
Heuristic Speed-Ups for Learning in Complex Stochastic Environments

Christian J. Darken
MOVES Institute

Department of Computer Science
Naval Postgraduate School

Monterey, CA 93943

Abstract

We describe a novel methodology by which a
software agent can learn to predict future events
in complex stochastic environments together with
an important heuristic-based acceleration technique
for computing the prediction. This speed-up en-
ables us to use much more context in our predic-
tions than was previously possible[Darken, 2005].
We present results gathered from a first prototype
of our approach.

1 Introduction
A significant challenge for intelligent software agents is mak-
ing them proactive, i.e. able to understand their environment
to the degree that they are able to predict what is likely to hap-
pen next and can therefore take appropriate measures. The
ability to predict likely next events can in principle be con-
verted into intelligent action selection along the lines sug-
gested by[Sutton and Barto, 1981]. We propose that simple,
transparent learning schemes may enable agents to predict the
likely course of events. The prediction algorithm has been
previously described in[Darken, 2005], but the acceleration
techniques and results they enable are new.

In order to explore our hypothesis, we have created a sim-
ple game in the RPG (role-playing game) family. We then
implemented a sensory interface that passes percepts coded
in a first-order logic subset to the agent. The agent then at-
tempts to predict the next percept that it will see. This envi-
ronment is both stochastic and complex. ”Stochastic” implies
that future percepts are not a function of the sequence of pre-
vious ones. This environment may be considered complex
in many senses, beginning with the fact that, although it is a
small and simple game as such games go, its state space is
very large. More significant, we believe, is the fact that there
is no obvious way for the agent to sum up its information
about the world in a representation of fixed dimension, i.e.
that some aspects of first-order logic are apparently needed
in order to accomplish the task. Our impression is that learn-
ing algorithms that can succeed in stochastic domains without
obvious representations of fixed dimension are of interest for
many domains stretching far beyond interactive entertainment
applications.

2 Related Work
Anticipation of hostile unit behavior in the context of com-
puter games has previously been addressed in[Laird, 2001],
who had the agent apply its own action selection procedure
based on the information probably possessed by the hostile
unit in order to guess what the hostile would do. In this work,
we are attempting to learn to anticipate without hand-coded
rules. Further, while hostile unit behavior is one of the things
we would like to predict, it is not the only thing.

We have not been successful in finding known algorithms
that we can productively compare with our approach. Logical
rules, including some types of predictive rules, can be learned
by algorithms such as FOIL[Mitchell, 1997]. However, these
algorithms assume a deterministic domain. Hidden Markov
Models[R. Duda and Stork, 2001] are well suited to stochas-
tic domains, but assume a finite state space, and in practice
state spaces that are finite but large are problematic. We are
more optimistic about the scaling of variable order Markov
models[R. Begleiter and Yona, 2004], but these also assume
a finite state space.

After submitting this paper, the reviewers suggested that
several recent models may be related to the one presented
in this paper. We have not been able to follow up these
suggestions in as much detail as we would have liked, but
we offer the following preliminary comments. Predictive
State Representations[Singhet al., 2003] and Schema Learn-
ing [Holmes, 2005] are recent approaches to prediction in
stochastic environments. Both are focused on predicting the
results of agent actions. We believe both approaches are cur-
rently limited to finite state spaces, and we are aware of tests
on only very small domains (tens of states). Relational Re-
inforcement Learning (for example,[Gretton and Thiebaux,
2004]) also considers relational, stochastic domains like the
approach described in this work, though it appears to be fo-
cused on action selection (as is conventional reinforcement
learning) rather than prediction.

3 Benchmark Environment
Our benchmark environment is a simple virtual environment
with a text interface modeled after the DikuMUD family of
combat oriented MUD’s. This family of games is instantly
comprehensible to a player of World of Warcraft or Everquest
2, to name two current exemplars, and is arguably a progen-



Paperville
Terrified eyes peer from every window

of this besieged hamlet.
Contents: pitchfork, wand, Conan

get pitchfork

You get the pitchfork.

equip pitchfork

You equip the pitchfork.

w

The Eastern Meadow
All the grass has been trampled into

the dirt, and tiny footprints are
everywhere.

Contents: Conan

Figure 1: The beginning of a session with the benchmark en-
vironment as it appears to a human player named Conan.

itor of these systems. Players of this type of game assume
the role of a young adventurer. The goal of the game is to
expand the power of one’s in-game avatar to the maximum
extent possible. This goal is primarily accomplished by slay-
ing the monsters that roam the virtual environment. Slaying
monsters results in improvements to the avatar’s capabilities
through an abstracted model of learning (“experience points”)
and also though the items (“loot”) that the slain monsters drop
or guard, which either consist of or may be traded for more
powerful combat gear.

The benchmark environment consists of 19 locations, four
monsters of three different types, and four different weapon
types, of which there may be any number of instantiations.
Growth of combat capabilities through experience has not
been modeled, therefore, improved capability comes only by
acquiring more powerful weapons. The environment as a
whole may be conceived of as a discrete event system with
a state that consists of the Cartesian product of some number
of variables. The system remains in a state indefinitely until
an event is received, at which time it may transition to a new
state.

The benchmark environment together with networking and
multiplayer infrastructure was coded from scratch in Python.
The system uses a LambdaMOO-like method dispatch mech-
anism to determine which game object should process a
player action. An unusual feature is the ability to provide
output in English text and/or in a first-order logic fragment,
as shown in Figures 1 and 2.

4 Perceptual Model
We have implemented text-based interfaces to allow both hu-
mans and software agents to interact with the benchmark en-
vironment. The human interface consists of English text. We
describe the agent interface below.

(A 40.6979999542 look)
(+ 40.7079999447 location pitchfork

Paperville)
(+ 40.7079999447 location wand

Paperville)
(+ 40.7079999447 location Conan

Paperville)

get pitchfork

(A 44.6440000534 get pitchfork)
(E 44.6440000534 get Conan pitchfork)
(- 44.6440000534 location pitchfork

Paperville)
(+ 44.6440000534 location pitchfork

Conan)

equip pitchfork

(A 47.6080000401 equip pitchfork)
(+ 47.6080000401 equipping Conan

pitchfork)

w

(A 51.2130000591 w)
(E 51.2130000591 go Conan west)
(- 51.2130000591 location wand

Paperville)
(- 51.2130000591 location Conan

Paperville)
(+ 51.2130000591 location Conan

The_Eastern_Meadow)

Figure 2: The beginning of the same session described in Fig-
ure 1 with the benchmark environment as it would appear to
a software agent named Conan. The first four percept fields
are: type, time stamp, percept name. These are followed by
the percept arguments, if any.



Perception for software agents in the benchmark environ-
ment is modeled as direct access to a subset state variables
and system events. The subset of visible events and variables
depends upon the location of the agent in the environment, i.e.
an agent receives information only about occurrences in his
immediate location. The agent’s own actions also generate
percepts. Thus, four types of percepts are required. ’A’ repre-
sents agent actions. ’E’ represents events. ’+’ represents the
beginning of a time interval in which a variable was sensed to
have a particular value. When the variable changes value, or
it can no longer be sensed, a ’-’ percept is received. We form
logical atoms from percepts whenever needed by appending
the percept type to the percept name to create a predicate (i.e.
a percept of type ’E’ with name ’location’ would correspond
to an atom with predicate ’locationE’) and taking the remain-
ing elements of the percept as the arguments of the predicate
(the time stamp is ignored). At any given time, we define the
“sensation” of the agent to be the set of all variables and their
values that are currently being sensed.

5 Prediction

After the agent is turned on for the first time, and percepts
start to arrive, a percept predictor is constructed on the fly, i.e.
the agent learns as it goes along, just like animals do. As each
percept is received, the new data is used to enhance (“train”)
the predictor, and the enhanced predictor is immediately put
to use to predict the next percept. Prediction depends upon a
few key notions. The first is the notion of a “situation”.

Our statistical one-step-ahead percept predictor is a func-
tion whose input is the percept sequence up to the time of
prediction and whose output is a probability distribution over
all percepts that represents the probability that each percept
will be the next one in the percept sequence. Of course, all
percepts in the percept sequence are not equally useful for
prediction. In particular, one might expect that, as a general
rule, more recent percepts would be more useful than older
ones. On this basis, we discriminate the “relevant” subset of
the percept sequence, and ignore the rest. We define a recency
thresholdT . For predictions at timet, a percept in the percept
sequence is relevant if either its time-stamp is in the interval
[t − T, t], or it is a ’+’ type percept whose corresponding ’-’
percept has not yet been received (this would indicate that the
contents of the percept are still actively sensed by the agent).
Given the set of relevant percepts, we produce the multiset of
relevant atoms (multisets are sets that allow multiple identi-
cal members, also known as bags) by stripping off the times-
tamps and appending the type to the predicate to produce a
new predicate whose name reflects the type. We call these
relevant atom multisets “situations”.

Our predictor function takes the form of a table whose left
column contains a specification of a subset of situations and
whose right column contains a prescription for generating a
predictive distribution over percepts given a situation in the
subset. The table contains counters for the number of times
each left column and right column distribution element is en-
countered. We have investigated two different methods of
specifying subsets and generating the corresponding predic-
tions.

5.1 Exact Matching
In this technique, each left column entry consists of a single
situation. A new situation matches the entry only if it is iden-
tical (neglecting the order of the atoms). Each right column
entry consists of a distribution of situations. If a new situa-
tion matches a left column entry, the predicted percept distri-
bution is the list of atoms in the right-hand column together
with probability estimates which are simply the value of the
counter for the list member element divided by the value of
the counter for the situation in the left column.

As each percept arrives, it is used to train the predictor
function as follows. The situation as it wasat the time of the
arrival of the last perceptis generated and matched against all
entries in the left-hand column of the table. Because of how
the table is constructed, it can match at most one. If a match
is found, the counter for the entry is incremented. Then the
new percept is matched against each element of the predicted
percept distribution. If it matches, the counter for that ele-
ment is incremented. If it fails to match any element of the
distribution, it is added as a new element of the distribution
with a new counter initialized to one. If the situation matches
no left-hand column entry, a new entry is added.

Next, the current situation (including the percept that just
arrived) is constructed and matched against the left-hand col-
umn entries to generate the predicted distribution for the next
percept to arrive. If the situation does not match any entry,
there is no prediction, i.e. the situation is completely novel to
the agent.

An instructive example to illustrate the algorithm’s func-
tion can be found in[Darken, 2005].

5.2 Patterns with Variables
The above technique makes predictions that are specific to
specific objects in the environment. In environments where
an object may be encountered only once and never again,
for example, this is not very useful. By replacing references
to specific objects by variables, we produce a technique that
generalizes across objects. In this technique, left column en-
tries contain variables instead of constants. A new situation
matches the entry if there is a one-to-one substitution of the
variables to constants in the situation. A one-to-one substitu-
tion is a list of bindings for the variables, that has the property
that one and only one variable can be bound to one specific
constant. The reason for the constraint to one-to-one substi-
tutions is to ensure that each situation matches at most one
pattern (left column entry). This restriction is not necessary,
but it is convenient. Right column entries can also contain
variables in this model. Given a match of a pattern to a situ-
ation, the predicted percept distribution is given by applying
the substitution to the atoms in the right column distribution.
Note that it may be the case that some variables remain in the
prediction even after the substitution is applied.

As each percept arrives, it is used to train the predictor
function as follows. The situation is generated and matched
against all entries in the left-hand column of the table. It can
match at most one. If a match is found, the substitution (list
of variable-to-constant bindings) is kept, and the counter for
the entry is incremented. Then the substitution is applied to
each element of the predicted percept distribution, and the



percept is matched against it. If it matches, the counter for
that element is incremented. If it fails to match any element
of the distribution, it is “variablized” by replacing each con-
stant with the corresponding variable from the substitution,
and replacing each remaining constant with a new variable,
and then added as a new element of the distribution with a
new counter initialized to one. If the situation matches no
left-hand column entry, a new entry is added, consisting of
the situation with each constant replaced by a variable.

Note that one can conceive of interesting schemes that are
combinations of the two presented techniques. For example,
one might try to predict the next percept with an exact match-
ing model first, but if no prediction was available (or if the
prediction was based on too little data), one might revert to
a simultaneously developed variable-based predictor. Alter-
natively, one might design the environment so that percept
references to objects were either existentially quantified vari-
ables or constants. A hybrid model could be developed which
would then produce patterns with variables or constants based
on what was present in the percept. This places the burden of
deciding how the predictor should behave onto the percept
designer.

6 Accelerated Search
Initially we implemented a back-tracking depth-first search to
match situations to table entries. Using back-tracking search
and progressing linearly through the predictor table proved
too slow. We wanted to experiment with higher recency
thresholds. But a higher recency threshold corresponds di-
rectly to larger situations, and a great deal more time per-
forming backtracking search.

For the exact matching algorithm, it is the case that each
situation corresponds to a unique string which is the con-
stituent atoms (taken as lists of strings which are the predicate
and constant arguments) put into lexical order. These strings
are then placed in a hash table. Now a new situation can be
tested against the table by constructing its string and checking
the hash table.

For the variable pattern approach, simply sorting the atoms
will not work, as they contain variables whose names are not
significant. Our approach is to compute an invariant of the
situation pattern that does not depend on the names of the
variables. For each variable, we construct two lists of predi-
cates, the list of predicates where the variable appears as the
first argument and the list of predicates where the variable ap-
pears as the second. All of our predicates are binary. Were
this not the case, more lists could be used, or the higher de-
gree atoms reduced to a semantically equivalent set of binary
atoms. We then put this list of list pairs into lexical order
and then hash them into a table. Two situations that are iden-
tical up to substituting the names of variables must hash to
the same location in the table. Unfortunately, situations that
are different in more than just variable names can nonethe-
less hash to the same location, so a backtracking search must
be performed on each situation in the hash cell to determine
whether the match is genuine or not. Still, hash collisions
occur relatively rarely, and this approach is very much faster
than backtracking search over every row of the predictor ta-

ble.

6.1 Example
The following example provides proof that the “list of list
pairs” invariant, described above, is not sufficient to discrimi-
nate all situations that are legitimately different. Consider the
following situation description, as might appear as a left col-
umn entry in the variable pattern method. Only one predicate,
“P”, is used.

P(?v,?w)
P(?w,?x)
P(?x,?y)
P(?z,?y)

Constructing the two lists for each variable as described
above yields:

?v: [P] []
?w: [P] [P]
?x: [P] [P]
?y: [] [P P]
?z: [P] []

Here is a similar, yet different situation description.

P(?v,?w)
P(?w,?x)
P(?y,?x)
P(?z,?y)

And here is the corresponding list of list pairs.

?v: [P] []
?w: [P] [P]
?x: [] [P P]
?y: [P] [P]
?z: [P] []

After lexical sort, both cases become:

[] [P P]
[P] []
[P] []
[P] [P]
[P] [P]

7 Results
7.1 First Experiment
We created a software agent that takes random actions (one
every 0.25 seconds) and connected it to the benchmark en-
vironment. Since the action generator is not very intelligent,
many actions elicit what are essentially error messages from
the environment. We do not consider this a problem. In fact,
we would like the agent to learn when an action will be fruit-
less.

We describe the results of a typical run. For this run, per-
cepts were defined as relevant if they had been received in the
last 0.1 seconds or if they were in the agent’s current sensa-
tion. The agent was allowed to explore the environment for
about one and one quarter hours of real time while the learn-
ing algorithm ran concurrently. 38519 percepts were received
and processed during the run.



The exact matching approach produced 5695 predictors
(rows in the table). The approach with variables produced
only 952, much fewer, as might be expected.

Numeric results are given in Figures 3 and 4. The average
predicted probability of the percepts as a function of time is
presented in Figure 7. Note that by the end of the run, both
curves are fairly flat. The exact match curve is lower, but
increasing faster.

For the approach with variables, the prediction is consid-
ered correct if it matches the actual next percept (to within a
one-to-one variable substitution). Note that the agent’s own
actions, being randomly generated, were the most difficult
to predict. Neglecting type ’A’ percepts, the average pre-
dicted probability of all remaining percepts is 66.6 percent
for the exact match model and 70.5 percent for the model
with variables. This strikes us as reasonably high given the
fine-grained nature of the predictions, the simplicity of the
algorithm and the high degree of remaining irreducible ran-
domness in the environment caused by random movements
of monsters and outcomes of each attempted strike in com-
bat. A significant number of mistakes seemed to be caused
by forgetting of important percepts caused by the severe re-
cency threshold used (0.1 sec). We have found that the simple
table-based predictive model does not scale well to the re-
cency threshold of multiple seconds that would be seem to be
necessary to solve the problem without modifying the agents
perception to be more informative.

Detailed analysis of the top five types of errors for each
algorithm shows that both algorithms are strongly impacted
by the 0.1 sec recency threshold. The worst symptom is that
the algorithms are unable to predict combat-related messages
accurately because they can not tell that they are in combat.
They can not tell that they are in combat because there is noth-
ing in the sensation that indicates ongoing combat, and com-
bat messages are spaced at intervals of one to two seconds.

For the exact matching algorithm, the most common er-
rors stem from the simple fact that, being completely unable
to generalize, many situations look completely novel, even
at the end of the run. This difference can be clearly seen in
the histograms of the last 5000 prediction probabilities pre-
sented as Figures 5 and 6. The exact match algorithm has
more predictions with probability one than the variable-based
algorithm, but it also has more with probability zero, indicat-
ing the absence of a match with any table entry.

The variable-based approach scored better that the exact
matching algorithm overall. Nonetheless, the lack of predi-
cates for indicating object type in the benchmark environment
caused an interesting problem for this approach. For example,
this approach was unable to predict the results of attempts to
’get X’, and therefore had to hedge its bets between success
and an error message. This was no issue for the exact match
algorithm, as it could learn that ’get Troll’ would provoke an
error while ’get sword’ would succeed. Note that the addi-
tion of a ’portable’ predicate, for example, would mitigate
this problem.

7.2 Second Experiment
In the second experiment, a fresh run of the agent was per-
formed with the time between actions greatly increased (from

Type Avg. Probability Occurrences Error
A 7.65% 14488 65.5%
E 72.09% 14905 20.3%
+ 45.92% 4563 12.1%
- 69.28% 4563 6.9%

Figure 3: Performance summary for exact matching. The av-
erage predicated probability over all percepts was 44.43%.
Error is the expected fraction of the total number of predic-
tion errors for percepts of the given type.

Type Avg. Probability Occurrences Error
A 7.82% 14488 65.3%
E 66.39% 14905 24.5%
+ 65.12% 4563 7.8%
- 89.32% 4563 2.4%

Figure 4: Performance summary for patterns with vari-
ables. The average predicted probability over all percepts was
46.94%. Error is the expected fraction of the total number of
prediction errors for percepts of the given type.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: Prediction probability for the last 5000 percepts of
the run with constants. The black bars represent the predic-
tions of exactly 0 or 1.



0
200
400
600
800

1000
1200
1400
1600
1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6: Prediction probability for the last 5000 percepts of
the run with variables. The black bars represent the predic-
tions of exactly 0 or 1.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10000 20000 30000

Figure 7: Average prediction probability as a function of the
number of percepts received. White diamonds represent the
algorithm with variables and black squares the algorithm with
constants.

0.1s 2.1s
Exact Match 62.2% 57.3%

Variable Pattern 64.8% 62.3%

Figure 8: Performance summary on the second experiment
on all percepts except ’A’ type percepts.

0.25 seconds to 2.5 seconds between successive actions. The
reason for the increase was because at 0.25 seconds per action
and two seconds per combat round, the agent would attempt
up to four actions in between successive combat “blows”. The
combat messages were thus somewhat “buried”. This run was
longer than that of the previous experiment. It consisted of
170762 percepts received over 38 hours of real time.

Using the acceleration techniques described above, we
tested both 0.1 second and 2.1 second recency thresholds with
both the exact match and variable pattern techniques. Re-
sults on all percepts excluding ’A’ type percepts are presented
in Figure 8. As in the first experiment, the variable pattern
approach performs better. The additional context provided
by the higher recency threshold seems to hurt overall perfor-
mance rather than helping. Apparently the extra information
in the larger context is not enough to overcome the need for
more training data. However, these results are very new, and
we are still analyzing them in detail.

8 Discussion
A few comments on the structural characteristics of the meth-
ods presented in this paper are in order.

One very positive characteristic of them is that there is a
clear “audit trail” that can be followed when the agent makes
unexpected predictions. I.e. each row in the table can be
traced to a specific set of prior experiences that are related to
the predictions it makes in an obvious way. Many machine
learning techniques do not share this characteristic.

Note that the situations in the left column of the table di-
vide all possible percept sequences into a set of equivalence
classes, i.e. many percept sequences can map into a single
situation set. To the agent, only the sequence sets specified
in the left column of the table matter. It will never be able
to discriminate between different percept sequences that map
into the same sequence set. The temptation naturally arises to
make these sets as differentiated as possible by, for example,
increasing the recency threshold or using exact matching in-
stead of patterns with variables. But increasing the fineness of
the situation sets is a two-edged sword. While it does indeed
make it possible for the agent to discriminate between differ-
ent percept sequences that it could not differentiate before, it
also makes it increasingly rare that the agent visits situations
that it knows about. Figures 5, 6, and 7 illustrate this fact.

9 Future Work
Although we have not discussed it previously, note that it is
possible to extend the system as described to making predic-
tions aboutwhenthe next percept will be received in addition
to what the next percept will be along the lines described in
[Kunde and Darken, 2005].



A key direction for further investigation is improved pre-
dictive models and systematic exploitation of the predictions.
The technique described in this work is very limited in its
generalization capabilities. Unlike FOIL, which searches
through candidate atoms and includes only the most promis-
ing in the model, the current approach takes all atoms that
have passed the relevance test. It would be nice to have an
approach that could perhaps learn from experience which of
the relevant atoms were actually necessary to accurate predic-
tion.

While we take for granted that many special-purpose
schemes can be constructed which can improve agent behav-
ior based on the ability to predict future percepts, it seems
worth pointing out that one can search over the space of po-
tential courses of action using the predictive model and a
quality function to decide which course to adopt. This is a
homogeneous and general-purpose method of exploiting pre-
diction very similar in spirit to the model predictive control
techniques that are an established part of chemical engineer-
ing [Morari and Lee, 1997]. It has been explored within the
computer science literature as well[Sutton and Barto, 1981].

10 Acknowledgements
Partial funding for this work was provided by the U.S. Army
TRADOC Analysis Center (TRAC) Monterey and the Naval
Modeling and Simulation Management Office. The author
wishes to thank the anonymous reviewers for very helpful ref-
erences, comments and advice.

References
[Darken, 2005] C. Darken. Towards learned anticipation in

complex stochastic environments. InProc. Artificial Intel-
ligence for Interactive Digital Entertainment 2005, Marina
Del Rey, CA, 2005.

[Gretton and Thiebaux, 2004] C. Gretton and S. Thiebaux.
Exploiting first-order regression in inductive policy selec-
tion - extended abstract. InProc. of the ICML ’04 Work-
shop on Relational Reinforcement Learning, 2004.

[Holmes, 2005] M. Holmes. Schema learning: Experience-
based construction of predictive action models. InNeural
Information Processing Systems, 2005.

[Kunde and Darken, 2005] D. Kunde and C. Darken. Event
prediction for modeling mental simulation in naturalistic
decision making. InProc. BRIMS 2005, Universal City,
CA, 2005.

[Laird, 2001] J. Laird. It knows what you’re going to do:
adding anticipation to a quakebot. In Jörg P. Müller,
Elisabeth Andre, Sandip Sen, and Claude Frasson, edi-
tors,Proceedings of the Fifth International Conference on
Autonomous Agents, pages 385–392, Montreal, Canada,
2001. ACM Press.

[Mitchell, 1997] Tom M. Mitchell. Machine Learning.
McGraw-Hill, Boston, 1997.

[Morari and Lee, 1997] M. Morari and J. Lee. Model predic-
tive control: Past, present and future, 1997.

[R. Begleiter and Yona, 2004] R. El-Yaniv R. Begleiter and
G. Yona. On prediction using variable order markov mod-
els. Journal of Artificial Intelligence Research (JAIR),
22:385–421, 2004.

[R. Duda and Stork, 2001] P. Hart R. Duda and D. Stork.
Pattern Classification. John Wiley & Sons, New York,
2001.

[Singhet al., 2003] S. Singh, M. Littman, N. Jong, D. Par-
doe, and P. Stone. Learning predictive state representa-
tions. InProceedings of the Twentieth International Con-
ference on Machine Learning (ICML) 2003, pages 99—
106, 2003.

[Sutton and Barto, 1981] R. Sutton and A. Barto. An adap-
tive network that constructs and uses an internal model
of its world. Cognition and Brain Theory, 4(3):217–246,
1981.


