOVES Institute. Previously he was Project Manager
of the Decision Support Systems project and Senior
Member of Technical Staff at Siemens Corporate
Research in Princeton, NJ, where he was variously
associated with the Learning Systems, Adaptive
Information and Signal Processing, and Software
Engineering Departments. He was also a programmer
of one of the first commercial first-person perspective
massively-multiplayer games. He received his Ph.D. in
Electrical Engineering from Yale University in 1993,
and previously received the M.S. and M.Phil. in
Physics from the same institution.

