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ABSTRACT: Nearly all armies of the Western Hemisphere use modeling and simulation tools as an essential part for 
analysis and training their leaders and war fighters. Tremendous resources have been applied to increase the level of 
fidelity and detail with which real combat units are represented in computer simulations. Current models digress from 
Lanchester equations used for modeling the big Cold War scenarios towards modeling of individual soldier capabilities 
and behavior in the post Cold War environment and increasingly important asymmetric warfare scenarios. Although 
improvements in computer technology support more and more detailed representations, human decision making is still 
far away from being automated in a realistic way. Many “decisions” within a simulation are based on rules and/or 
stochastic processes (qualified coin tossing) and hardly at all on cognitive processes. One cognitive model in naturalis-
tic decision making is the Recognition Primed Decision Model developed by Klein and Associates. It describes how the 
actual process humans use to come up with decisions in certain situations is radically different from the traditional 
model of rational decision making. Mental Simulation is an essential part of this model in order to picture possible out-
comes in the future for given courses of actions. This paper describes the current development of a computational 
model for mental simulation and the initial results of experiments conducted with a prototype in a combat simulation 
environment. 
 

1. Introduction 
 
Running combat simulation models for training and 
analysis purposes is very time and personnel intensive. 
The low degree of artificial intelligence possessed by the 
constructed units in the simulation requires both extensive 
manual input of initial orders and human monitoring dur-
ing the simulation run. The capabilities of autonomously 
acting units are very limited. Models of military decision 
making range from sophisticated methodologies, e.g., by 
comparing scored values of possible actions and taking 
the highest or the lowest value depending on circum-
stances (Norling et al, 2000), to less sophisticated meth-
ods, where units execute their initial orders according to 
an internal script – these are mainly “movement orders” – 
and react through simple logic to opposing fire or proper-
ties of the terrain or movement data. Their perception of 

the environment is restricted to that which is directly rele-
vant to the application domain—for example, a simulated 
tank commander knows only some knowledge about tank 
combat, and nothing else. By contrast, human tank com-
manders have life experiences that may sometimes influ-
ence their decisions more strongly than domain knowl-
edge (Forsythe, 2002). In many research prototypes of 
agents the learning capability has been addressed. How-
ever, in combat simulation models these issues have not 
been implemented to a satisfying degree. Therefore, the 
learning component lacking in simulated commanders 
precludes them from making complex decisions of human 
scale, and many decision points in the simulation have to 
be resolved externally and then put into the system, re-
quiring much skilled assistance.  
 



  

Logically, increasing the degree of AI should increase the 
cost-effectiveness of a simulation system during use. 
Fewer staff are needed for scenario input and system 
setup. During a run, the greater autonomy of the system 
leads to longer decision cycles before the units reach un-
reasonable or unacceptable conclusions. With enhanced 
AI, an assistant can control or monitor more units, which 
is especially valuable for the analytical application do-
main of modeling and simulation, for which there is usu-
ally a paucity of personnel. However, there is a drawback. 
Decisions made within the system by simulated com-
manders are not normally as good or of high quality as 
those from human commanders. This observation is valid 
not only vis-à-vis the ingenious decisions made by great 
generals or admirals, but to conventional and small-scale 
decisions as well. One of the differences between the per-
formance of artificial and human commanders lies in the 
ability of humans to mentally simulate possible outcomes 
of their actions.  

 
Figure 1. The simulated defender’s perception: One 
tank is visible; therefore, he concludes that there is one 
tank in front of him.  He can not deal with the ques-
tion mark!  

Figure 2. The same scene from the attacker’s perspec-
tive. Actually there are four tanks coming around the 
corner. When the first tank gets shot the remaining 
tanks would behave differently in reality. In a simula-
tion model normally they follow their scripted path.  

The above example in Figure 1 and 2 illustrates this ca-
pacity. A platoon is defending a position with tanks.  
Enemy tanks are expected to come around the hillside 
within firing range. A human platoon commander, having 
seen one enemy tank, would expect additional tanks and 
would therefore probably wait longer to begin surprise 
fire than would a simulated commander. If he fires before 
the other tanks round the corner, they will be warned and 
may try to outflank him, seek cover, use artillery fire, 
choose a different path, etc.  
 
So the human platoon commander projects, or simulates, 
forward in time the possible consequences of his actions. 
Since mental simulation is beyond the present capability 
of simulated commanders, they might choose a different 
tactic, leading to a different outcome, unless overridden at 
particular decision points.  
 
2. Why Naturalistic Decision Making? 
 
Embedding mental-simulation capability in constructive 
units will contribute to the enhancement of AI and to 
overall economy and quality. Why can this be expected? 
Because, that is how humans think.  
 
In nearly 20 years of empirical research, Klein has inves-
tigated the decision making of firefighters, pilots, nurses, 
military leaders, nuclear-power-plant operators and ex-
perts in a range of other domains (Klein, 1999).  He de-
veloped a model that focuses on human strengths and 
capabilities that have not been modeled in classical deci-
sion theory. He described how commanders and leaders 
(or experts in general) are sometimes required to make 
urgent decisions under conditions of uncertainty. Thun-
holm also stated: “The study of military tactical planning 
and decision-making has shown that experienced com-
manders, quite contrary to what is prescribed by tradi-
tional military prescriptive planning models, make intui-
tive decisions based on recognition and mental simula-
tion” (Thunholm 2000). In these situations they use rec-
ognition-based reasoning instead of the classical rational 
approach (Hutchins, 1996). That does not necessarily 
mean they decide irrationally in the original sense of the 
word; rather, they arrive at good decisions on a different 
path. The above references claim that we are not discuss-
ing a prescriptive theory about decision making, but a 
descriptive theory; that is, how humans actually perform 
decision making processes. 
 
Recognition-primed decision making (RPD) is an estab-
lished subfield in the domain of psychology. In the annual 
conferences since 1998 a large number of applications 
and advances in the field have been described 
(http://www.ndm7.org/). The attractiveness of the ap-
proach and degree of adaptation possible within the mili-
tary is quite enormous. Klein has conducted approxi-



  

mately fifteen studies funded by the U.S. Army Research 
Institute and investigated decision making in a military 
environment (Klein, 2003). The Committee on Technol-
ogy for Future Naval Forces stated in 1997 that the Navy 
should pursue an approach to joint-model development 
with a long-term view and an associated emphasis on 
flexibility. Especially with respect to technical attributes 
needed in joint models, decision models should represent 
the reasoning and behavior of commanders at different 
levels, naturally reflecting the actions, plans, and adapta-
tions that commanders make in the course of operations 
(Committee on Technology for Future Naval Forces 
1997). It is thus appropriate that the Naval Studies Board 
of the National Research Council at Washington DC has 
foreseen the advantage of mental simulation, as recom-
mended in 2000: “The Department of the Navy may need 
to train commanders in recognizing patterns in typical 
cases and anomalies encountered in operations to improve 
their mental simulation skills and enable quicker and bet-
ter decisions” (National Research Council, 2000).  
 
Mental simulation is still a new field. Though several 
approaches have been undertaken (Sokolowski, 2002; 
Warwick et al, 2001), they all focused on issues of RPD 
in general, not explicitly on mental simulation. By con-
trast, this paper will focus on the mental simulation com-
ponent of RPD. Mental simulation in this context can 
enhance decision making in three major areas: It improves 
the decision maker’s diagnosis capability, it generates 
expectations to look for in the current situation and by 
evaluating the possible course(s) of action it helps in find-
ing pitfalls (Klein, 1999). 
 
3. The Modeling Design  
 
3.1 Purpose 
 
We build a decision model with the purpose of enhancing 
the cognitive capability of certain entities (intelligent 
software agents) used in combat simulation models. In 
this work we will use Combat XXI (see Chapter 4). The 
agents shall be enabled to 
 

• predict next events based on statistical estimates, 
• be sensitive to context of decisions, 
• have an improved situational awareness, 
• determine potential actions and to 
• provide an explanatory component for the rea-

soning. 
 

Figure 3 displays the role of Mental Simulation within 
situation awareness and decision. Since the combat simu-
lation model is currently under development the decision 
model is external. Therefore, the analysis is done in a 
post-processing mode.  

3.2 Components 
 
The decision model consists basically of three major com-
ponents.  

• Situational Awareness Component 
• Mental Simulation Component  
• Decision Component 

 

Mental Simulation
Component

Decision Situation

Entity fires always, 
given resources

Decision Situation

Decides upon con-
text and can hold 
fire even given re-
sources

Mental Simulation
Component

Decision Situation

Entity fires always, 
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Decision Situation

Decides upon con-
text and can hold 
fire even given re-
sources  

Figure 3. The role of Mental Simulation in the current 
work. At left, an entity fires when resources are avail-
able and always fires unless told otherwise. At right, 
the entity considers context, predicts the next event 
and fires accordingly. 

3.2.1. Situational Awareness Component 
 
Situational Awareness is a critical component in a deci-
sion environment. The better the awareness the more ac-
curately all the parameters can be assessed that influence 
a decision situation. Good situational awareness is a pre-
requisite for a “good” and successful decision. The Situ-
ational Awareness Component represents the growing 
knowledge of the entity commander. It resembles a hu-
man cognitive picture of the battlefield situation. There is 
no data retrieval from ground truth. The output files from 
the combat simulation model yield data about detections 
and engagements on the battlefield plus associated data 
like time, location, shooter, targets, etc. The observations 
are ordered chronologically. Currently there are sensors 
“scattered” over the battlefield that detect red entities. The 
sensors are stationary and have no operational impact, 
which means they do not engage and they do not get en-
gaged. The red movement is also not influenced by the 
sensors. These sensors yield the operational picture for 



  

the platoon commander that would be given by him via 
various enemy situation reports.  
 
The model starts from scratch with respect to knowledge 
about the enemy formations. It has no pre-assumptions 
about the enemy behavior and formation. In a later step 
this could be supplemented with a “knowledge or experi-
ence database”. This receptive status allows the model to 
be flexible, since the commander cannot count on meeting 
with strict formations aligned according to old Warsaw 
Pact rules. Formations detected and categorized carry 
information about size, type, direction and speed. So far 
the formations are homogeneous. That means a forward 
artillery observer accompanying a combat unit is a dis-
tinct formation even if they operate together. This feature 
must be enhanced later. In the current model, the size of a 
formation is taken to be the number of distinct entities per 
formation that have been detected.  Possible enemy objec-
tives with respect to terrain such as seizing key terrain 
have not yet been represented. The situational awareness 
component yields the data used in the prediction model 
explained in the next paragraph.  
 
3.2.2. Mental Simulation Component 
 
The task of the Mental Simulation Component is to give 
an estimate of the next probable observation and the aver-
age (typically we use the median) time before this event 
happens. This is currently accomplished by utilizing a 
Markov Chain. This stochastic state machine assigns 
probabilities to the state transitions from state i to state j. 
These probabilities reflect the frequency of state transi-
tions in the observations analyzed up to the current obser-
vation and normalized so that all the probabilities of emit-
ting arcs in a particular state add up to 1. There are other 
possible models for this data; however, considering the 
current status of the combat model used, a finite state ma-
chine suited the available data the best. A state is defined 
as the number of entities detected at an observation time i. 
Each agent “tracks” the observations according to the 
state diagram in Figure 4.  
 

 
 

Figure 4 shows one of the state machines for a defend-
ing platoon that is currently in state “1”. A state indi-
cates how many entities have been seen with the cur-
rent observation. The arcs carry the transition prob-
ability to the next state. The median dwell times are 
listed separately. 

State “1” means that the agent currently sees 1 entity and 
he stays in this state as long as he does not see another 
observation. If he then sees two tanks then he moves into 
the state “2” and the transition probabilities and mean 
dwell times (duration of staying in a state) are updated. 
Since the combat model does not currently provide data 
when an entity goes out of sight, the state “0” is never 
revisited. With the availability of “undetection” events the 
mean or median dwell times would be more realistic. So 
far the model is trained by having various sensors along 
the main approaches. Another setup could be to use com-
parable scenarios and then initialize the state machine 
with the probability and dwell time values.  
 
An easy prediction criterion for the next transition could 
be to choose the arc with the highest probability. How-
ever, using this approach would not exercise transitions to 
states of lower likelihood. This would also be a very sim-
ple model of mental simulation that has the flavor of 
RPD. The degree to which humans take less likely out-
comes into account when mentally simulating is, we be-
lieve, still a research question. In order to ensure that 
events with a lower probability can also be predicted the 
authors use a Monte Carlo simulation for sampling the 
values from the probability distribution as estimates. With 
Monte Carlo Simulation all kinds of questions can be ad-
dressed. This method is widely used when an analytically 
computation is very hard, even though the mathematical 
model is completely determined (Axtell, 2000). One class 
of problems of this type is referred to in the mathematical 
and statistical literature as boundary crossing (Giraudo, 
Sacerdote, Zucca; 2001). Many simulation runs can be 
conducted and then the frequency of occurrence, in the 
case of boundary crossing when the curve hit the line, can 
be taken as an estimate. Considering the current decision 
context there are mainly two questions that seem promis-
ing for the model. The first is related to the estimated time 
to expect a transition and the second addresses the multi-
ple state sequences. The precise questions are: 
 

• What is the most likely state sequence with the 
next x observations?  

• When will a state (or set of states) of interest 
next be entered? 

 
These mathematical formulations correspond to the hu-
man questions “What will happen next?” and “How long 
until (some anticipated event) occurs?”. We are still ex-
ploring how various questions of military interest can be 
best cast in these terms.  
 
3.2.3. Decision Component 
 
The Decision Component takes the prediction as the driv-
ing input for the decision. In this basic initial example of 
an agent for a tank platoon commander the tank will fire 



  

when it is likely that the next state will either have less 
targets or the mean transition time exceeds a threshold. 
That enables the platoon commander to make arguably 
realistic decisions. In existing models the immediate fir-
ing remains unpunished because the attacker also behaves 
inappropriately by ignoring the first shot or even a result-
ing kill and keeps following the scripted path. There is a 
maximum amount of time the agent will wait for more 
targets after the first tank is in view. If the enemy comes 
within a certain threshold distance then the tanks will fire 
anyway in order to avoid being shot first. This assumes 
that the blue tanks are in turret- or hull-down positions 
where the probability of detection is relatively small.    
  
3.4. Process Flow 
 
Figure 5 shows how the information or process flow 
works. Starting with a new observation the entities are 
assigned to the most probable formations (in this case the 
formations are platoons).  Note that these formations are 
hypothetical; the agent does not have access to the ground 
truth. 
 
The entities are detected and assigned to formations de-
pending on the time and location they were spotted. The 
main assumption is that entities belonging to the same 
formation are not spread apart more than some threshold 
distance, currently taken to be 500 m. If an entity has not 
been seen for a while, then it is assigned to a new forma-
tion or reassigned to an old formation according to a 
space-time calculation. This ensures that for each detected 
entity, the model knows after a certain number of proc-
essed observations what other entities belong to that for-
mation and where and when they have been detected the 
last time. The situational picture is updated with each new 
observation until a decision is required.  
 
A decision situation is invoked when a blue tank receives 
a  red tank detection message. Then the blue tank com-
mander has to consider whether he will engage immedi-
ately or wait. All the observations before this event were 
made by sensors that have no operational impact on the 
movement of the red forces. They are used exclusively for 
situational awareness. Given a decision situation, all re-
lated information is revealed by the situational awareness 
component. That means, e.g., how many distinct entities 
of the formation have been detected in total, and where 
any entities that are currently not observed were reported 
for the last time. 
 
The prediction is made based on knowledge from the state 
diagram. Given the chosen prediction method it is either a 
look-up for the most likely transition or a Monte Carlo 
simulation. Independent of the method chosen, the predic-
tion will give an estimate of what state can be expected 
next and with what probability and expected wait time. 
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Figure 5. Process Flow. The Situation Awareness 
Component gets updated one observation at a time 
until a decision situation is encountered. Then the 
mental simulation component predicts the next event 
and evaluates the potential action. Based on the pre-
diction and evaluation a decision is made. 

The potential actions that have been implemented so far 
are firing right away or after the red tank has taken on a 
certain combination of distance, speed and direction. This 
combination is a threshold whose crossing will cause the 
blue tank to decide to fire regardless of the predicted 
event. The decision based on the prediction has not been 
implemented yet. Currently the decision does not impact 
the simulation during a run since the combat model and 
decision model have not been coupled together. 
 
4. The Combat XXI Model 
 
Combined Arms Analysis Tool for the 21st Century 
(CXXI) is a high-resolution, closed-form, stochastic, ana-
lytical combat simulation. CXXI is being developed by 
the TRADOC Analysis Center – White Sands Missile 
Range (TRAC-WSMR) and the Marine Corps Combat 
Development Command (MCCDC). CXXI will be used 
for the analysis of land and amphibious warfare in the 
Research, Development and Acquisition (RDA) and Ad-
vanced Concepts and Requirements (ACR) Modeling and 
Simulation (M&S) domains. It is the next-generation ana-
lytic tool for modeling theater-level ground warfare for 
the Army and Marine Corps. 
 



  

CXXI is an information-driven model. Physical algo-
rithms, primitive behaviors and tactical behaviors are rep-
resented by the model’s computer code. However, it is the 
processing of user-defined information, from the study 
scenario and the information in the model’s database, 
which drives the interactions between entities in the simu-
lation. 
 
The model’s unit of resolution is a platform-level entity 
(tank, aircraft, dismounted soldier, etc.). CXXI models 
primitive behaviors such as movement, search, and en-
gagement in separate modules. Tactical behaviors (bound-
ing over-watch, close-air support, etc.) are represented in 
decision-making modules. Each entity is assigned a set of 
modules to describe its physical behavior and decision-
making capabilities (TRAC-WSMR, 2004).  
 
The current perceptual model used consists of event mes-
sages that are native to CXXI. This information is stored 
in several output log-files. They yield information about 
detections with associated data regarding observer and 
target IDs, coordinates, distances, sensors detected and 
time. Other log files deliver engagements, kills, and dam-
ages and detonations.  
 
For the sake of completeness it should be mentioned that 
Combat XXI has several built-in engagement levels. De-
pending on the accuracy of detection with respect to tar-
get type (detect, aim point, recognition and identification) 
the model fires after a certain level of target identification 
is achieved. This also leads to a delay in firing in the case 
that the respective accuracy of detection level has not 
been met. However, this is unrelated to this work, because 
this delay is not the result of the assessment of the agent’s 
own behavior. If the target identification level increases 
and meets the threshold of engagement then firing will 
commence immediately. 
 
5. First Experiments and Initial Results 
 

The scenario modeled in this paper is shown in Figure 6. 
The initial scenario demonstrates that the allocation of 
observed entities to formations works correctly and dis-
plays the decision context based on the observations so 
far. It also shows the distribution of the number of tanks 
per observation until the tank encounter occurs. Currently 
three red tank formations are following scripted paths 
southbound. They represent three platoons of a red tank 
company. A decision point is reached when a blue tank 
entity detects one or more red tank entities. The context 
for the decision point is shown in Figure 7. It displays the 
entities involved in the current observation in dark colors 

. The faded entities indicate the other current blue tank 
positions  and the red positions of the known tanks with 
the last observed location . The positions are scaled and 

the green circle indicates a 500 m distance.  indicates 
that so far 4 tanks have been identified that belong to that  

  
Figure 6 shows the initial scenario. A red tank com-
pany is represented by three tank platoons. Their ob-
jective is somewhere south east of the blue defending 
platoon.   
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Figure 7 shows the first decision situation in the sce-
nario. The blue tank (349) sees one red tank (63). In 
the top left corner are the other tanks with their last 
reported location. The data field on the right displays 
the current information set for this decision situation.  



  

formation . The current distance is 1091m. Applying the 
highest probability from the state machine as estimate for 
the transition to the next state would predict state 2 . 
Using the Monte Carlo simulation method predicts as the 
probable transition also state 2 . The data display indi-
cates that the tank should not fire. There is an 71% chance 
that within the next observation cycle there may be one 
more tank in sight. Therefore the decision should be to 
wait. On the other hand if the tank waits too long the risk 
increases of being shot first. Currently a combination of 
speed, distance and direction defines a threshold whose 
crossing will lead to fire regardless of further predictions.  

Figure 8 shows the actual state sequence after the first 
decision situation.  It cycles 4 times between state 1 and 2 
(which have the also the highest transition probabilities) 
and moves then to state 3 and back to 2. After this there 
are no more observations therefore it does not go back to 
state 1 or 0. In this experiment the engagement option in 
Combat XXI has been turned off. Otherwise there would 
be only one or two observations after the first detection 
due to the destruction of the red tanks.  

 

 

b

4

4xa
c

1 2 1 2 1 2 1 2 1 3 2

b

4

4xa
c

b

4

4xa
c

1 2 1 2 1 2 1 2 1 3 2

 
Figure 8 shows the actual state transitions. The num-
bers below the state machine indicate the state se-
quence numerically after the first decision situation. 

Table 1 shows the initial results obtained from the sce-
nario in Figure 6. The time indicates seconds after simula-
tion start. Column 2 displays the state the blue platoon 
goes to when observing the number of tanks visible at that 
point in the simulation.  Column three indicates the next 
three actual transitions from the current observation time. 
At each decision point the Monte Carlo simulation runs 
three transitions ahead 100 times. The mode (most com-
mon single outcome) of the 100 runs and the associated 
probability are denoted in column 4 and 5. The probabil-
ity of the continuation of the real state sequence is calcu-
lated based on the transition probabilities starting from the 
current time, and therefore they vary depending on the 
observations so far. They are displayed in column 6. The 
last column displays the probability for the real state se-
quence according to the Monte Carlo simulation. 
 

Time at 
Decision 

Point

Current-
State

Real Se-
quence 
Ahead

Mode from 
the 100 

Simulations

Prob of 
Mode

Prob of 
real Se-
quence 

from State 
Machine

Prob of 
real 

Sequence 
from 

Simulation
6469.145 1 1212 1212 0.43 0.38 0.43
6827.905 2 2121 2121 0.52 0.42 0.52
6840.526 1 1212 1212 0.42 0.44 0.42
7051.431 2 2121 2121 0.47 0.55 0.47
7076.572 1 1212 1212 0.54 0.57 0.54
7095.882 2 2121 2121 0.52 0.57 0.52
7113.815 1 1213 1212 0.72 0.06 0.02
7134.462 2 2132 2121 0.58 0.05 0.07
7155.963 1 1321 1212 0.63 0.05 0.03
7165.961 3 321 3212 0.52 0.65 -
7176.971 2 21 2121 0.58 0.86 -  

Table 1 shows the analyzed data for the decision 
points. In case of the first row at 6469.145 one blue 
tank sees one red tank. The real sequence (hidden 
from the agent) shows what the next real states will be. 
Running the Monte Carlo simulation yields an esti-
mate for the next state the tank commander can ex-
pect. In this case the prediction matches the actual 
outcome. The last two columns display the probability 
values for the real sequence obtained from the state 
machine and from the Monte Carlo simulation respec-
tively. 

In the first 6 cases the predicted sequences match the ac-
tual observations. The probability values estimated with 
the Monte Carlo simulation indicate a good match. The 
probability values become very small after 7113.815 sec. 
This looks bad on the first glance, but actually reflects 
what we should expect the model to provide. The transi-
tion from state 1 to state 3 has a very low probability (p13 
= 0.07). Due to the low frequency of occurrence the simu-
lation does not hit this arc very often. Therefore, the small 
probability values show that the model is working cor-
rectly. In the last two rows the real sequence values 
shrinks due to encountering the end of the observation 
stream.  
 
6. Conclusion 
 
In many combat models insufficient representation of 
human behavior still cancels out because it occurs on the 
blue and on the red side as well. However, with the need 
of more sophisticated representation of human behavior, 
in order to represent the more sophisticated combat situa-
tions, it is mandatory to base the decisions in the system 
on more accurate entity representation. This first approach 
to the computational modeling of mental simulation is far 
from being perfect or comprehensive. However, we be-
lieve that the initial scenario already depicts a promising 
way of improving the cognitive capabilities of construc-
tive forces. The conducted experiment still lacks suffi-
cient accuracy in the prediction with respect to time 
mainly due to data that is not currently provided by the 
simulation platform, but it also shows the benefits by ena-
bling the entities to anticipate certain behavior of the en-



  

emy. This will enable pro-active behavior not seen so far 
in combat models. With further research and implementa-
tion the representation of constructive forces by mental 
simulation will certainly improve and meet the require-
ments for simulation models of the next generation.  
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