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ABSTRACT: This paper describes an approach for obtaining very realistic movement paths through a terrain set by 
applying the properties of a fluid simulation to produce intuitively human-like results. Similar to the concepts described 
in the physical world by the Principle of Least Action, realistic paths for human movement generally tend to follow 
“natural lines of drift.”  This common military term describes a method of route selection based on least effort 
expenditure (or highest possible speed) enroute to a goal (or destination). We implemented a fluid simulation (gas 
diffusion) as a means of determining these routes through a digital terrain set. This fairly simple technique generates 
what appear to be very realistic avenues of approach for large vehicle formations or for individual vehicles traveling at 
high rates of speed. This approach seems quite promising for modeling human movement tendencies and appears 
superior to classic path finding or optimal route selection methods in terms of representing human-like behavior.  
 
1. Modeling Avenues of Approach 
 
In order to produce models and simulations which will 
realistically replace the functions of human beings, we 
must develop methods of encoding human thought 
patterns or behaviors. One particularly important 
requirement for improving military simulations is the 
ability to generate realistic avenues of approach, or likely 
routes to be followed by an attacking enemy formation of 
multiple vehicles.   Individual path-finding or route 
selection algorithms are insufficient to this task, as they 
do not realistically represent the paths selected by a 
moving force.  
 
Multi-vehicle formations exhibit many of the same 
characteristics as fluids as they move across the terrain. 
Whether these vehicles are the disciplined troops of a 
mechanized infantry battalion or the apparently unrelated 
commuter vehicles traveling into a metropolitan area, it is 
easy (for a human!) to observe the fluid-like 
characteristics of these formations as they travel from 
source to destination. This phenomenon is widely 
acknowledged by military authors and subject matter 
experts through their frequent use of fluid-based terms to 
describe the movement of forces across the terrain (e.g. 
“natural lines of drift,” “flowed through the gap,” “poured 
across the desert,” “path of least resistance,” etc…).  
 

For our research at the Naval Postgraduate School, we 
had a requirement to develop multiple, realistic, natural, 
obstacle-avoiding, high-speed, and successful paths from 
a single source to a destination in order to create avenues 
of approach for analysis by a simulated intelligence 
officer [3]. We needed to find or develop a pathfinding 
algorithm which would produce these avenues through 
our digital terrain set, behaving in much the same manner 
as the flow of water down a dry, rocky stream-bed.  With 
this analogy in mind we began investigating fluid-based 
simulations before finding a simplified gas diffusion 
model. With minor modifications, we’ve implemented 
this simple model to produce remarkably realistic avenues 
of approach.    
 
The underlying principles behind using a fluid simulation 
as a means of pathfinding are not unique. We believe, 
however, that the application of those principles to the 
problem of producing highly realistic representations of 
human route selection tendencies is quite promising and 
worth consideration by current and future models of 
human behavior and tactical decision-making. 
 
1.1 Related Work Using Simplest Path Approaches 
 
Duckham’s work on simplest paths proposes that humans 
prefer a simplest path algorithm to optimal path 
selection[8]. He proposes a simplest path algorithm 



designed to reduce the number of turns, stops, and general 
degree of difficulty in navigating an urban environment to 
create routes which appear more natural and human-like 
than some of the shortest path algorithms would produce. 
Duckham states that further cognitive studies are required 
to verify the algorithm, but  concludes that this approach 
appears to present considerable advantages due to ease of 
description and navigation. Duckham’s assertion, that 
easier routes are preferred, is in line with military terrain 
analysis, which emphasizes consideration of planning 
factors such as natural lines of drift, path of least 
resistance, and easiest route.  Other researchers have 
noted similar human tendencies to drift, or move along 
routes with curved behaviors that consider the effects of 
velocity, turning radius, and speed [2]. 
  
1.2 Explanation of the Phenomenon – Principle of 
Least Action 
 
In 1746 Maupertuis [10] developed the Principle of Least 
Action to describe the tendency of elements in nature to 
seek the minimal effort solution. Euler expanded upon 
this principle in 1748 with his assertion that a system of 
bodies at rest will seek a state which minimizes total 
potential energy, or effort [1]. In one of the linked pages 
from his series of idleness theory essays, Davis [7] 
describes the global nature of least action as follows:   

…Almost the whole of physics can be 
represented in geodetic form. Water running 
downhill seeks the steepest descent, the quickest 
way down, and water running into a basin, even 
one with irregular shape and bottom, distributes 
itself so that its surface is as low as possible…  
The Second Law of Thermodynamics requires 
that thermal systems change along a sequence of 
configurations, each having a higher probability 
of occurrence than the preceding configuration... 
 

This paper implements the assumption that the Principle 
of Least Action can also be applied to human route 
planning and path selection. Without benefit of cognitive 
studies to confirm (or refute) this assumption, we 
implement a fluid-based simulation approach to modeling 
human movement tendencies when selecting avenues of 
approach through a terrain sample which we believe is 
superior (in terms of realism) to classic pathfinding 
approaches.  
 
1.3 Modeling Gas Diffusion in Real Time 
 
The concept of using fluids to represent human movement 
tendencies arose out of discussions on how best to model 
a moving, multi-vehicle element. These discussions 
repeatedly involved the use of fluid-like terms to describe 
the properties of a moving unit which led to the search for 
simple fluid models. Rather than delve into the detailed 
Navier-Stokes equations discussed in the textbooks [4], 

we turned towards a simpler solution for creating the 
same results.  
 
Jos Stam [11] provided an efficient method of simulating 
movement in gas and smoke fields for use in visual 
simulations. Stam’s simplified version of the Navier-
Stokes gas exchange equations were instrumental in 
achieving the fluid simulation approach utilized in this 
paper.  
 
1.4 Relationship to Potential Field Pathfinding 
 
The idea of using fluid flow to model movement axes has 
a connection to previous work in using potential fields for 
robotic pathfinding logic [9].  In the special case of a pure 
gas diffusion, the density converges to a solution to the 
Poisson equation. Of course, it is therefore also a solution 
to the Laplace equation everywhere but at the sources and 
sinks. Connolly [5] proposed using Laplace equations as 
method of obtaining robotic pathfinding without the 
disadvantage of local optima. He defines a potential 
gradient for each cell based on the Laplace equations for 
each of its four neighbors. The solution of the Laplace 
equation is a harmonic function which is able to achieve 
the goal without getting stuck in local optima. In a second 
paper [6], Connolly discusses use of harmonic functions 
as method for robotic control, which, as he says 

…can be used to generate smooth, collision-free 
paths without the threat of spurious local minima.   
 

Similarly, Svenson [12] discusses use of exact potential 
fields to generate avenues of approach before presenting 
his simplified approach using agents modeled on ant 
behavior to generate roughly comparable results to a 
potential field calculation of the entire terrain set. 
 
2. Gas Diffusion in a Digital Terrain Set 
 
One of the strengths of a gas-based terrain analysis is that 
one can assign several layers of trafficability information 
to a cell by simply adjusting the gas diffusion properties 
of that cell. This approach of classifying a database using 
multiple levels appears to be quite beneficial and 
extensible to multiple use cases.  
 
For our research, we classified digital terrain based on 
percent change of slope as one of three categories:  “Go” 
terrain suitable for fast vehicle movement, “Slow Go” 
terrain suitable for vehicle movement at reduced speeds, 
and “No Go” terrain unsuitable for vehicular movement.  
We assigned a maximum speed of 25 kilometers per hour 
(kph) to the Go terrain cells, 10 kph to the Slow Go cells, 
and less than 1 kph to the No Go cells. 



 
Figure 1. Terrain Map showing color-coded Go, Slow 
Go, and No Go areas for a mountainous portion of terrain 
at the National Training Center (NTC) at Fort Irwin, CA. 
 
The mechanics of the gas diffusion model are quite 
simple. Each point in the data set is treated as a cell in the 
terrain model which begins with a gas concentration of 1, 
and with a maximum limit for diffusion to each of its 
neighbors. For simplicity, we treat each cell as a square, 
only able to exchange gas with each of its four shared-
wall neighbors, thus the maximum exchange (out) for any 
given cell is 25% of its current volume.  
 
The expected enemy approach direction (or an edge of the 
map zone) is treated as a source. Each source cell diffuses 
gas at the maximum rate with its neighbors and is 
reinstated to full capacity (index value of 1, or 100% full) 
at the beginning of every turn.  
 
At the other “end” of the terrain set is the sink, or 
expected enemy objective area. Each sink is able to 
absorb gas at the maximum rate from its neighbors and 
immediately empties back to 0 at every turn.  
 
For every turn, the model processes outgoing gas 
exchange for every cell with each of its neighbors based 
on the current concentration of gas in that cell times the 
maximum exchange rate of the cell. Based on the relative 
assigned velocities (above), we used maximum exchange 
rates of 25% for the Go terrain cells, 10% for the Slow 
Go terrain cells, and 0% for the No Go terrain cells. The 
exchange rate is limited by the minimum exchange rate 
possible at the two cell edges. A Go cell only exchanges 
10% of its volume along the edge that it shares with an 
adjacent Slow Go cell while it may also exchange 25% of 
volume on the edge shared with another Go cell. 

 
Outgoing gas changes are stored in a buffer until all 
outgoing calculations are complete, then the results, both 
outgoing and incoming gas amounts, are posted to each 
cell, the sources are regenerated to 1, the sinks are 
emptied to 0, and the process is repeated. As the process 
continues, gas concentration in the cells closest to the sink 
quickly approaches 0 and those cells serve to drain the 
cells around them. This process continues throughout the 
duration of the model until equilibrium. Evaluation prior 
to achieving equilibrium is visually interesting but 
practically irrelevant, as the model must be at (or close to) 
equilibrium to tell us where the fluid (or gas, in this case) 
will truly flow.  
 
The true benefit for evaluating movement occurs when 
the gas reaches a steady state approaching equilibrium. 
As the difference in gas exchanged (between any two 
cells) for each cycle reduces to the point of minutely 
small changes for the entire database, the field of gradient 
vectors becomes useful for analysis. Though not true 
equilibrium, as the amount of gas exchanged approaches 
zero we have a state of nearly unchanging gradient 
vectors upon which to base our route estimation.  

 
Figure 2. Gas Diffusion calculations for each cell, with 
the Gradient Vector (and associated Gradient Magnitude) 
represented by the changes in x and y. 
 
Of course it’s possible to compute near equilibrium 
mathematically, but for our research we implemented an 
interesting visual method for determining both the degree 
of diffusion (as it approaches a state of near-equilibrium), 
as well as providing a means of observing fields of high 
density flow (such as the movement of water through a 
narrow section of streambed) by mapping gradient 
magnitude. Gradient magnitude for each cell is computed 
by storing the total changes in x and total changes in y for 
each cell and treat these changes as the components of a 
force vector at each cell.  
 
The gradient vectors below indicate both the direction of 
the vector from the center of each cell, but also the 

Gradient Vector



magnitude. Gas flowing through the convoluted area on 
the top of the picture moves much more slowly than that 
to the bottom of the picture, as can be seen by the size of 
the gradient arrows. This is both intuitive and 
informative. 
 

 
Figure 3. Gradient Vectors from source to sink. 
 
The gradient vectors for each cell form a vector field 
which will become quite useful in our analysis of routes. 
Shown below is the gradient magnitude view of our 
terrain field where each cell’s gradient magnitude (as a 
percentage of the highest magnitude vector in the field) 
determines the brightness of the red color.  
 

 
Figure 4. Color Coded Gradient Magnitude Levels for 
terrain at the NTC. Source is on the right, and the 
objective (or sink) is on the far left of the picture. 
 
This provides a very intuitive picture to the user of the 
gas flow over time. It’s quite clear by the bright areas on 
this frame which pieces of the terrain experience the 
highest gas transfer rates, and where the areas of 
concentrated high vectors exist. This information can be 
then used to pinpoint areas of risk to a moving force as 
they become more physically concentrated, key terrain (as 
it overlooks these places where the moving force assumes 
higher risk), and potential anchor points for a defensive 
deployment. 
 
 
3. Producing Avenues of Approach 
 

The process of producing avenues of approach from this 
point (given a gradient field produced as described in the 
previous section) is similarly simple to implement but 
produces an excellent representation of avenues of 
approach through a terrain sector. Beginning at the source 
cells, we generated routes at each possible adjacent cell. 
By design, this limited routes to a fixed number for ease 
of computation and viewing. We adjusted the number of 
routes by increasing or decreasing the size of the source. 
Continuing forward towards the sink, we interpolate the 
next particle position based on the influence of each of 
the closest gradient vectors proportionate to their strength 
and distance from the simulated moving particle.  This 
process is displayed in the figure below. 
 

 
Figure 5. Particle Flow Interpolation. 
 
This process is repeated until each particle has reached 
the closest sink. Interpolation is a necessary step in order 
to represent a realistic movement through the gradient 
field. In the diagram above, step size is listed as an 
arbitrary magnitude m. We commonly used a magnitude 
of 0.4 (or 40% of the distance between posts), as this 
forced at least two interim checks between each set of 
influencing vectors. The route selector is programmed to 
consider all vector posts within a distance of 1.5 cells 
from the particle. This ensures that each particle always 
received input from a minimum of four vectors as well as 
considering both past and future vectors when 
transitioning between one block of four vectors to the 
next.  
 
One interesting result of this approach is the effect of 
edges upon movement of particles. Rather than force 
particle movement to never intrude upon the No Go 
terrain cells, instead we treated No Go cells as ones with a 
zero magnitude gradient vector.  As a result, then, we 
experience a form of limited edge effects when particles 
travel adjacent to No Go terrain as their forward 
movement (to the sink) is slowed with only half as many 
gradient vectors to propel them forward. These edge 
effects also produce occasional visual anomalies for small 
terrain grids as the routes (especially the slower routes to 
the sink) appear to travel within the bounds of the first No 
Go cell adjacent to a Go or Slow Go terrain cell. It is 



worth noting that this is a purely visual anomaly produced 
by our representation of point values (the gradient vectors 
for each data point) as if they were uniformly distributed 
across an entire grid cell. In fact, the changes between 
data points are continuous in real life, and allowing routes 
to drift into the first cell of No Go terrain grid is akin to 
the physical nature of waves lapping against a rock before 
returning to the greater stream.  
 
For our research, we chose to model gas diffusion in two 
dimensions only, treating the changes in terrain elevation 
as factors influencing speed of travel (or diffusion), but 
not specifically modeling a 3D gas. Similarly, it is 
obvious that a precise physical model of fluid movement 
through a complex grid would include a formal treatment 
of edge effects, turbulence, coefficients of drag, and fluid 
density. We believe that using a more complex fluid state 
or gas diffusion model than the one described here would 
result in similarly realistic results, albeit at a higher 
computation cost. In our implementation, the net effect of 
interpolating particle movement with zero magnitude 
edge vectors results in slowed particle movement along 
exposed No Go terrain and faster moving particle routes 
which curve around obstacles. These effects seem 
consistent with our observations of human movement 
patterns. Both the decision to forego a full mathematical 
treatment of fluid movement properties and our 
acceptance of de facto edge effects in this simple model 
appear to be reasonable for our task.  
 

 
Figure 6. Avenues of Approach sorted by color against 
Go/Slow Go/No Go background (NTC Terrain). 
Avenues of approach through our terrain are evaluated 
based on speed of particle movement through the grid in 
total time from source to sink.  Shown in Figure 6 are the 
avenues of approach generated for a portion of the terrain 
database discussed above. For ease of visual 
interpretation, all routes depicted are displayed by color 
ranking based on relative time to complete the movement. 
The fastest twenty percent of routes are colored in red, 
followed by yellow, green, blue, and cyan.   
 
Note that this approach describes most likely avenues of 
approach from a certain point and is used as a means of 
generating favorable terrain indices for use by a defensive 
positioning algorithm. As such, the routes are only 
calculated one time from an estimated source location. 

Each route from this analysis receives a score relative to 
its likelihood of use.  We use this score as a reward 
function for related work considering potential defensive 
deployments.  
 
In an alternative implementation, one could also use gas 
diffusion to provide a continuous assessment of an 
attacking enemy force rather than considering routes as a 
means of predicting the location of a defending enemy 
force. The initial results would be identical to those 
presented here, but at each chokepoint or decision point 
we’d want to reestablish a new gradient field based on the 
decision point as source and predict further routes into 
zone from that point.  In the U.S. Army, this recursive 
application of terrain analysis is applied throughout the 
battle by intelligence officers and would need to be 
mirrored in software in order to replace some of these 
functions in a simulation. 
 
4. Implementation Issues 
 
For the large NTC terrain data set prevalent in many of 
these pictures, the terrain data set consists of 720 x 360 
elevation posts – or 259,200 separate DTED Level II 
elevation posts, each with its own coefficient of fluid 
transfer. While this volume of data makes the fluid 
simulation very sensitive to the specific nature of the 
terrain (note the subtle folds in the terrain from Figures 1 
and 4), it also has the net effect of reducing an elegant, 
simple solution to a tedious computational exercise as we 
were required to run the fluid exchange program for 
hours in order to obtain a fluid system which has 
achieved equilibrium (and can thus provide reasonable 
avenues of approach).  
 
Coarsening the grid by averaging the values for a block of 
terrain posts saves considerably on computation time and 
appears to provide a reasonable estimate for the most 
likely avenues of approach; the red lines representing the 
top 20% of fastest routes were remarkably similar to 
those of the fine grid solutions.  Estimating secondary 
avenues of approach using a coarsened grid is a 
challenge, however, because the terrain grid will now 
misrepresent smaller terrain features in potentially 
misleading ways. This is less of a problem when 
averaging Go and Slow Go terrain, or at edges between 
long stretches of Go and No Go terrain, but problems 
arise at places which were formerly classified as 
impassable but now appear to be simply Slow Go. Less 
likely to occur in the high speed avenues of approach, it’s 
almost guaranteed to occur in the slower speed avenues of 
approach (where the coarsened grid is based on the 
average of several No Go and Slow Go terrain cells).  
 



 
Figure 7. Fine Terrain Grid Avenues of Approach. 
 

 
Figure 8. Coarse Terrain Grid Avenues of Approach. 
 
To appreciate this difference, compare the results of a fine 
terrain grid’s avenues of approach above with those 
obtained by a 1/16th size terrain file (each cell 
representing 4 x 4 elevation posts from the original data 
set).  Note how the preferred avenues of approach 
(bottom half of each figure, in red) are very similar, but 
the secondarily colored lines have some interesting 
discrepancies in the left-most third of the figure as they 
traverse the congested terrain at the end of the long 
valley. 
 
It’s reasonable to assume that there are suitable 
techniques for decreasing the amount of time to achieve a 
uniform fluid distribution based on the distance of each 
cell from the source and sink. This would produce a very 
rough approximation of dispersed fluid volume, but 
perhaps reduce the time to produce equilibrium with 
consistent gradient vectors considerably. Using DTED 
Level 1 data would similarly reduce the data set to a more 
manageable size, but would be subject to the same loss of 
subtlety evidenced in the coarse terrain grid.   Balancing 
processing speed with degree of required resolution 
warrants further study prior to an implemented solution 
and, though identified here, is not further investigated in 
this paper. Using the result of the coarse simulation as an 
initial condition for the fine one is an obvious and easy to 
implement approach. Because of the equivalence to linear 
system solution noted above, there is no end of 
techniques to try here.  
 
5. Evaluating Avenues of Approach 
 
Further study of human path selection is required in order 
to confirm that the intuitive benefits of the results 

obtained above are supported by human experimentation.   
This comparison was not conducted prior to completion 
of this paper, but is acknowledged to be required before 
the fluid simulation can be categorically proclaimed an 
accurate representation of human path selection or 
wayfinding tendencies.  Diffusion-based avenues of 
approach are compared to an A* search with generally 
desirable results. 
 
5.1  A* Search Comparison 
 
Comparing the results of fluid simulation optimal routes 
with those produced by an A* search pattern confirmed 
that diffusion-based routes are, as suspected, not optimal 
traversals of the terrain grid in terms of pure time to 
traverse each cell between source and sink.   
 
We compared a number of small terrain samples using 
both A* and diffusion method with the cost factor of time 
to traverse from start to finish.  Time was computed based 
on the distance between nodes divided by the maximum 
allowable speed at the next node.  A* calculations used a 
cost function of cost to date (along the given set of 
previous points) plus a heuristic of straight line distance 
divided by maximum speed. We noted an average of 13% 
more time to traverse the diffusion based routes in 
addition to considerable variability between optimal 
routes (A*) and the most likely (diffusion) routes. The 
highest variability occurred for those sample sizes which 
we created with multiple twists and turns along the 
shortest path and wide paths to the outside.   This is quite 
similar to the route through a major city: technically faster 
by driving more direct path through the city given no 
traffic delays, but with a preferred route on the high speed 
beltway around the city.  
 
Comparing A* search pattern results with diffusion-
produced optimal routes would seem to indicate that the 
A* search produces the “best” path between two points. 
As discussed earlier, we believe that if the definition of 
“best” is “most realistic,” then clearly the fluid simulation 
produces better results because of the human tendency to 
select more flowing, natural routes over mathematically 
superior shortest path (or even fastest path) routes.  
 
Further analysis of this comparison reveals another   
flawed assumption: the above comparison assumes that 
our fastest path calculations included all appropriate 
costs. On further reflection, however, it’s clear that we’ve 
ignored the physical costs (in terms of time) for changes 
in direction, stops, starts, and time to achieve maximum 
speed. We cannot achieve instantaneous speed changes 
and similarly do not make changes of direction at 
constant speeds. A more detailed comparison of the A* 
routes versus diffusion-based avenues of approach should 
include cost factors for changes of direction, changes in 
maximum speed, turns, and stops required.  These costs 



are significant in the real world, and if modeled in our 
cost comparison would surely lead to a reduced gap 
between the optimal mechanical solution and the optimal 
diffusion-produced fluid simulation solutions. 
 
5.2. Considering Military Units versus Single Vehicles 
 
Although we believe that this approach produces realistic 
routes for both individual vehicles as well as larger 
military units, it must be noted that the differences in 
movement behavior between a single vehicle and a larger 
unit are substantial. The inertial properties of a large 
group of vehicles (acceleration, turning speed, turning 
radius, maximum speed, time to decide on route change, 
and deceleration, etc.) are believed to weigh significantly 
in favor of a fluid-based simulation as method of 
computing routes.   Single vehicle properties can be 
accommodated by more frequent estimation of possible 
routes, as their increased agility makes the likelihood of 
route changes much greater. This is similar to the method 
one would use for considering offensive movement 
through zone as discussed earlier. 
 
5.3.1  Considering Unit Width 
 
Military units travel in a number of different formations 
based on size of the unit, likelihood of enemy contact, 
and desired speed. In general, military units will compress 
to a width narrower than the described “normal” or 
doctrinally prescribed width for short periods of time in 
order to achieve a high overall traversal rate.  If we 
assume that the unit must travel from the source to the 
sink, then the diffusion-based most likely avenue of 
approach is valid regardless of preferred unit width 
because the diffusion-generated most likely route is also 
the route which supports the highest total flow volume 
from source to sink.  
 
We believe that this is an important aspect of using 
diffusion as it more closely models movement of multiple 
vehicles across a complex terrain set with multiple small 
no-go terrain sectors interspersed throughout a larger 
maneuver corridor. Powell [12] describes a model for 
movement over terrain that makes a strict division of all 
terrain into go and no-go regions. Large units can have 
the set of possible routes filtered by minimum width. In 
effect, the unit is being modeled as a hard disk that can 
either fit through a given route or not. Slow-go terrain 
must be forced into one of these two categories. Regions 
that are mostly good terrain but speckled with no-go 
terrain must be modeled as entirely go, neglecting the 
effect of the no-go spots entirely, or the consequence will 
be that they will appear impassable to large units. This is 
a stark contrast to the fluid model, which predicts gradual 
degradation in the attractiveness of a route as the result of 
slow-go, or speckled no-go terrain. 
 

Some of the most unlikely routes generated by our work 
(the slowest routes indicated in cyan color from the 
included figures) would include “impossible” or 
improbable routes for units of greater than single vehicle 
size.  Excluding these routes from consideration, 
however, is not recommended as these routes still 
represent realistic methods for passing from one point to 
another. Just as a stream will continue to flow through a 
rocky section if the smooth streambed is too far out of the 
most efficient path, so too will military units temporarily 
disperse into smaller movement corridors in order to 
increase overall movement efficiency. 
 
6. Conclusions and Future Work  
 
Several areas of future research are indicated in this 
direction. First, future cognitive research is indicated to 
confirm the specific results obtained by a fluid flow 
simulation as an approach for modeling military 
movement through terrain. This research should include 
investigation of true rates of travel for multiple vehicles 
over good terrain interspersed with obstacles at fine 
granularity. Second, speed enhancements in calculating 
near equilibrium are required to produce the vector field 
in real time. Finally, further study to compare the results 
of this simple model with a more detailed treatment of 
edge and boundary effects in multiple terrain types and 
sizes. We believe that more complex fluid models would 
not significantly improve the utility of vehicle movement 
modeling, but this belief bears further investigation.  Each 
of these questions should be addressed by future work in 
this field. 
 
Fluid simulations appear to provide an excellent tool for 
modeling human movement tendencies through terrain. 
The avenues of approach and routes created by seeding 
digital terrain sets with simulated particles and tracking 
their movement from source to sink are natural in 
appearance, reflect multiple levels of difficulty in an 
elegantly simple fashion, and seem to provide a great 
resource for blind computer algorithms to represent the 
complex functions of the human eye with respect to 
seeing terrain as an entity rather than as a set of data 
points. Future work is indicated in refining this tool and 
reinforcing the cognitive assumptions upon which it is 
based, but at a minimum the fluid based approach 
described previously warrants serious consideration as a 
technique for modeling human movement.  
 
The flexibility of this approach, combined with its fairly 
simple mathematical foundation, indicate that this model 
also could be applied to a large set of problems with 
varying degrees of evaluation or certainty and provide 
realistic approximations of those environments for 
minimal computational cost.  This model provides an 
excellent approximation of the effects of a real world 
physical process. The laws of physics which bound gas 



diffusion are the same laws which bound movement of 
any object in the real world, namely the principle that 
objects (in this case humans) seek a predictable path of 
least expended effort (or least resistance, or least action, 
etc..) as they transition from one state to another.    In the 
authors’ opinion it is because of the global applicability 
of these laws that we can apply this simple model to very 
complex environments and achieve similarly valid 
predicted outcomes. 
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