
Efficient and Dynamic Response to Fire

d

8
S

Mos
gett
obv
gam
algo
has
algo
imm
both

Takin
Howe
It is a
invest
know
al.).
and ef
use of
person
movin
minim

The a
that s
shoote
the cu
disting
Game
proble
cover,
route t

This p
agents
of the
hostile
realist
constr
Strictl
conce
Christian J. Darken

MOVES Institute and
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

cjdarken@nps.edu
Abstract
t first-person shooter game AI's are poor at qu

ing out of lines of fire. AI agents that pas
ious opportunities to hide or take cover can r
e's immersiveness. We will present the sensor
rithm that can be used to address this problem
been implemented on top of America's Army
rithm performs a focused run-time search i
ediate vicinity of the agent. This allows it
 fast and to react to changes in the environmen

Background
g cover is a universal human response to
ver, it is not innate; children must learn t
lso not totally understood; psychologists a
igating a critical part of hiding, which is w
of what other people can or cannot see (K
Nonetheless, nearly everyone is able to q
fectively duck to safety when threatened
 cover is also not purely defensive in nat
 can be taught to take advantage of cove
g to make invisible shifts in their position
ize their exposure to danger when shootin

bility to use cover effectively is one of th
eparate the best real players in first-
rs from the average players. Unfortuna
rrent state of gaming it is also one of the w
uish between live players and game

 agents do not use cover effectively. T
ms include running right by good sou
 and failing to consistently take the mos
o safety.

aper describes an algorithm that allows so
 to perceive and exploit opportunities to d
 sight of a set of “observers” (general
 forces that might shoot at the agent). The
ic short-term “react to fire” behavior, rath
ucting a concealed path to a specific
y speaking, the algorithm as described
alment rather than cover, but extens

David J. Morgan

Operations Group,
National Training Center

U.S. Army
Fort Irwin, CA 92310-5107
avid.j.morgan@us.army.mil
ickly
s up
uin a
 grid
, and
. The
n the
to be
t.

 threat.
o hide.
re still
hat we
elly et.
uickly
. The

ure. A
r when
 and to
g.

e skills
person
tely in
ays to

agents.
ypical

rces of
t direct

ftware
uck out
ly, the
 goal is
er than
 goal.
 finds
ion to

approximate cover findin
performs a focused dyna
the immediate vicinity of
be both fast and to react t
the environment that oc
describe some related
literature. Then, we desc
high level and then in de
details of our specific
America’s Army. We c
optimizing and extendin
previously described som
algorithm (Morgan 2003)

Relat
Previous approaches to
searching a fixed set o
Often this is the set
movement.

Typically, navigation
resolution shooter game
locations we call “wayp
point A to point B by
waypoint. Then the age
waypoint until a waypoin
waypoint set may be sele
games based on the Unre
selected by various alg
2000). It was early recog
the computational requ
waypoint set manageable
possible (Rabin 2000). Si
so commonly available, it
for determining places
2000)(van der Sterren 200

The primary advantage o
is ease of implemen
computational complexit
benefit is only gained w
small, and when it is sma
Gregory Paull

Secret Level Inc.
70 Market St., Suite 1015
an Francisco, CA 94102
greg@secretlevel.com
g is discussed. The approach
mic (i.e. run-time) search in
 the agent. This allows it to
o changes in the geometry of
cur during play. We first
techniques already in the
ribe the algorithm, first at a
tail. Next, we describe some
implementation on top of

onclude with some ideas for
g the algorithm. We have
e aspects of the sensor grid

(Darken 2004).

ed Work
the hiding problem involve
f potential hiding locations.
of waypoints used to plot

is accomplished in high-
s by the use of a set of
oints”. An agent gets from
moving from A to a nearby
nt moves from waypoint to
t close to B is reached. The
cted by hand, as is typical of
al engine, or the set may be

orithms (Stout 2000)(Snook
nized that one key to keeping
irements of searching the
 was to keep it as small as
nce waypoint infrastructure is
 seems only natural to reuse it
to hide (Reece 2003)(Reece
2).

f waypoint-based techniques
tation and low run-time
y. Unfortunately, the latter
hen the set of waypoints is
ll, the likelihood that the best

place to quickly duck out of fire is a waypoint is also
small. To see why this is so, consider a map consisting
of an open plane with one tall rock sitting in the center.
By appropriately placing the observer and the hiding
agent, one can make virtually any point the nearest
place to hide! An additional difficulty, and one that
will become more important in the future, is that a
sparse set of potential hiding places fixed in advance is
especially vulnerable to becoming invalid in dynamic
environments because of vehicle motion, destruction of
buildings, and creation of new hiding places such as
piles of rubble, to name a few examples. Thus
waypoint-based techniques typically result in agents
that can behave very counter-intuitively when
searching for cover.

In military simulations, space is typically represented
by a fine rectangular grid (Reece 2003) (Reece 2000)
(Richbourg and Olson 1996). This avoids the
difficulties caused by a sparse spatial representation as
described above, but at the cost of computational
complexity that may be beyond the budget of many
games. The memory required to store the grid may
also be an issue for very constrained computational
platforms, like game consoles.

Sensor Grid Overview
The sensor grid approach differs from its predecessors
in that the set of possible hiding places is not fixed, but
is instead generated dynamically at run-time. This
allows it to be relatively dense close to the agent and
sparse further out, while keeping the total size of the
set small. Thus, this approach has the potential to
provide some of the benefit of
a large set of potential hiding places while avoiding the
computational complexity. Additionally, this approach
mirrors the fact that humans can generally perceive
nearby opportunities to hide more easily than ones in
the distance, and furthermore, the nearer ones are more
likely to be useful.

The sensor grid approach takes its name from the fact
that the set of potential hiding places that are tested by
the algorithm is fixed relative to the agent. It is as if
the agent had a collection of observer-detecting sensors
fixed with regard to the agent and one another moving
wherever the agent moves. A simplified overview of
the algorithm is provided in Figure 1. A complete
description is given in the next section.

Figure 1: Top-down diagram illustrating the sensor
grid approach. The agent (blue) is at right and a single
observer (red) is at left. The array of senors (plus
signs) surrounds the agent. A single vision-obstructing
object is present (the green square). If a sensor cannot
see the enemy, its location is hidden (bold plus signs).
The agent chooses the nearest hidden sensor that is
accessible (e.g. not inside an object),and moves there
(green arrow).

Algorithmic Details

We now step through the sensor grid algorithm in
detail. Details specific to the implementation of
America’s Army are left for the next section.

1. Find observers. The exact position of all
observers (e.g. hostiles) is accessed.

2. Compute sensor locations. A sensor is chosen
for processing. We use a sensor grid consisting of five
staggered concentric rings of ten sensors each plus one
at the agent’s current position (in case it can hide
simply by adjusting its posture), for a total of 51
sensors. The sensors closest to the agent are about 1.5
meters apart, while those furthest from the agent are
about 3 meters apart. The absolute location of each
sensor in the horizontal plane is determined by adding
the sensor’s position relative to the agent to the agent’s
absolute position.

3. Find ground level. The next step is to determine
where ground level is at each sensor’s horizontal
location. This part is tricky and error-prone, since a
vertical line at the sensor’s horizontal position may
intersect multiple objects from the environment. We
limit our search with two biases. First, we limit our
search to hiding places that are roughly at the same
height as the agent. Second, since it is generally easier
to move down then up, we prefer hiding places that are
at the agent’s height or below.

In the vertical plane containing the agent’s location and
the sensor, two 45 degree cones are constructed with
the agent’s location at the apex. The interior of the
cones is considered close enough to the agent’s height,
and this “acceptable region” (see Figure 2) is
augmented close to the agent to allow him to jump
down a distance not exceeding its own height. At the

sensor’s position and starting from the agent’s height, a
ray is traced downward until it strikes either a polygon
or the edge of the acceptable region. If it strikes a
polygon, this height is taken to be ground level. If not,
the downward trace is repeated starting this time from
the upper edge of the acceptable region. If both traces
fail to strike a polygon, the corresponding sensor is
eliminated from further consideration.

Figure 2: Diagram illustrating the edges of the
"acceptable region" for finding ground level. The blue
figure represents the agent's position. The heavy line
represents a simple terrain mesh (though the region is
defined and processed identically inside buildings,
etc.). The straight lines represent the boundaries of the
region. Note that to the left of the agent, ground level
would be found on the first downward trace, but to the
far right, ground level would be found only on the
second trace.

4. Determine standability. Each sensor location is
now tested for “standability”, i.e. whether the agent can
stand there without sliding away. A particular worry is
that the location may be on the side of a steep cliff, for
example. We avoid cases like this by requiring that the
surface be within 45 degrees of horizontal. If the
surface is not standable at a given sensor, it is
eliminated from further consideration.

5. Determine visibility. We now check whether
each sensor location is hidden from the observers.
This is done by tracing lines of sight from the
observers to various points on where the agent’s body
would be, were it located at the sensor location in one
of the postures that the agent can adopt, e.g. “prone”,
“crouching”, or “standing”. For each posture, we
check the visibility of three points at head height: one
precisely at the position of sensor, and two displaced
one collision radius to either side (see Figure 3).

Figure 3: The nine points tested to determine visibility
at a candidate hiding position. An alternative choice
could include dropping the points to either side of the
median line to the position of the shoulders in the
corresponding posture.

Starting with the lowest posture, the visibility of all
three points to each observer is checked. If any point
is visible to any observer, the sensor is eliminated from
further consideration. If all points at a particular
posture are hidden, we proceed to the next higher
posture, keeping note of the highest posture that is
hidden.

6. Check accessibility. A good hiding place that we
cannot quickly get to (e.g. inside a solid object, on the
other side of a long wall) is not useful for ducking out
of fire. We first check the straight-line accessibility of
each sensor. This check determines if an upright
cylinder of the same radius as the agent can move from
the agent’s current position to the sensor without
intersecting any objects. If volumetric traces are not
supported by the game engine, multiple ray traces, e.g.
of the same sort used in step 5 can be used as an
approximation. If the check fails, i.e. the straight-line
path is obstructed, we then check whether there is
some other straight-line accessible sensor, from which
the current sensor is straight-line accessible. If a two-
segment path is not found by this method, the sensor is
removed from further consideration.

7. Move. The agent now selects the sensor whose
path found in step 6 is the shortest. The agent moves to
this sensor’s location via this path. Upon arrival, it
adjusts its posture to the highest posture that is hidden
at this location, determined in step 5.

Unreal Implementation
The sensor grid approach was implemented on top of
America’s Army version 1.6, which uses Epic’s Unreal
Warfare engine. The code was written entirely in
UnrealScript. The core of the code is small, about 500
lines in length including comments. The concealment
testing and motion planning running on top of the
standard game proved to be nearly instantaneous on

Standing

Crouching

Prone

Collision Radius

our tests on a laptop with 1.7 GHz Pentium IV and
Geforce4 440 Go graphics card. Informal testing
showed successful hiding in environments featuring
various types of objects including as rocks, trees,
vehicles, and buildings. The grid as presented is too
coarse to guarantee the ability to navigate through
doorways. An extension to the algorithm presented
later (the inclusion of traditional waypoints in path
generation) might help solve this problem. A
screenshot from the demo is given as Figure 4.

Figure 4: The appearance of the agent inside the
America’s Army-based demo. The sensors are
visualized as white glowing spheres at ground level.

Optimizations

Incremental Sensor Processing
Currently all sensors are processed for each step of the
algorithm at once. However, since we want to go to
the closest hiding place anyway, each sensor could
potentially be processed independently starting from
those near the agent. If there is a straight-line path to
the candidate location, it could then be immediately
accepted without processing all the other sensors.

Amortized Ray Casting
When multiple rays are cast to determine visibility,
note that there is no absolute need to cast all these rays
in one agent decision cycle. Instead, the most critical
of the rays may be cast first, for example visibility of
the top of the head, and an initial choice of concealed
position may be made on that basis. In later decision
cycles, additional rays can be cast, and the agent can
re-plan its motion if it determines that its initial choice
was bad.

Extensions

Improving Firing Positions
The sensor grid algorithm has offensive uses. We
extended the agent to return fire after taking cover.
The agent does this simply by adjusting his posture if
possible. Otherwise, he moves back along whatever is
between himself and the observer until the observer
becomes visible and then commences firing.

Computing Cover Opportunities
“Cover” implies protection from fire while in the
covered position, whereas “concealment” merely
implies that one cannot be seen. With only very rare
exceptions (e.g. bullet-proof glass), all covered
positions are concealed, but not vice versa. When the
assumption that some subset of environment polygons
block fire is an acceptable approximation, the
algorithm can be applied to compute positions that
provide cover from direct fire, i.e. from projectiles that
travel on trajectories that approximate straight lines.
This is accomplished by running the algorithm on the
set of fire-blocking polygons, instead of the set of
opaque polygons.

When the algorithms are applied to the computation of
cover, the assumption that fire is blocked by polygons
is at best an approximation. Polygons are infinitely
thin and cannot themselves block fire. A completely
realistic computation of cover would therefore involve
the details of the velocity and material of the projectile,
the stopping power of the material, and the length over
which the trajectory intersects the material. The
algorithm described in this paper cannot be trivially
extended to handle ballistics to this degree of accuracy.
Note that this concern does not affect their application
for the computation of concealment. Also, one might
still consider using the algorithm presented here in a
preprocessing step to determine promising candidates
for a more accurate cover computation.

Integration with Waypoints
While the sensor grid was motivated as a replacement
for navigating to safety on a sparse waypoint graph
alone, a good set of waypoints can improve the
performance of the sensor grid. The simplest approach
is simply to extend the search for paths (step 6 above)
to sensor locations to include any nearby waypoints. It
might also be worthwhile not to count path segments
generated using waypoints against the maximum
allowed (two, as we have presented the algorithm).
This trick might be particularly useful in improving the
performance of the algorithm inside buildings and
similarly constrained environments.

Large Numbers of Observers
Generally, there will be more than one observer for the
algorithms to deal with. When the number of

observers is sufficiently small and their positions are
known, we can represent them by the list of locations
of their eyes. When there is a large number of
observers or we only have a rough estimate of their
position, one possible approach is to select a small set
of representative viewpoints to deal with, for example,
two viewpoints on the edge of the observer-occupied
region of the space and one in the middle.

Partially-Transparent Polygons
Typically, the ray traces provided by a game engine
assume that polygons in the environment are blocking
or non-blocking in their entirety. But a traditional trick
is to model objects with a lacy, open structure (e.g. a
tree branch) as a single polygon overlaid with a
partially-transparent (alpha) texture. Computing
whether the precise location where a ray intersects a
texture is transparent or opaque is possible, but
computationally expensive. As environmental models
become larger and involve greater numbers of smaller
polygons, there is a trend towards modeling even fine
structures with polyhedra instead of transparent
textures. This problem should therefore become less
and less significant over time.

Conclusions
We have presented the sensor grid algorithm, an
approach to finding nearby hiding places that is
efficient and robust against changes to the environment
that occur during play. The algorithm is fairly
straightforward to implement, and it seems to generally
find good places to hide.

Like most related techniques, the sensor grid algorithm
sometimes makes mistakes. These mistakes can be in
either direction. If the points checked for visibility
(Figure 3) are occluded, but most of the rest of the
agent is not, the algorithm will falsely believe that the
agent is hidden. Conversely, if a checked points are
visible, but very little of the agent is showing (imagine
an unlucky position behind some foliage), then the
algorithm will believe a location exposed that is, at
least for practical purposes, actually hidden. We have
previously discussed other algorithmic approaches to
hiding that are less prone to error, but are more
complex both in terms of implementation and in terms
of consuming computation cycles (Morgan 2003)
(Darken 2004).

Computing lines of sight is already a major component
of the computational budget devoted to AI for many
computer games. Nonetheless, we believe that further
investment in perceptual modeling, together with
careful algorithm optimization, can yield large
dividends of compelling behavior.

Acknowledgements
This work was supported by funds from the Naval
Postgraduate School, the Navy Modeling and
Simulation Management Office, and the U.S. Army
Training and Doctrine Analysis Center, Monterey.

References
Darken, C. 2004. “Visibility and Concealment
Algorithms for 3D Simulations”, Proceedings of
Behavior Representation in Modeling and Simulation
(BRIMS) 2004.

Kelly, J., Beall, A., and Loomis, J. To appear.
“Perception of Shared Visual Space: Establishing
Common Ground in Real and Virtual Environments”,
to appear in Presence.

Morgan, D. 2003. “Algorithmic Approaches to Finding
Cover in Three-Dimensional Virtual Environments”,
Master’s Thesis, Naval Postgraduate School.
Available at http://www.movesinstitute.org

Rabin, S. 2000. “A* Speed Optimizations”, Game
Programming Gems, Charles River Media, pp. 272—
287.

Reece, D., Dumanoir, P. 2000. “Tactical Movement
Planning for Individual Combatants”, Proceedings of
the 9th Conference on Computer Generated Forces and
Behavioral Representation. Available at
http://www.sisostds.org.

Reece, D. 2003. “Movement Behavior for Soldier
Agents on a Virtual Battlefield.” Presence, Vol. 12,
No. 4, pp. 387—410, August 2003.

Richbourg, R., and Olson, W. 1996. “A Hybrid Expert
System that Combines Technologies to Address the
Problem of Military Terrain Analysis,” Expert Systems
with Applications, Vol. 11, No. 2, pp. 207—225.

Snook, G. 2000. “Simplified 3D Movement and
Pathfinding Using Navigation Meshes”, Game
Programming Gems, Charles River Media, pp. 288—
304.

Stout, B. 2000. “The Basics of A* for Path-Planning”,
Game Programming Gems, Charles River Media, pp.
254—263.

van der Sterren, W. 2002. “Tactical Path-Finding with
A*”, Game Programming Gems 3, Charles River
Media, pp. 294—306.

http://www.movesinstitute.org/
http://www.sisostds.org/

