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ABSTRACT:  The  information  provided  to  a  software  agent  fundamentally  affects  its  behavior.  It  is  a  trivial  
observation that an agent cannot respond to an environmental stimulus of which it is not aware.  In a similar vein,  
providing an agent with information that a human participant in the simulation would not be aware of in the same 
circumstances may result in inaccurate agent behavior. In 3D virtual simulations, the most basic information provided  
to an agent concerns what battlefield entities that they can see.  The standard approach used in 3D simulations with  
high visual fidelity, such as video games, is to use a line-of-sight (LOS) trace between entities to determine if they can  
see each other.  LOS is arguably a very poor model of target detection, particularly in its failure to take camouflage,  
smoke, and darkness into account.  In this paper, we describe a new approach that is an adaptation of a standard  
target acquisition model, to the domain of high visual fidelity simulations rendered on conventional graphics hardware.  
The new approach avoids the problems of LOS.  We describe two variants of the approach, compare their predictions  
to human performance, and characterize their remaining deficiencies.

1. Introduction

The  information  provided  to  a  software  agent 
fundamentally  affects  its  behavior.  It  is  a  trivial 
observation  that  an  agent  cannot  respond  to  an 
environmental stimulus of which it is not aware.  In a 
similar vein, providing an agent with information that a 
human participant in the simulation would not be aware 
of in the same circumstances may result in inaccurate 
agent  behavior.  In  3D  virtual  simulations,  the  most 
basic information provided to an agent concerns what 
battlefield entities that they can see.  

In this work, we define and analyze two adaptations of 
a standard target acquisition model (ACQUIRE) to the 
domain of “video game-quality” high visual fidelity 3D 
simulations.  Furthermore,  both  adaptations  are  tested 
against human performance data. This work represents 
the first  time that  we are aware of  in  an ACQUIRE 
variant has been tested with comparably accurate size 
and brightness data, which would be very difficult to do 
with real world data. An additional point of interest is 
that the computational burden of producing this data is 
on the GPU (Graphics Processing Unit), instead of the 
CPU, as with the most closely related previous work, 
described below.

Figure 1: To LOS, the figure at left is invisible since 
the line to the top of the figure's head is blocked, while 
the figure at right, completely obscured except for the 
top of the head, is visible.

2. Background and Related Work

The  standard  approach  used  in  3D  simulations  with 
high visual fidelity, such as video games, is to use a 
line-of-sight (LOS) trace between entities to determine 
if they can see each other.  This line is traced from the 
eye of the agent to the top of the target.  If the line is 
unobstructed,  it  is  assumed  that  the  agent  sees  the 
target.  As  illustrated  in  Figure  1,  LOS-driven  target 
detection  can  be  very  different  to  that  of  humans. 
Additionally, LOS easily detects camouflaged, smoke-



obscured,  and  shadowed  targets  that  humans  find 
impossible to see. In a training or game context, LOS 
results  in  agents  that  either  fail  to  engage  obvious 
targets or engage targets that are invisible to the human 
participants in the simulation.

Darken  (2004)  describes  three  alternatives  to  simple 
Line-Of-Sight  of  varying  degrees  of  accuracy  and 
computational complexity: a multi-trace version of line-
of-sight, a raster algorithm, and an exact calculation of 
visible surface.

The game industry and military sims traditionally use a 
line of sight to determine visibility (Richbourg, 1996) 
(Liden, 2002).

ACQUIRE  is  a  standard  target  acquisition  model 
(Reece,  1996).   It  is  capable  of  producing  the 
probability of detecting a target in a given amount of 
observation time.  ACQUIRE computes the detection 
probability as a function of the brightness (irradiance in 
watts per square meter) of the target, the brightness of 
the background of the target, and the subjective size of 
the target, in terms of its “number of resolvable cycles”. 
While not recommended as a model of optical  target 
detection, it has been used for that purpose many times 
in  military  simulations.  Constructive  simulations, 
lacking detailed 3D models of combatants and terrain, 
obviously  must  use  nominal  brightness  values,  for 
example using a constant brightness for the background 
depending on geographic location and time of day, and 
looking  up  target  brightnesses  by target  type  from a 
table.

The  Compact  Terrain  Database  library  (libctdb) 
describes a method of computing one of the key inputs 
to ACQUIRE, i.e. how much of a target is visible. It 
involves  approximating  the  target  and  possible 
obstructing objects as 2D rectangles perpendicular  to 
the field of view of the observer.   By rasterizing the 
rectangles, the amount of the target that is visible can 
be estimated  (Smith, 1993).  In this work, we will use 
the  actual  shape  of  the  object,  terrain,  and  possible 
occluding  objects  as  represented  by  a  detailed  3D 
model.

Reece  and  Wirthlin  adapted  ACQUIRE for  use  as  a 
model  of  the  visual  target  acquisition  of  individual 
combatants  (Reece,  1996).   The  Reece  and  Wirthlin 
model extended ACQUIRE to take target motion into 
account,  but  neglected  other  aspects  of  ACQUIRE, 
such as its ability to take target contrast into account, 
i.e. fixed brightness values were used corresponding to 
optimal  viewing  conditions.   In  this  work,  we  will 
calculate a brightness  value based on the same quality 
of image that is presented to a human viewer,  taking 

lighting,  camouflage,  and  smoke  into  account  in  a 
relatively accurate way.

The adaptations of ACQUIRE  described in this work 
have not previously appeared in the form of a published 
paper,  though  they  have  been  described  in  three 
Master's  theses  (Pursel  2004)  (Correia,  2005)  (Jones 
2006).  A  description  of  the  experiment  and  a 
preliminary analysis of the results appeared in the latest 
of these theses (Jones 2006).

3. Target Detection Models

In this section, the three target detection models that we 
will discuss in this work will be defined, namely LOS 
(Line-Of-Sight), and FBA and GBBA, our two adapted 
versions of ACQUIRE.

3.1 Line-Of-Sight (LOS)

The LOS model simply traces a ray from the eye of the 
agent  to  the  top  of  the  target.   If  this  ray  is 
unobstructed,  i.e.  it  does  not  intersect  any  polygons 
other than those belonging  to the target, then there is a 
100% certainty that the agent detects the target.  If the 
ray is obstructed, the agent has a 0% chance to detect 
the target, i.e. it never detects the target.

3.2 Framebuffer-Based Acquire (FBA)

FBA is an application of ACQUIRE to simulations that 
are being rendered on conventional graphics cards.  It 
is applicable to any simulation that has full control of 
the visual  rendering of  the models and access to  the 
framebuffer (the data object corresponding to the pixels 
displayed on screen). 

Figure 2: Wide shot of target in a building and partially 
visible through a window.

FBA's computation is based on a rendering of the target 
from the agent's point of view that is generated in the 
same manner as the rendering of the environment that a 
human user of the simulation sees.  See Figure 2 for an 
example.  The  angles  and  colors  of  lights  and  the 
textures (bitmaps) applied to the surface are all taken 



into  account,  together  with  any  occluding  objects, 
smoke, and fog. For each agent/target pair, a rendering 
of the target from the agent's point of view is produced. 
Since only a tight view of the target is required, we call 
this image a “mini-render”.  This image does not ever 
need to be shown on a screen;  its sole purpose is to 
provide the data that will feed FBA's algorithm.

Figure 3:  Normal color  mini-render  (left),  false color 
mini-render (right).

The mini-render contains complete information on the 
appearance  of  the  target  and  background,  but 
ACQUIRE  requires  us  to  separate  the  two. 
Segmentation  of  images  into  objects  as  practiced  in 
computer  vision  is  a  computationally  expensive  and 
error prone operation.  Fortunately, in this context we 
can  get  pixel-perfect  segmentation  at  the  cost  of  a 
second mini-render.  For the second render, we use our 
control of the rendering to color the figure bright red. 
This false-color mini-render is generated for the same 
scene  conditions  as  the  first,  and  so  is  in  perfect 
registration with it.  We use the false-color mini-render 
to  tighten  the  view  of  the  target  to  the  minimum 
rectangular window that includes all target pixels.  To 
include  a  modest  amount  of  background,  we  then 
expand this minimum rectangle by 5% in all directions. 
The normal color mini-render is cropped identically to 
maintain  registration  between  the  normal  color  and 
false color images.  The images in Figure 3 have both 
been cropped according to this procedure.

ACQUIRE produces a probability of detection that is 
based on the brightness and size of the target, as well as 
the  brightness  of  the  target's  background.   Adapting 
ACQUIRE  to  this  type  of  simulation  requires 
specifying  exactly  what  values  will  be  provided  to 
ACQUIRE in all circumstances.

ACQUIRE's requirement for target size information is a 
bit unusual.  The subjective size of the target must be 
specified  to  ACQUIRE  in  terms  of  its  “number  of 
resolvable  cycles”.   Imagine  painting the  target  with 
alternating  black  and  white  bars  and  asking  the 
observer to report the number of bars.  Obviously, as 
the bars become very fine, the observer will eventually 
see them as a solid gray and be unable to count them. 

The number of resolvable cycles of a target is based on 
the  maximum number  of  bars  that  the  observer  can 
count before they become too fine.  This number is then 
divided  by two to  represent  the  number  of  complete 
cycles,  one  cycle  including both  a  white  bar  and  its 
neighboring black bar.

Consider a target that is represented on the computer 
screen as a single row of pixels.  If we assume that a 
human  observer  is  placed  sufficiently  close  to  the 
screen,  stripes  that  are  one-pixel  wide  should  be 
resolvable.   We  estimate  the  number  of  resolvable 
cycles  as  twice  the  number  of  pixels  in  the  target, 
giving full benefit of the doubt to the observer's eye.

Most targets are not a single pixel wide, of course.  For 
a square target, the number of pixels on an edge is the 
appropriate number, i.e. the square root of the number 
of pixels.  Following Reece (1996), we use the square 
root of the number of pixels in all cases, regardless of 
target shape.

ACQUIRE requires the brightness  (irradiance) of both 
target and background in Watts/m2.  This is problematic 
for two reasons.  First, while we assume we have access 
to the framebuffer, and thus to the color values of every 
pixel  of  an  image  that  is  actually  or  potentially 
displayed to the screen, those color  values are not in 
units of Watts/m2. Secondly, while we assume access to 
all  of  the  pixel  color  information  contained  in  the 
framebuffer,  ACQUIRE  wants  only  one  number  to 
characterize  the  brightness  of  the  target  and 
background.

Using  camera  light  meters,  we  have  empirically 
determined that the irradiance of a pixel in Watts/m2 is 
well approximated to within a  multiplicative constant 
by the sum of the pixel color  values squared.  Since 
ACQUIRE depends only on ratios of irradiance values, 
we can therefore plug in squared sum-of-color values 
wherever an irradiance value is called for.

For FBA, we simply take the average sum of  squares 
of  the  pixel  color  values  over  the  all  target  and 
background pixels  in  the  mini-render  as  the  input  to 
acquire.

3.3 Graphics Buffer-Based Acquire (GBBA)

GBBA makes use of a second buffer on the graphics 
card in addition to the framebuffer, namely the depth 
buffer.   During  the  normal  process  of  rendering  a 
graphical image based on 3D models, a graphics card 
produces a matrix of depth values, one per pixel, that 
indicate how far away from the camera the part of the 
model that is imaged in the pixel is.  The depth values 



range  between  0  and  1,  where  1  represents  the  far 
clipping plane of the image, beyond which nothing will 
be rendered.

The  insight  behind  GBBA  is  that  not  all  contrast 
between  target  and  background  is  equally  valuable. 
Where  the  “background”  is  actually  closer  to  the 
observer than the target, high contrast  means that we 
see  the  contour  of  the  background  well,  but  not 
necessarily the target.

GBBA uses the depth buffer to exclude any  part of the 
background  that  is  in  front  of  the  target  from 
consideration.  It does this by first making a pass over 
all  the  target  pixels  (identified  using  the  false-color 
mini-render) and finding the one that is closest to the 
camera.  Then a pass over the non-target pixels in the 
false-color  mini-render  colors  them  depending  on 
whether how far they are relative to the closest target 
pixel.   In  the  example  presented  as  Figure  4,  the 
background pixels that  are closer  than the target,  the 
edge of the window to the right and below the target, 
are colored blue.

Figure  4:  False  color  mini-render  including  depth 
buffer information.  The blue pixels on the right and 
bottom of the image are closer to the camera than the 
target.

4. Experiment Design

There is no need for an experiment to compare FBA 
and GBBA to LOS with regard to problems such as the 
ones  discussed  in  and  around  Figure  1.  The  main 
problems with LOS come from the fact  that  it  relies 
upon  rays  to  determine  target  detectability. 
Computation  of  visible  area  via  mini-renders  solves 
these problems. However, it remains to be seen whether 
FBA or GBBA is the superior choice and how either 
compare with human performance.

We designed an experiment to measure how accurately 
the  algorithms  designed  above  model  human  target 
detection performance.  It is interesting to note that if 
we  were  trying  to  model  battlefield  perception,  our 
technique of using computer  graphics imagery as the 
basis for the experiment would require defense.  Our 

actual  goal,  however,  is  to  eventually  construct 
synthetic soldiers that will replace human participants 
in the simulation.  For the pursuit of this goal,  human 
perception  in the virtual world of the simulation is the 
gold standard.

Steve  Corriea’s  original  system (Correia,  2005)  was 
used  as  the  backbone  for  the  system  to  test  the 
algorithms.   This  system  provided  the  basic 
infrastructure  for  camera  and  figure  placement  and 
manipulation  of  lighting  and  fog.  His  system  was 
modified to determine whether or not the mouse pointer 
was on the figure when the mouse button was pressed. 
This was done using a pick node method. The system 
was also changed to allow the user to indicate that he or 
she believed the figure was not in the scene or was too 
hard to see by pressing the space bar.

Figure 5: Histogram of figure sizes for the set of scenes 
included in the experiment, measured in pixels.

A set  of 36 scenes  were created by varying a desert 
camouflage-clad character's posture amongst standing, 
crouching  and  prone,  and  varying  the  lighting  and 
amount of fog. The character was not visible in two of 
the scenes. A projector was used to present the images 
to the subjects in the hopes to minimize differences in 
image  quality  due  to  slight  variations  in  subject 
position.  Scenes were not selected randomly, but were 
selected because they seemed interesting or because we 
found the predictions of the FBA algorithm, the only 
one implemented at the time, on that particular scene to 
be unintuitive. Two scenes were added specifically to 
investigate ACQUIRE's handling of colored targets.  In 
these scenes,  the targets were colored  bright  red and 
presented to the subjects that way (not to be confused 
with false coloring simply to produce values to feed the 
ACQUIRE algorithm). The range of sizes of the figures 
in the scene and their expected detection difficulty are 
given as Figures 7 and 8.
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Subjects used a computer mouse to identify the figure 
in the scene indicating they found the hidden figure.  If 
the character cannot be seen, the subject was instructed 
to  press  a  key  on  the  keyboard,  indicating  that  the 
figure was not detectable to the subject. No time limit 
was given for each scene, allowing the subject to take 
sufficient  time  to  locate  the  figure.   To  try  to 
discourage  subjects  from guessing,  we  included  two 
scenes containing no figure at all.

Figure 6: Histogram of GBBA detection probabilities 
over the set of scenes.

5. Results

22 subjects were run through the experiment. Whether 
or not they found each target and the time they took to 
respond was recorded.  20  subjects  were males  while 
two were female. We also had 17 military members
and five civilians in the study. Eight were trained in 
aviation with three civilian pilots, four military pilots 
and a military flight officer. Four subjects were foreign
citizens and 18 were U.S. citizens. Two subjects were 
ground  combat  trained  U.S.  Marine  Corps  trained 
members  plus  two  subjects  who  were  U.S.  Marine 
Corps pilots with training in ground combat during the 
Marine Corps Basic School in Quantico, VA.

In order  to  test  the FBA and GBBA algorithms, we 
took the subjects' responses on any single scene to be 
independent  Bernoulli  trials.   The  null  hypothesis  is 
that  the  algorithm's  probability  of  detection  given 
unbounded  time  is  correct.   Since  the  subjects' 
responses  are  clearly  independent  trials,  the  null 
hypothesis corresponds to a binomial distribution.  We 
did  a  two-tailed  test.   The  power  of  the  test  was 
computed.  Results are displayed as Figure 7.  All of 
the  columns  except  that  at  the  far  right  indicate 
algorithm failure  of  greater  or  lesser  degree.   Both 

algorithms fail on most of the scenes.  Nonetheless, if 
we take  the  inability to  reject  the  null  hypothesis  at 
0.05  to  be  adequate  performance,  GBBA  performs 
adequately on ten scenes versus five for FBA, which is 
quite an improvement.

Figure 7: Histogram of test power over all 34 scenes 
with a visible target (the target was not visible in two 
scenes) for both the FBA and GBBA models.  Larger p 
(test  power)  values  correspond  to  better   model 
performance.

Figure 8: Histogram of L1 values for FBA and GBBA 
differences  from  the  experimental  data  (smaller  is 
better).  For  example,  the  15-30% bin  contains  those 
scenes for which the predicted detection rate was off by 
between 15 and 30 percentage points.

In our opinion, the histogram of test powers does not 
represent the final word in the analysis of these models. 
The models predict values close to one or zero in many 
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cases.   Such  predictions  leave  little  or  no  room for 
error, and result in p values that are small or zero. A 
less  strict  measure  of  model  performance  is  the  L1 
distance from the model prediction to the experimental 
data for each scene, i.e. the absolute value of the error 
in  detection  probabilities  expressed  as  percentages 
between 0% and 100%.  The sum of the L1 distances 
over all scenes has a value of 17.1 for FBA and 12.1 
for  GBBA,  again  showing  considerably  better 
performance by GBBA. A histogram of L1 values for 
the individual scenes is given as Figure 8.

Comparing scene by scene for all  scenes with target, 
GBBA has a better test power than FBA in 19 out of 32 
scenes (59%) , and a better L1 score in 20 out of 32 
scenes (62%).

6. Analysis

The results show that, while GBBA seems better than 
FBA, both perform poorly on many of the scenes in the 
experiment.   What  is  the  cause  of  the  remaining 
problems?  We made a careful pass through the scenes 
GBBA had trouble with, and created the following list 
of issues.

6.1 Averaging

The fact that ACQUIRE uses only a single number to 
describe the intensity of the target and background is 
obviously  a  great  simplification.   Both  target  and 
background  generally  extend  over  many pixels,  and 
have a great degree of variation in brightness in some 
scenes. Consider an image where a gray figure stands 
before a background that is half white and half black. 
Averaging the background intensity to produce a single 
number  may  result  in  ACQUIRE  returning  a  zero 
probability  of  detection,  even  though  the  figure  is 
glaringly obvious.  

Figure 9: Contrast-enhanced normal-color image at left 
showing  a  highlight  on  the  helmet  that  raises  the 
average brightness of the target enough to confuse the 
algorithm. Corresponding false-color image at right.

While  somewhat  less  intuitive,  averaging  can  also 
result  in  detection  probability  estimates  that  are  too 
high.  Imagine a gray soldier perfectly blended with his 

gray background, except for an oddly-shaped highlight, 
as if Figure 9.  If the highlight is very bright, it may 
result in raising the average intensity of the target to a 
significant extent.

6.2 Color

It is intuitively obvious and verified by experiment that 
color can play a role in target detection (see Figure 10). 
Color is ignored by ACQUIRE.

Figure 10: Although the color of the target is a striking 
contrast  to  the  background,  its  intensity  is  similar, 
leading  ACQUIRE  to  predict  a  nearly  zero  (.0004) 
detection probability.  Note that this is a detail of the 
actual image presented to the subjects and not a false 
color image!

6.3 Shape and Texture

Shape  and  texture  are  also  not  considered  by 
ACQUIRE.  In some of  the scenes,  even though the 
overall  contrast  of  the  target  was  poor,  the  target 
displayed a lot  of characteristic  shape or  texture,  for 
example by being slightly rim-lit, as in Figure 11.

Figure  11:  Contrast-enhanced  normal  color  image at 
left  and  corresponding false-color  at  right.   The  rim 
lighting exposed the shape of the target, making it easy 
to pick out despite the lack of contrast in the original 
image.



6.4 Clutter

ACQUIRE  depends  only  on  the  target  and  its 
background.  Human vision can be greatly influenced 
by distractor objects in the field of view, i.e. “clutter”. 
Many of the scenes contained a great deal of clutter. 
The  overall  rate  of  “false  positive”  detections  was 
slightly over 10%, but had a maximum value of 36% 
on one scene. An example of a cluttered scene is given 
as Figure 12.

Figure  12:  The  clutter  at  the  bottom  of  this  image 
distracted subjects from the figure.   Normal color  at 
left, and false color at right.

6.5 Pose and Framing

In many instances where the ACQUIRE prediction was 
high,  the  difficulty  seemed  to  be  that  the  pose  or 
framing of the target was unusual. The worst offenders 
in this regard were scenes where the target was prone 
and only the legs or feet were showing, as in Figure 13.

Figure 13 The unusual framing of the prone subject's 
legs by the doorway made this target difficult for the 
experiment's subjects to detect.  Normal color at left, 
false color at right.

6.6 Dimness

Despite the fact that ACQUIRE is fundamentally based 
on contrast, and so this should be the strong point of 
the approach, we felt that ACQUIRE overestimated the 
detection probability when the targets were very dim.
 
7. Conclusions and Future Work

Both FBA and GBBA presented clearly avoid the most 
extreme problems of   line-of-sight  detection.  This  is 
obvious  simply  from  the  algorithm  definitions;  no 
experiment is required. The results of the study indicate 
that  GBBA, which defines as background only those 
pixels that are further away than the target, is superior 
to FBA, which takes all pixels around the target as the 
background. Note that because the scenes selected for 
the experiment were intended to be challenging for the 
algorithms,  the  algorithms  probably  would  perform 
much better on “typical” scenes from the course of a 
simulation run. The experiment was valuable primarily 
because  it  provides  an  indication  that  GBBA  is  the 
superior  algorithm,  and  to  isolate  remaining 
deficiencies in GBBA that can be addressed in future 
work.

We believe that GBBA can be extended to solve some 
of  its  difficulties  outlined  in  the  section  above.  The 
averaging problem, as well as the lack of sensitivity to 
color  and  texture,  could  potentially  be  solved  with 
small changes to the algorithm.  Clutter, on the other 
hand, clearly requires larger changes.  No amount of 
improvement in the processing of our mini-renders will 
account for the presence or absence of clutter outside 
the mini-render.

Finally,  we note  that  the methodology of  this  study, 
while  tuned  to  constructing  perceptual  models  for 
software  agents,  could  be  adapted  to  improving 
ACQUIRE taken as  a  model  of  real  (versus  virtual) 
battlefield  perception.   It  is  interesting  to  consider 
using  relatively  inexpensive  experiments  in  a  virtual 
environment  to  modify  ACQUIRE,  afterwards  using 
the minimum number of more expensive experiments 
with actual targets and terrain to validate the changes.
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Appendix 1: Model Details

Let T be the set of pixels comprising the target and B 
the set of pixels comprising the background.  Let n be 
the number of pixels in T, and for each pixel, let r(p), 

g(p) and b(p) be the red, blue, and green color values of 
that pixel.  The results above are based on brightness 
(irradiance) estimated as the square of the average pixel 
values, but it is more correct to take the brightness of 
the target to be

BT=
1
nT
∑
p∈T

r  p2g  p2b p2

The brightness of the background, BB , is computed 
analogously.   Then  the  target/background  contrast  is 
taken to be

C=
∣BT−BB∣

BB
Then defining

N=nT
and

E=2.70.7 C N /N50 ,
where N50 is a constant scaling perceptual acuity which 
we take to be 1.0 following Reece (1996).   Then the 
asymptotic probability of detection given an arbitrarily 
long time to find the target is given by

P= N /N50E

1N /N50E
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