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Abstract

The issue of improving a Global Positioning System �GPS�� Precise Positioning
System �PPS� solution under dynamic conditions through averaging is investigated�
Static and Dynamic data from the Precision Lightweight GPS Receiver �PLGR� were
used to analyze the error characteristics and deign an averaging technique for dynamic
conditions�

It was found that the errors in PPS solutions are dominated by the satellite broad�
cast ephemeris parameters� The solution errors are highly correlated for a given set of
satellites�ephemeris� The variation can be as low as ��	 m in dynamic conditions� but
a slowly changing 
bias� of several meters is also present�

For �tting the location of a road observed repeatedly with a PPS receiver a tech�
nique based on 
space curves� was developed� Here the solutions are transformed from
functions of time to functions of space �location�� These then are used� Curves could be
�t with a Bezier polynomial easily to the ��	 m level� These analytic curves were then
used to form an ensemble average� The bias vectors between the solutions were found
with least squares estimation� These vectors were averaged using several techniques�
This idea was applied to a short rad segment� Using 
 independent measurements
taken over � months� the road was surveyed at the submeter level�

DoD Key Technology Areas� Ground Vehicles
 Computing and Software
 Sensors�

Keywords� GPS
 Global Positioning System
 Dynamic Positioning�
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� Introduction

The accuracy of a GPS receiver in the Precise Positioning Spectrum �PPS� is on the order
of � m horizontal and � m spherical today ��


����� While this may be adequate for some
applications
 there are others that need somewhat better positions
 but not as good as a sur�
vey position� In theory averaging independent PPS position estimates an do this� For static
positions this seems simple
 but there are some complications hidden in the independence of
position estimates made with GPS� In addition if the needed information is the track of a
road
 things are much more complex� This study has attempted to address the issue of how
to e�ectively average GPS PPS positions to achieve better location estimates in both the
static and dynamic conditions� The emphasis will be on the dynamic case as it is the more
di�cult�

Here absolute
 standalone
 positions are considered as the raw input data for further
processing� Clearly higher accuracy can be obtained through the use of di�erential GPS

but the focus here is what can be done with the absolute positions that come from PPS
receivers� In particular the work will focus on the Precision Lightweight GPS Receiver
�PLGR� which is very common �over ���
��� delivered� in the US military� This receiver
uses � GPS range measurements to compute a position� It is a single frequency receiver

which limits its height accuracy somewhat� These results will be a �oor on what could be
achieved with better PPS receivers with more channels and�or dual frequency tracking�

In the case of the static receiver
 the position solution can be signi�cantly improved only
by averaging very long periods
 on the order of a day� The results of both a long period
static result and a stop and go experiment will be presented� Repeated revisits to a site
within an hour did not signi�cantly add information unless the satellite set being tracked
had changed�

For dynamic cases the route must be repeatable
 at least at the � to � meter level in
order to successfully combine solutions� The averaging of dynamic solutions is achieved
by converting the tracks from time histories to tracks in space� In this study the tracks
are computed in the two horizontal dimensions� The third dimension can be added later
through various methods� The procedure for generating the space tracks involves selecting
fairly short tracks and �nding the corresponding data in multiple data sets� Each is converted
to a parametric polynomial in space� A Bezier representation is used� This is essentially
a piecewise cubic �t with continuous values and continuous �rst derivative� The latter is
important because the normal to the curve is used in the process of combining curves to �nd
an average track�

A system to locate a road using a database of PPS positions is diagramed in Figue ��
Here an operator identi�es the road or feature to be geolocated� This could be a graphical
interface or an area de�ned by geographic coordinates� The program would select the tracks
of data that �t the operator�s criteria� These tracks are the input data to the techniques
described here� In the current study
 the selection phase will not be addressed�

The �rst step in the process is the conversion of the tracks from functions of time to
a function of spatial coordinates� These are the �space curves� that are analyzed further�
The individual instances will be called track segments� The space curves chosen here are the
Bezier representation�

It is assumed that the track segments di�er from each other by a constant bias vector�
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Figure �� Diagram of Track Averaging

This is an assumption that is validated with experimental data in the study� The assumption
depends on the same set of satellites being tracked during the time that the track segment
is measured and that the time interval of he measurement is short �a few minutes or less��

The biases between all track segments can be computed in a least squares process� These
biases can then be averaged directly or in a weighted manner� A method used in the analysis
of atomic clocks �N�Cornered�Hat� is used to �nd the e�ective noise in each track compared
to the ensemble
 before the ensemble is formed� This allows not only correct weighting

but the editing of outliers due to satellite changes or many other factors� The tracks can
be moved together using the bias vectors between one track and the others� This can be
averaged� The net bias of this ensemble is the negative of the average of the biases between
tracks�

The following sections will describe in detail the underlying assumptions made in this
technique� These were illustrated by previous data taken on a ship� Here new data is taken
with PLGR�s under both static and dynamic conditions� Dynamic data was taken repeatedly
over three of these areas� The data from one was used to illustrate the process of dynamic
track averaging�

After a general background laying out the assumptions in chapter �
 the mathematical
approach to the problem is developed in chapter �� The test data is described in chapter ��
A detailed mathematical description of the analysis is presented in chapter �� The data is
applied to space tracks in chapter 	
 which is the heart of the analysis technique� Finally
 a
speci�c dynamic example is analyzed with this technique in chapter �� Submeter positioning
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of short road is demonstrated�

� Background

��� Errors in PPS Range Measurements

The error in a GPS absolute position is roughly the Dilution of Precession �DOP� times
the range error standard deviation� Therefore an understanding of the errors in a range
measurement is needed� A diagram of the components of a range error is shown in Figure
�� Here the range to the satellite will be on the order of ��
��� km� The receiver clock
error
 while large
 is estimated with each position and does not have a dominant e�ect on
the solution error� The errors that are important
 included in the �other� category on the
top line
 are expanded on the second line�

Figure �� Components of GPS Range Measurements

For the military user in PPS mode
 the Selective Availability �SA� error is removed in
the receiver� For dual frequency receivers the same is true for the ionospheric error� While
the PLGR�s used here are single frequency and su�er from this error
 its e�ects are mainly in
the vertical component� The small vertical bar indicates the minimum ionospheric error� For
reference the largest ionospheric error shown here is about �� m� The sizes in this diagram
are only approximately to scale�

The atmospheric error also a�ects mainly the vertical component� It can also be modeled
quite accurately with just knowledge of altitude
 at least at the �� cm level or better� The
last two components are dependent on the receiver and its environment� They usually vary
rapidly
 especially in a moving receiver
 and can be easily averaged down� They will not be
considered further here�
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The other component
 Orbit and Satellite Clock
 is the most important for the PPS
user� In order to �nd a position from GPS ranges
 the receiver must know the location of
the satellites at the time the signal was sent� This is done through a model of the satellite
position� The parameters for this model are broadcast along with the ranging information
by each satellite� In addition
 the o�set of the spacecraft clock from an absolute time system
is included in the parameters broadcast� This is necessary because the GPS ranges are found
by subtracting the transmit time from the received time and multiplying by the speed of
light� This is about �� cm �or a foot� per nanosecond ������� microsecond or one billionth
of a second�� Clearly timing errors are important� This is why the receiver clock o�set is
computed as part of each and every solution� The satellites have atomic oscillators
 but even
these wander over the course of a day by a few nanoseconds�

It is the inaccuracy in these parameters that the satellites broadcast to the user �com�
monly called the broadcast ephemeris or broadcast message� ��� that dominates the military
users� PPS solution error� It is felt that the satellite clock parameters are dominant in this
parameter set� These errors occur because the broadcast message numbers are projections
of what will be
 not measurements of what has been�

The GPS Operational Control Segment �OCS� measures the satellites� positions and clock
state every �� minutes from � ground monitor stations scattered throughout the world� �It
is planned to add the National Imagery and Mapping Agency �NIMA� � ground stations
to this network in the near future bringing the number of ground stations available to the
OCS to �� or more ����� While the OCS computation center may have a good idea of the
satellite parameters
 this estimate is not what the user sees� Once or twice a day a set of
model parameters for the future few days is prepared and sent up to each satellite� These
are stored in an onboard memory and are broadcast to the user� Normally these projections
never get more than �� hours old� But that means that the information used in position
computation is based on measurements made an average of �� hours ago�
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Figure �� PLGR PPS Error While Static

	



��� Errors in PPS Real Time Positions

The di�culty in projecting the satellite states
 particularly the onboard atomic clock error

is the principal cause of the orbit and satellite clock error� �This is really the combined radial
and clock error
 but will be called the clock error here�� This error will be e�ectively uncor�
related between satellites� It will also approximately be random between upload parameter
sets� However it will be a slowly varying function of time for each satellite within a given
upload�

If a receiver tracks the same set of satellites for several minutes
 the error in position
will be approximately constant� This is because the orbit and clock error from each of the
satellites tracked will be almost constant over that time frame� However if the receiver
changes the satellites it is using in its position computation it will be changing one of these
errors for another� Even for the substitution of one satellite this can cause the position to
jump by several meters� It will remain at that new level until another satellite change occurs�

An example of this behavior can be seen in Figure �� Here the latitude and longitude
errors are plotted from PLGR solutions on a �xed site over one day in mid �

�� The data
was taken every second� Clearly these errors are not independent random variables on the
time scale of � second� The errors look like constants over time intervals of a few minutes
and a straight line over some periods of an hour� On top of this behavior is some noise
 but
more signi�cantly jumps� The linear segments occur during the tracking of a �xed set of
satellites� The errors are not constant because the contribution of each satellite error to the
position errors changes as satellite geometry changes� The jumps occur when satellite sets
change�

Clearly some changes of satellites have larger e�ects than others� While the DOP is always
improved when these receivers chose to change satellites
 sometimes the error increases�
Examples of this in Figure � occur at about 
 hours and �� hours� The di�culty is that
the receiver has no knowledge of the error on any particular satellite� The size of individual
errors is believed to arise mainly from the age of the data used in the broadcast ephemeris�
This is essentially the time since last upload�

� Approach

For this study new data were collected on several roads near the Naval Postgraduate School�
These data were converted to a local cartesian coordinate system with the x�axis east west
and the y�axis north south� The height was carried along as is� A kinematic reference
trajectory was generated in each case� The cartesian data were then analyzed to generate
a curve in space
 thus removing the dependence on the time the data was collected� These
space curves were then combined to generate average location for the roads�

The next subsection will outline the processing techniques� Addressing data acquisition
in general will follow this� Detailed analyses follow�
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��� Mathematical Approach

�
�
� Overview

In order to average approximate paths
 one has to �rst identify data from track segments
of interest� At this time
 the identi�cation process
 including a check for independence
 is
done by hand
 with some automation� We will discuss this in Section 	� Once independent
track segment data sets are found
 an analytic representation for each track is obtained using
some form of approximation� This step is discussed in the next subsection� This step will
create for each track segment an analytic representation of the track segment for each data
set� The averaging process for these approximations will be discussed in section ��

�
�
� Parameterization

In many computer�aided geometric design problems
 one wishes to produce a smooth curve
from a given ordered set of data points� Here we are given a set of points describing a curve
in space in parametric form� The natural parameter in this case is time� With a parametric
�t
 each of the coordinates is �t as a function of the parameter
 with the path then being
traced out as the parameter varies�

While the natural parameter in this case is time
 with such a parameterization it is
di�cult to combine data from multiple trips along the same path� Some authors have
suggested the use of chord length spacing �Euclidean distance between points� because it
approximates the arc length of �or distance along� the curve ���� A number of other possible
parameterizations could be used ���� There is no �best� parameterization since most known
methods can be defeated by a suitably chosen data set�

The methods employed by the two referenced papers and most other authors involve
�tting cubic splines to the data� This can be done in at least two ways� attempting to
minimize the distances from the data to the curve at �xed parameter values �a linear problem
once the parameterization has been �xed�
 and attempting to minimize the distances from
the data points to the curve� In the latter case
 the actual parameter values of the nearest
points on the curve must be discovered as part of the �tting process
 and thus this is a
nonlinear problem� While the linear problem is far easier to solve
 the results cannot be as
good because of the necessity to assume the parameterization a priori� Therefore we have
chosen to �t curves to the data by minimizing the sum of the distances from the data points
to the curve� This is called �Orthogonal Distance Regression�
 or ODR ����

There are many possible forms that can be assumed for the �tting function� While
polynomials naturally come to mind
 they often exhibit poor �tting properties and might
require excessively high degrees� Piecewise polynomials are usually a better choice
 and there
is a considerable literature on the topic� Cubic splines are the choice of most authors�

The use of cubic splines is desirable because splines are well known for their superior
�tting properties� The parameters that de�ne the spline
 however
 must satisfy a number of
constraints �the continuity of value
 slope
 and curvature� making it di�cult to specify the
problem in such a way that the de�ning parameters are independent
 a desirable trait for
optimization� In addition
 because we are modeling roadways
 the large values of curvature at
corners will pose a problem for curves with continuous curvature� Therefore
 in our approach
we have relaxed the smoothness conditions to require only continuity of the slope between
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cubic pieces �usually� in fact the form adopted may automatically incorporate corners if
the data warrants it�� A set of Bezier curves �tting a data set generate a curve that is
continuous and has continuous �rst derivatives even at the connecting points �called knots��
The description of Bezier curves typically takes a geometric �avor� Four control points de�ne
a single Bezier cubic curve �in two dimensions� pi � �xi� yi�� i � �� �� �� �� and the curve is
given by

x�t� � ��� t��x� � ��� � t��tx� � ��� � t�t�x� � t�x� � � t � �

y�t� � ��� t��y� � ��� � t��ty� � ��� � t�t�y� � t�y� � � t � ��

The three line segments connecting the control points
 form an open polygon called
the control polygon� An example of a single Bezier curve is shown in Figure �
 and the
parameters are described in the sidebar� More information can be found concerning Bezier
curves in Gerald Farin ���� Note that the curve starts and ends at the point p� tangent
to the �rst polygon side and ends at p� tangent to the last polygon side� The curves will
not ordinarily pass through the other two control points� The example demonstrates the
relationship between the control polygon and the curve
 illustrates the tangency properties

and the basic propensity of the curve to follow the control polygon�
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Figure �� Bezier Segments Showing Notation� �a� One Segment Bezier
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The parameters are shown for one cubic segment in Figure � �left�� The eight param�
eters for this segment are
end points p� � �x�� y�� � Parameters

p� � �x�� y�� � Parameters
end directions e� � �cos����� sin����� � Parameter

e� � �cos����� sin���� � Parameter
distances to interior �� � Parameter
control points �� � Parameter
Thus
 p� � p� � ��e� and p� � p� � ��e��
In joining following segments
 p� and e� become p� and e�
 respectively
 of the following
segment� Thus there are � parameters for each continuing segment�

With this control structure it is easy to concatenate two or more cubic segments joining
with continuous slope� Because of the tangency condition that is satis�ed
 the curve may be
extended� The continuous slope provided the �rst control point of the next segment coincides
with the last control point of the current segment� The second control point of the second
segment is on the line joining the last two control points of the current segment� The right
part of �gure � shows how a second cubic segment joins with continuous slope at the point
p�� The curve is easily extended to any number of segments�

The initial work in implementing these ideas was by M� R� Holmes in his M�S� thesis �	��
He developed Matlab software to solve the problem in two dimensions� The algorithm was
further developed by E� Lane ���� The independent parameters that determine the Bezier
curve are the locations of the knot points
 the directions of the unit tangent vectors at the
knot points
 and the location of the inner control points� These inner control points
 p� and
p�
 are constrained to lie on the line containing the unit tangent vector at the adjacent knot
and at speci�ed distances from the knot points
 �see Figure ��� This ensures a curve with
continuous slope between adjoining cubic segments
 called G� continuity�

The problem of �nding an optimal set of parameters is nonlinear
 hence it is di�cult
to �nd the actual global minimum� On the other hand
 with good initial estimates of the
solution
 good approximations can be found with a reasonable amount of computation� The
current version uses a �xed number of knot points
 decided a priori
 although software is
available that allows the insertion of additional knots �exactly duplicating the existing curve�
and the deletion of knots �giving a new approximate curve�� The �nal positions of the control
points are found in an optimization process using these initial values�

In the previously mentioned theses �	
 ��
 it was assumed the data was given as ordered�
This was important in that no assumption was made regarding whether a curve could cross
itself �and in fact
 this happened in the examples given�� Since the ordering was given
 it
was then possible to determine which of two crossing segments of the curve a nearby data
point was close to in the parametric sense
 not just the geometric sense� While it may not
be possible to easily order the data a priori in this application
 knowing that the curve does
not cross itself will enable us to determine the ordering of the points from multiple passes
during the �tting process�

The process of �tting the track segments with a Bezier curve takes place in three steps�
First an initial guess for the control points is made� This currently is done in a semi�
automated fashion� The optimization is carried out in two phases� The �rst is a local
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Figure �� Control Points of Bezier Curve at � Stages of Optimization� �a� Initial Guess
 �b�
Local Optimization
 �c� Global Optimization

optimization for the location of the interior control points located on the lines tangent at the
knots� This is followed by a global optimization for all the parameters of the Bezier segments�
For the purpose of this study
 the optimizer built into Matlab �version ���� via its FMINS
function� This uses a Nedler�Mead simplex �direct search� method� As an alternate the
Matlab optimization toolbox function FMINU was also investigated� This uses the BFGS
Quasi�Newton method� While the solutions were not identical
 the produced essentially the
same space curve�

Figure � shows an application with two cubic segments� The data on which this example
is based was taken at the �beach lab�
 and consists of �� points� The left �gure represents
the control polygon and the approximating curve after the user has input the initial guess
knot points� The program then determines tangent vectors at the knots and distances to the
interior knot points� The rms distance of the data points from the curve in Figure � is ����
m� The center �gure shows the approximating curve and knot points after local optimization
for placement of the interior knot points
 with no changes to the location of the knot points

or the slopes at the knot points� The con�guration of the right control polygon shows the
�exibility of the method to adapt to move complicated shapes� The rms distance to the
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Figure 	� FT Ord Square Area Fit with Three Segment Bezier

curve for this case is about ��	� m� The right �gure shows the control polygon and the �t
after all parameters have been optimized� The rms distance to the resulting curve is about
���� m� The large reduction in error after the local optimization and the relatively small
error reduction after the global optimization re�ects some skill by the user in proper initial
placement of the knot points�

Another example is shown in Figure 	� Here the data consists of 

 points that were �t
using a three segment curve� Recall that such a curve embodies a total of �� parameters�
The rms of the distances from the data points to the curve in this approximation is ���� m�
The data was taken on a trip along the west and northern sides of the Ft� Ord square
 which
includes the kink previously noted� The path essentially consists of � nearly straight�line
segments
 joined by a sharp corner and by a transition �kink� from one line to another�
While the control polygons and knots are not shown
 the interior knots are near the corner
and the midpoint of the kink� This example illustrates the capability of the �tting procedure
to model very di�erent kinds of behavior
 from small radius corners to smooth transitions
between essentially straight lines� To achieve the small radius corner the algorithm places
the adjacent interior control points close to the knot at the corner�

Thus in two cases
 one fairly extreme
 this approach �t the data at the ���� m level� This
is consistent with the di�erences in the zero baseline experiment on shipboard given in Table
�� It would probably not be useful to try and �t the raw data more accurately�

The Bezier curve �ts discussed here assume random noise with zero mean� However the
true non�random nature of the noise will then be folded into the process� As we discuss later

it is useful to separate segments with �xed satellite sets because these segments are likely to
have almost �xed biases�

��� Data Collection

�
�
� Test Areas

In order to provide real data for analysis and experimentation several data collections were
made� These all occurred in the general area of the Naval Postgraduate School in Monterey
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CA ��	�	 N ����
 W�� Data was collected over � tracks shown in Figure �� This shows the
south end of Monterey Bay
 which is about ��� km south of San Francisco�

The Naval Postgraduate School is on the southern edge of this map� It is labeled NPS
and is partially o� the map� The static data was taken at NPS� The antenna is on top of
the highest building on campus and in a multipath free environment� The reference data for
the kinematic solutions was also taken at this site�

NPS has some beach property about ��� km from the reference site� This is called the
Beach Laboratory area and marked �Beach Lab Track� on Figure �� There is a narrow paved
two�lane road on this property that was used as a test track� The road area used was about
��� m long with a large turnaround through gravel parking areas at each end� The Beach
Lab area was used on several occasions over about 
 months to get repeated statistics from
independent samples� Speeds were limited to about �� km�hr ��� m�s��

Figure �� Three Test Areas on the Monterey Peninsula

In order to evaluate open road conditions
 data was taken along California route � �the
Paci�c coast highway� over a length of about � km� This is a divided highway with � and �
lanes
 in each direction
 along this area� There are no cross streets
 only one underpass and
no areas of limited visibility� There is limited visibility and an overpass on the cross street
at the south end used for a turnaround� In all but a few controlled tests
 the route took the
right �slow� lane� Speeds of ��� km�hr �	� mph or �� m�s� were common� The northern
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end of the route turned around at the main entrance to the old FT Ord� �This army base is
now closed and converted to civilian uses��

The straight tracks commonly found in urban areas were sampled using some streets in
the former FT Ord� A rectangular route ��� km by ��� km was used in an area with little
tra�c� This �square� is about �� km from the NPS reference station� It is shown in Figure
�� The visibility is good except for a few trees� In one area there are buildings that limit
the horizon to about �� degrees� Figure � shows the rectangle as well as the location of �
survey markers positioned for this study �small numbers � to � inside the square�� These
were used in a stop and go test discussed later� It should be noted that the northern side
of this route is not straight� It consists of two straight segments that join with a kink� The
o�set is about �� m and occurs over a distance of about ��� m� They are also slightly o�set
in angle with respect to each other� This provides a nice test case for the �tting algorithms�
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Figure �� FT Ord Area with FT Ord Square
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�
�
� Experimental Con�guration

The dynamic data was taken in all cases in a king cab truck shown in Figure 
� The receivers
and data logging equipment were placed in the rear seat� An Ashtech Z�� dual frequency
receiver was used to provide data for a reference trajectory� The data on this receiver was
logged internally in the receiver� The reference receiver was an identical Z�� located over a
surveyed mark on the NPS campus� This mark was on top of the highest building on campus
in a multipath free environment� Data was taken at � Hz and the reference trajectory was
processed with the Ashtech PNAV program�

Figure 
� Vehicle Used for Data Acquisition

The three PLGR�s in each test had their antennas in one of two con�gurations� For the
�rst few tests they had separate antennas mounted on a square on the truck roof� The square
is about � m on each side� The reference system was on the fourth corner� This required
a lever arm correction to bring the e�ective location of all the receivers together� In later
experiments
 all the receivers shared the reference receiver geodetic antenna through a � way
WR Inc� splitter � ampli�er� This had �	 dB of gain� This common antenna was mounted
on the truck roof for some runs� In others it was mounted on a pole attached to the side of
the truck via a quick release� This is the con�guration shown in Figure 
� This allowed the
antenna and pole to be removed from the truck and placed over a survey mark� The pole
had a target bubble level and a point for insertion in the survey mark�

The data from the PLGR�s were collected in laptop computers using a NPS written pro�
gram called VBPLOG� This program took data from the instrumentation port and converted
the solutions on the �y to ASCII and logged them� �The position solutions came from PLGR
data block �����s and the velocity from block ��s�� The data were collected at � sec intervals�

The VBPLOG program could also control the tracking of the receivers� In all but the
�rst test
 one PLGR was left to choose its own satellites and the other two were controlled�

�	



The tracking scenarios were generated with another NPS program� The VBPLOG program
was also used to set the con�guration of the PLGR to ensure that it was on the correct
datum etc� The logging program also displayed the solution
 DOP and tracking status� This
allowed problems to be identi�ed in the �eld�

In order to generate independent data sets
 the data was separated into sets with di�erent
satellites being used for the solution� Only sets with two or more satellites di�erent were
considered as independent data sets if the data was taken at the same time� Data with one
satellite di�erent were ignored�

� Static Errors

��� �� hour data sets� characteristic of errors

The errors of two PPS receivers
 tracking the same satellites
 are remarkably similar� This
was dramatically observed during an at sea experiment conducted by NPS in �

	 on the
Research Vessel PT SUR ���� During that experiment there were � PLGR�s used
 two on the
ship and two at a static site on shore� Each pair had only one antenna
 making this a dual
�zero baseline� experiment�

When the receiver solutions were di�erenced within each pair
 the error was observed
to be essentially zero over large time blocks and much larger in other blocks� It was found
that the times that corresponded to very small errors occurred when the two receivers were
tracking the same satellites� The tracking scenarios were available in the data
 therefore
statistics of the di�erences in bins according to the number of common satellites could be
generated�

The results of this analysis for both zero baseline pairs are shown in Table �� Here the
RMS of the di�erences are shown for both the position and velocity� The values are in m
and m�s� Cases without a signi�cant number of points have not been listed� This causes the
number in the �All Data� category to be slightly larger than the sum of the cases shown�

The cases of � common satellites represent the same satellites used in the solutions�
Here the di�erence in the horizontal components is �� cm or under on land� The vertical
coordinate is about twice as large� The same pattern is shown on the ship
 with about a
doubling of the level�

However
 when even a single satellite is di�erent
 the error jumps to the � m level in
each component for the land case� It does not get signi�cantly worse with a larger number
of di�erent satellites� Here the ship data is not worse
 indicating that the substitution of
a single satellite dominates the error budget� This demonstrates that the broadcast orbit
model errors are the major error component of a PPS solution�

To illustrate this
 a day of data taken in �

� has been analyzed� In this case there
was a Trimble �� channel PPS receiver on an antenna � m from the PLGR antenna� The
errors of both receivers as a function of time are shown in Figure ��� It is evident that the
basic form of the PPS errors is the same for a solution based on the best � satellites and an
all�in�view solution� The Trimble unit has much lower random noise
 but only occasionally a
much lower error value� �See the longitude error at between �� and �� UT�� The errors can
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A� Static Land Data
� Position �m� � Velocity �m�s�

Common Sats� Points Lat Lon Height Vn Ve Vu

� ��� ���� ���� 	��� ����� ����� �����
� 
��� ���� ���� ���� ����� ����� �����
� ��
�
 ���� ���� ���� ����� ����� �����
� ��	�		 ���� ���� ���� ����� ����
 �����

All Data ������ ���� ���� ���� ����� ����� �����

B� At Sea Ship Data
� Position �m� � Velocity �m�s�

Common Sats� Points Lat Lon Height Vn Ve Vu

� � ���� ���	 ��	� ����	 ����� �����
� ���� ���� ���� ���� ���
� ����� �����
� ����
 ���� ���� 	�
� ����
 ����
 �����
� ������ ���� ���� ��
� ����� ����� �����

All Data ������ ��
	 ��	� ���� ����� ����
 �����

Table �� Zero Baseline PLGR PPS RMS of Solution Di�erences By the Number of Common
Satellites

however
 be large in both receivers at times� See for example the height between �� and ��
UT�

Notice that the error
 for either receiver
 is often the same sign for a period of � to 	
hours� Clearly taking shorter than a day will not signi�cantly reduce the errors�

To further document the characteristics of the PPS error
 the probability distributions of
the errors were computed� These are shown in Figure ��� Here it is clear that the longitude
is the best determined component� The latitude has a slightly wider and more irregular
distribution� This was expected for a PLGR
 but the similarity of the two in the horizontal
is striking� In the vertical the PLGR is much worse� But it is a single frequency receiver�
This probably accounts for the slight bias� A summary of the statistics for these data is
given in Table ��

PLGR Trimble �� Channel
Avg� � Avg� �

Latitude ���� ���� ���� ����
Longitude ��	� ���� ���� ���

Height ����� 	��� ���� ����

Table �� Error Statistics for PPS Solutions Over a Day for PLGR and �� Channel Trimble�
All Values are in meters
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Figure ��� Errors in PPS Solutions Over a Day� A PLGR �green or lighter line� and a
Trimble �� Receiver �blue or darker line�� Antennas � m Apart�

�




Figure ��� Probability Density Functions for Data in Previous Figure
��



��� Stop and Go

One possible technique for �nding a better position at a point is to average the positions
obtained in several short occupations of a point� From the previous section it is clear that the
time interval between occupations needs to be large� The main requirement is that satellites
change
 but for a free running PLGR this often means a few hours between data sets�

In order to evaluate the validity of these assumptions
 a short test was made� In this
test four surveyed points were repeatedly occupied at intervals of about �� minutes over an
hour� The PLGR PPS solutions and a kinematic GPS reference solution were evaluated�

�
�
� Experiment

Four marks were surveyed on the former FT Ord around the ��� km square used in this
study� One marker was placed near each corner� These marks are about �� km from NPS�
A map of the area is shown in Figure ��

A truck that had a range pole attached to its side was used� This is a straight pole about
��� m long with the antenna on the top and a point to insert into a survey mark at the
bottom� A clamp allows quick release from the truck mount so an operator can walk the
antenna to a nearby mark� �See Figure 
� Three PLGR�s
 NPS numbers �
 �
 and �� and

one Ashtech Z�� were used on the truck�

For about an hour
 the truck was driven around the square� At each mark
 the truck
pulled up just past the mark
 an operator got out and set the antenna�range pole over the
mark� When the pole was vertical �a bubble level is built into the range pole� he told the
truck driver who recorded the time� The goal was to obtain �� s of level data at the mark�
Often more were taken� It took about �� minutes to make a circuit� Seven circuits were
made with stops� At one time a few circuits were made without stopping for other analysis�

�
�
� Results

The data were converted to a local x�y �East
 North� system for analysis� The reference point
used for this conversion was a point near the Beach Lab track� The x axis was essentially
a biased easting and the y axis a biased northing� Both the PPS data being evaluated and
the kinematic reference solutions were treated the same�

�
�
�
� Kinematic solution The errors in the kinematic solution can be evaluated from
this data because there is a static survey on the mark� In addition the errors in the averages
of the solutions while the antenna was over the mark can be obtained� These averages and
the standard deviation of the data are given in Table �� Here the errors are grouped by the
mark occupied� The last column is the number of � second points used in each average� In
general �� to �� seconds were taken at each site�

It is clear that the kinematic solution is very good� Only one case shows an anomaly

and this is probably due to operator problems or identifying the correct stationary data set�
�There was always a stationary set with the antenna on the truck before and after each mark
observation�� The errors are generally in the � to � cm level� This is extremely good for a
solution that is advertised to be good at the � to �� cm level�

��



Error Standard Deviation
Mark East North Up East North Up Npt
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� ���� ����� ����� ���� ���� ���� 	�
� ���� ����� ����� ���� ���� ���� ���
� ���� ����� ����� ���� ���� ���� ��
� ���� ����� ����� ���� ���� ���� �

� ���� ����� ����� ���� ���� ���� ��
� ���� ����� ���� ���� ���� ���� ��
� ���� ���� ���� ���� ���� ���� ��
� ���� ���� ���� ���� ���� ���� ��
� ���� ���� ����� ���� ���� ���� �

� ����� ���� ���� ���� ���� ���� ��
� ���� ���� ����� ���� ���� ���� ��
� ���� ����� ���� ���� ���� ���� ��
� ���� ���� ���� ���� ���� ���� ��
� ���� ���� ���� ���� ���� ���� �	
� ���� ���� ���� ���� ���� ���� ��
� ���� ���� ����� ���� ���� ���� ��

Table �� Kinematic Reference Solution Errors� All values are in meters�

�
�
�
� PLGR PPS Absolute Positions A similar analysis was done on the PLGR
solutions� In this case the data were �rst separated by receiver and then by the location�
There is a table for the error of each receiver� These are given as Tables � � 	� In these
Tables
 a scenario number is also listed� This is because the satellites being tracked are
much more important than the receiver being used� The satellites tracked in each scenario
are given in Table ��

The horizontal errors from scenarios � and � are shown in Figure ��� The same plot for
all the data is given in Figure ��� The standard deviations of the data in the set are plotted
as error bars� It is very clear that the internal consistency of the data as seen in the standard
deviations is usually much smaller than the true errors� It is also clear that the �bias� is
slowly walking�

There is a signi�cant di�erence in the standard deviations of the data in the two major
scenarios� In part this is due to the higher DOP for scenario �� For scenario � the DOP is
in the range ��� to � while for scenario � the range is ��
 to 	� Other factors may also be
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Table �� PPS Errors for PLGR � at Survey Markers� All values are in meters�

at work here� The very large error bars in the �one of� cases may be in�uenced by recent
satellite changes that have not yet caused the solution to stabilize at a new bias�
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�
�
� Stop and Go Summary

The noise level due to the inherent variation in a PLGR solution is at the ��� m level in
most cases� There may be some receiver to receiver variation� This is for a DOP of ��

The �biases� walk� The typical velocities are � m � hour� Therefore one should not use
segments of data longer than about �� minutes in a system trying to de�ne positions at the
� m level�

� Dynamic Approach

��� Model Assumptions

In the analysis of data from PPS GPS receivers it will be assumed that the Clock and Orbit
errors inherent in the use of the broadcast ephemeris dominate the error� This means that
for the present analysis
 we are ignoring environmental e�ects such as multipath� It will also
be assumed that the random noise contribution is much smaller than the Clock and Orbit
errors�

In particular it is assumed that the error in a position will have two major components�

�� A small random component
 here assumed to be about �� cm per axis in the horizontal
plane


�� A larger error that changes only slowly while a �xed set of satellites is used in the
solution� �In reality the assumption is that a �xed set of satellites with broadcast
ephemeris from the same upload� Within that upload
 epochs or IODE�IODC�s can
change��

This larger error�

�a� Can be modeled as a constant or linear function of time� Over a time scale of ��
to �� minutes it can be considered a constant�

�b� Will change discontinuously when satellites used in the solution change�

These data will be converted to space tracks
 removing the time as an independent
variable� It is assumed that space tracks over the same short segment of road will have an
error that is a bias with respect to the �truth�� It will be assumed that these bias vectors
are independent for di�erent satellite sets or on di�erent uploads� It is assumed that the
error in these bias vectors is random and has a zero mean�

��� Mathematical Overview

�
�
� Tracks from Biases

Let the true track segment be T �s�
 where s is some measure of the distance along the track�
There will be n sets of measured locations over this same physical track segment� Based on
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the assumptions
 these will be the true track segment plus a bias vector plus some random
component�

The �rst step will be to take the discrete
 time ordered
 GPS locations and �t them to an
analytic curve in space� One bene�t of this process is to average out the random component�
Also some of the driving errors will be removed� We will denote the �t to a measured track
segment by Ti�s�� i � �� �� � � � � n� �� Then the basic assumption is made that

T �s� � Ti�s� � �i�

for all n track segments�
In the real world
 the true track segment is unknown and only Ti�s� are available� The

approach is to choose one track segment as a reference track� Here track segment zero will
be chosen� The o�set between each of the track segments and track segment zero will then
be estimated


�i � � Ti � T� �s

� �i � ��

Here � ��� �s denotes the average over the distance measure s�
Now the average of the �s over track segments will be taken

� �i �i � � �i �i ���
� ���

Of course this average does not include the reference track segment because �� is always
identically zero� Here it is assumed that the bias vectors are random and will average to
zero given a su�cient number of samples� Thus

T � T� � ��
� T�� �� Ti � T� �s�i

The average over the track segments can be done as a simple average� However it is more
appropriate to do a weighted average using some measure of track quality� Two estimates
have been studied here� The �rst is the post��t rms from the o�set vector solution process�
A second method is to use the N�Corner Hat method of Barnes �
� popularized in the precise
timing community by Allan ����� This method takes the above rms values from solutions
between all pairs of tracks segments and estimates the most likely variance of each bias
vector� In both cases the reciprocal of the variance or rms squared is used as the weight�

In the cases studied here the track segmens are vectors in two dimensions and the ��s
are two�dimensional vectors� It is important to note that the �
 and hence the � can only
be estimated if there is signi�canmt variation of the track in the two components of the
segment studied� If the track segment is straight
 only the cross track component of the ��s
can be resolved� This will manifest itself in a singular covariance matrix between two track
segments� In this case a solution for only the cross track component of the o�set vector will
be found�

An example using nine independent track segments following the same path will be given
in Section ���� It is important to mention that for a straight line
 the solution for � is
singular
 one can only �nd cross track coordinate
 not along track component� This is why
we discuss ��d �t in section 	���
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�
�
� N�Cornered Hat Test and Variance Calculations

The N�cornered hat calculation was designed to estimate the variance in a sequence of time
estimates of N independent clocks �
�� The basic equations are obtained in the following
way� Let T i represent the time sequence from the ith clock
 with unknown variance ��i 
 and T
the true time sequence� The the matrix of variances of the di�erences between the observed
sequences can be computed

Sij � var�T i � T j�
� var�T � T i� � var�T � T j�
� ��i � ��j

can be computed� The function �var� is the variance of its argument� Here it is assumed that
the sequences are zero mean and uncorrelated� This relates the computable quantity
 Sij
 to
the variances of the individual clocks� We then have Sij for i � �� � � � � N� j � i � �� � � � � N 


providing
N�N � ��

�
equations in the N unknown variances� If N � � there are at least as

many equations as unknowns
 and the approximate value of the variances can be found by
least squares methods� For ease in writing the equations
 assume that Sji � Sij for all ij
with Sii � �� The least squares estimate results in the solution

��i �
�

N � �

�
�

NX
j��

Sij �
�

��N � ��

NX
k��

NX
j��

Skj

�
A � i � �� � � � � N�

This calculation may result in negative variances under certain conditions
 and that is
observed to occur when the true variance of the clocks is signi�cantly larger than that of the
others� In that case the calculation can be used to determine a clock with a large variance

eliminate it from the set and repeat the calculation�

We have used this procedure in a slightly di�erent setting� When the bias calculation is
done �see section ��
 the mean�squared�error from the calculation of the o�set vector between
two curves replaces the variance calculation above� We are then able to estimate the variance
of the error between the true track segment and the given test track segment� When we
performed this calculation for the nine track segments
 it was found that the variance for
one was relatively large while the variance for another was negative� This unphysical result
was corrected by removing the track segment with the very large variance from the set and
the calculation repeated� This gave good estimates of the variance of each track segments�
errors�

�
�
� Generating � Dimensional Space Tracks

For a single track of data
 two methods of �tting the data in ��d seem apparent� The �rst

and most di�cult
 is to extend the Bezier cubic �ts
 discussed earlier
 to ��d� Knot points
would have three components
 the tangents at the knot points would have two degrees of
freedom
 while the distances would be the same �two per cubic segment�� This is relatively
straightforward to implement and results in � � k � � parameters for a k knot Bezier cubic�
Of course
 the errors in the z�component would be weighted di�erently than those in the x
and y�components�

�




A second
 and easier method is a two step procedure� Fit the x � y data �rst� The
parameter value for each point is then available �or easily computed�� The distance along
the curve could also be easily computed� The z�component could then be �t as a function
of either parameter value or distance along the curve �it�s suggested the latter is a better
idea� using the ��d analogue of Bezier curves
 Bessel cubics� Since the z�component has
much larger error than the horizontal component
 this approach seems attractive because it
decouples the problem into two simpler problems�

If a single path in horizontal coordinates is generated through �averaging� the data from
several paths
 the method of then estimating the height along the resulting curve from the
z�component data is not so clear�cut� The problem is attempting to identify a parameter �or
distance� value of each point with the z�value� Since di�erent paths have di�erent biases

this could only be done by taking into account the bias between the �averaged� curve and
the individual curve that the z�component datum came from� This could be done
 but it is
not clear that the z�data should be treated this di�erently�

Instead
 it seems reasonable to �average� z�components from several paths using an
algorithm similar to that used for the horizontal coordinates�

� Dynamic Space Tracks

	�� Considerations 
 linear��
d� point spacing

We have developed Matlab codes for data segmentation and track averaging� In this section

we discuss the data segmentation to pick independent tracks and to choose pieces that should
be �t by a straight line �see section 	���� The latter is required since in this case one can
only �nd the cross track error�

	�� Data segmentation

For the purpose of this study the data segmentation was done in a semi�automated fashion�
One program �nds the segments of tracks which are monotone in �x�� It also �nds times at
which satellite groups change� Plots are made of each segment
 along with a timeline plot of
the various path segments and satellite groups�

The program then interrogates the user for a time interval or segment to be �picked o���
One or more segments are then saved in �mat �les speci�ed by the user �the name is the
same as the input �le with an index to distinguish between the segments�� Some of these
may then be further reduced to track segment data sets that can be �t by piecewise cubics
or a straight line�

	�� �
d �t mathematics goodness of �t 
rms of �t vs� rms errors�

The initial guess for the knot locations is given to the �tting program graphically� The data
is displayed with labels indicating the order� Using the mouse
 the user indicates the desired
location of the knots for the cubic pieces� All data before the data point closest to the �rst
knot and after the data point closest to the last knot is discarded� Kept and discarded
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points are indicated on the graph and the user is given the option of accepting the input
 or
restarting the knot selection process� The approximating curve is then computed� Graphical
output is supplied� This data is then saved�

The placement of and number of knot points plays a crucial role in how well the initial
curve and ultimately how well the optimized curve �ts the data� Experience is the best
teacher of how to do this
 but there are some hints that can be given� Recall that the curve
starts at one end �knot� and ends at the other �the second knot�
 and is tangent to the
corresponding polygonal segments� In between there are two control points
 the vertices of
the polygon segments whose placement is determined by the program� The Bezier curve will
rarely pass through either of these control points�

The initial guess algorithm is dependent on an ordering of the input points
 and is taken
as the input order
 with every tenth point annotated� The user then indicates �with the
same orientation� a set of knot points for the initial guess
 using the mouse to place a cursor�
All points preceding the �rst indicated knot
 and subsequent to the last indicated knot point
are discarded from the data set�

The shape of the data curve will determine the number of knot points required for the
complete curve� While it is possible to �t data with an in�ection point in the interior
of a single parametric cubic segment
 it is probably a good idea to insert a knot point
at the approximate location of the in�ection point� Other knot points should be inserted
commensurate with the shapes that are possibly generated by a single parametric cubic
curve�

Generally
 it is felt to be a good idea to use no more than � or � cubic segments �� or �
knots�� If suitably small errors are not obtained in a particular case
 it is necessary either to
increase the number of knots
 or to decrease the extent of the data being �t� As the present
time
 no software for automatic placement of additional knots
 nor re�nement of them after
an unsuccessful approximation is available�

With a little experience the user can select segments of the data and supply initial guesses
that result in the approximation having rms errors �of the distance of the data points from
the �tting curve� that are on the order of ��� meter and sometimes less� Such errors are in
line with the errors shown in Figure � for the �random� component and excluding the larger
bias errors that appear to be approximately linear in time� For a mathematical discussion of
these errors
 see Section �� For a short time interval the �tted curve is primarily in error due
to the bias error since the random error is greatly diminished by the curve �tting process�

	�� �
d �t mathematics goodness of �t

When data is collected along a straight road
 it is desirable to �t this data using a straight�
line segment� This is accomplished using a �total least squares� �t by a straight line� This
process determines the coe�cients in the approximation by minimizing the distance from the
data points to the line� Our algorithm attempts to �nd signi�cant segments of essentially
linear data collection by sequentially �tting subsets of the data using this process� If the rms
error of the �t is greater than a speci�ed value
 the algorithm decreases the amount of data
considered
 and attempts the process again� If less than a speci�ed number of points remain

it is assumed the data was not collected from an approximately straight�line segment� By
using the rms tolerance of the �t
 one can �nd straight�line segments with error that is
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test
reference

 displaced global offset vector

Figure ��� Local O�set Vectors

commensurate with the random error in the data
 leaving the bias error as in the case of
curve �ts� The straight�line data can be converted to the more general curve form if this is
desirable�

� Track Averaging

The �rst step in track averaging is to estimate the bias between two curves that represent
�approximately� the same track segment� It is assumed that there is a current estimate of
the track segment
 represented by a curve
 here called the �reference� curve� The second
curve will be called the �test� curve� First
 a set of equally spaced points is generated on
the reference curve� For each of these
 the closest point on the test curve is found
 and the
vectors resulting from joining the corresponding points
 from reference curve to test curve
are found �see Figure ���� Call the vectors from the test curve to the reference curve local
o�set vectors� We now �nd a �xed vector �the global o�set vector� so that the length of the
projection of the global o�set vector onto the local o�set vectors is equal to the length of the
local o�set vector� This is an overdetermined problem
 and the solution is by least squares

yielding the single o�set vector from the reference curve to the test curve� This vector would
be the negative of the bias vector if the reference curve is considered to be accurate� The
standard deviations and the correlations between the errors in the two components are also
computed� An example of the two curves and every �fth local o�set vector is shown in Figure
��
 along with the �displaced� computed global o�set vector�

��� Results

We have available nine statistically independent runs �at least two satellites di�erent� on the
eastbound portion of the beach lab road� In addition
 we have the �truth�
 a high resolution
set of data for one of the track segments� Using this data we computed the o�set vectors for
each of the nine data sets relative to the �truth� data�

Figure �� �left� shows the nine track segments �the eight runs plus the reference track��
The right �gure shows the eight test tracks translated by the relative o�set vectors���s� to
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Run Real Errors Run � Di�erences Fit RMS N�Cornered�hat
East North East North �i

� ���
 ����� ���� ���� ���� ���
� ���� ���
� ����	 ���� ���� ���
� ���
� ���� ���� ����� ���� ��	
� ���� ���� ��
� ����� ���� ��

� ���	� ���
 ���� �	��	 ���� omitted
� ����
 ���� ��	� ����� ���	 ���
	 ���� ���� ���� ����� ��	� ���
� ���� ��		 ���	 �	��� ���� ���
� ���	� ����� ���� ���� ���� ���

Mean ���
 ���� ���� �����
� ���� ��
� ���� ����

Table �� Error Vectors and Relative O�set Vectors for 
 Track segments at Beach Lab Test
Area

be aligned with track segment �� The o�set vectors
 and the true error vectors ���s� for
these 
 track segments are listed in Table �� With the exception of one track over part of
the curve
 the set is very consistent considering the data were taken by driving the path nine
di�erent times� In addition this Table also lists the post �t root�mean�square error and the
estimate of the standard deviation obtained from the N�cornered�hat procedure�

The estimates of the variances from this N�cornered�hat computation are given in Table

� In the �rst estimate using all 
 runs the variance of run � was very large and there is one
negative variance� Clearly a negative variance is not meaningful� This is caused by the very
large value of run �� When that run is omitted the values are all positive and reasonable�
For comparison the mean square of the errors in each track are also listed�

��i Mean Square
Run All Runs Omitting � Error vs� Truth
� ����� ���

 ���	�
� ���
� ���
� �����
� ����� ����� ���
�
� ����� ����� ����

� ��	�	 	����
� ����� ����� �����
	 ����
 ����� ���	�
� �����
 ���	� �����
� ����� ����� ���
�

Table 
� Vatriance Estimates from N�Cornered�Hat Procedure� All values are in m�
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Figure ��� Nine Independent Tracks over Beach Lab Track� �a� Raw PPS Solutions
 �b�
After Removal of Intertrack Biases

Their average error was now computed �ve ways� First it was computed without weights
using all 
 tracks and then omitting track �
 the one that does not appear to be a member
of the ensemble� Then the same computation was done using the rms of �t in the weighting�
Finally the estimates of standard deviation from the N�cornered�hat procedure were used�
In this case only the data set omitting track � was used� In each case the weights were one
over the variance �or � for the unweighted cases�� The results are shown in Table ���

Data Set Weight Type East North
Avg � Avg �

All Data Unweighted ���
 ���� ���� ��
�
Omit Run � Unweighted ���� ���� ���� ��	�
All Data Fit RMS ���� ���
 ����� ����
Omit Run � Fit RMS ���� ���� ����� ����
Omit Run � N�Cornered Hat ���	 ���� ���� ����

Table ��� Average O�set Vector for Di�erent Weights and Data Sets� All values are in
meters

We expect the average o�set of the test track segments from the true track segment

given in the left two columns of Table �
 to be approximately ��
��� The average value of the
o�set vector is ����

 ������ Because the sample size is nine
 the standard deviation of the
average �����
 ��
�� is decreased by a factor of

p

 to get ����	
 ��
�� to get an estimate of the

uncertainty in the average� In addition
 the results from the more sophisticated procedures
are listed in Table ��� In all cases
 the average error is under a meter� The formal errors
give a good idea of the size of the error
 although they overestimate the accuracy a little�
Part of this may be due to driving errors�

There are three places where estimates of errors come into this process� The �rst is the
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accuracy of �tting the raw positions to the space curves� That process has an error estimate
of ��� m� The second is the �tting of the ��s� This process is dependent on the geometry of
the track and especially if there is variation in both directions� Here the variation was mainly
in the east�west direction
 meaning that the east�west component was less well determined
than the north�south one� In fact the covariance matrices from that process predicted the
error to be about ��� times as large in the east�west direction� However
 when we examined
the variations of the average ��s
 the east�west component has about half the scatter as the
north�south� This must be due to an inherent bias in the PPS positions at mid�latitude�

��� Convergence

Using the biases computed from the true curve
 a test was administered to the coordinates
�individually� of the biases to determine whether they are consistent with the hypothesis
that they are from a normal distribution� Because there are only nine points
 a Chi Squared
Test cannot be administered� It was decided to use a variation of the Kolmogorov�Smirov
Test called the Lilliefors Test �����

The null hypothesis is that the sample is from a normal distribution with unspeci�ed
mean and variance� The test compares an empirical cumulative distribution having zero
mean and variance one that is derived from the data
 with a normal cumulative distribution
with mean zero and variance one� The test statistic is the maximum di�erence between the
empirical and normal cdfs
 and a table determines whether the test rejects or accepts the
hypothesis at a given level of signi�cance�

For the given data
 the test statistic yields acceptance of the hypothesis at all levels
of signi�cance below about ���� This holds for the components of the bias in the two
directions
 independently� This means the sample of biases are consistent with being from a
normal distribution� The alternative conclusion would result in rejecting more than ��� of
samples from a normal distribution�

Thus this limited data set is consistent with the results converging to the true track as a
normal distribution� Therefore convergence as �	

p
N is expected�

	 Summary and Conclusions

The assumption that the errors in the broadcast message dominates the error in a Precise
Positioning System GPS system has been investigated� Tests in both static and dynamic
conditions were carried out� A method of adjusting dynamic tracks to allow their averaging
was demonstrated�

The major conclusions of this study follow� The �rst few are essentially the assumptions
that were made going into the study
 which have now been validated with experimental data�
The latter conclusions come from a particular implementation of �track averaging��

�� The error in PPS solutions is a slowly varying function of time given the same satellites
are used with the same broadcast ephemeris� These errors are dominated by the
broadcast ephemeris errors�

�� If the set of satellites or ephemeris changes there is a step change in this error�
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�� Given the same satellites and ephemeris
 the error can be treated as a bias vector over
periods of �� to �� minutes at the � m level�

�� �Biases� in measurements with two di�erent satellites�ephemeris in a � channel receiver
can be treated as independent measurements�

�� The tracks of a road measured multiple times with PPS receivers can be averaged
through the use of �space curves�� These are functions of the position parameterized
based on the spatial variation rather than based on the times of observation� Curves
that �t the data to ��� m were easily achieved�

	� A piecewise Bezier parameterization is well suited to represent these space curves�
It can �t road data to under ��� m with an economy of parameters� It can easily
accommodate corners and sharp curves as well as straight segments�

�� Solutions for the biases between di�erent tracks in the horizontal can resolve two
parameters if the tracks vary in two dimensions� If the track is essentially linear
 only
the cross track di�erence is resolvable�

�� An example of 
 tracks was found to have statistically random bias vectors�


� In an implementation based on Bezier space curves
 a small road segment was �t to
under a meter with 
 measurements� A method identifying tracks poorly �tting the
ensemble was demonstrated for this case�
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The following functions were also developed for the project�

��



bezcub�m evaluates Bezier cubic at input parameter values�
cpplt�m plots curve and points
 given input parameter array and

�optional� points�
ctrpts�m calculates control points from knots
 angles
 and

distances�
distpts�m calculates the rms of distances from input data points to

curve described by array of parameters�
espovi��m takes as input the data from two �ts� It computes quasi�

equally�spaced points on the reference curve� Then the
nearest points to each of these on the test curve are com�
puted� Finally
 ofsetvec is called to compute the vector
o�set between the two curves along with the variance and
the correlation matrix for the �t�

gps�t��m main driver for Least Squares Approximation By G�

Piecewise Parametric Cubics for the gps data�
iktgd�m forms curve description vector from knots
 angles


distances
initg�m computes the initial curve description array from initial

knot points and data�
knotgues�m interrogates user for initial guess knot points
 given data�

Called by gps�t��
ktgd�m extracts knot points
 angles
 and distances from curve

description array�
localopt�m computes sum of distances from points to curve for local

optimization� Called by fmins�
mat�asc�m extracts from a �mat �le the information about the data

points
 the �t
 and the closest points and outputs this as
an ascii �le�

objdist�m computes sum of squares of distances from data points
to given Bezier curve
 plus penalties for start and end�
Called by fmins�

o�curv�m computes distance between two curves as a function of
distance along the reference curve
 and plots it�

Table ��� Matlab Functions and Their Purpose
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o�setv�m computes o�set vector between two curves � called by
espovi and espovi��

optseg�m computes optimized distances for single Bezier cubic�
Called by gps�t�
 and uses localopt�

plcpsp�m plots control points and knots of Bezier curve from input
description array�

plhash�m plots hash marks on Bezier curve to separate cubic
segments�

psegsat�m plot the trip segments and satellite groups for arbitrary
input data �les�

refcom�	�m compares input data with reference �truth� data for July
�	�

sepl�m takes the output of sepseg�m and �nds a piece of that
data which is linear using total least squares

tlsl�m computes total least squares �t line for input data�

Table ��� Matlab Functions and Their Purpose � continued
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Appendix B
 Optimization routines

The program gps�t� uses fmins
m �rst in the local optimization �considering each piece
of cubic separately� and then in the global optimization� We have experimented also with
another minimization routine called fminu
m� The �rst is based on the Nelder�Mead sim�
plex �direct search� method and the latter on the BFGS Quasi�Newton method with a mixed
quadratic and cubic line search procedure� Here we compare the cpu and number of func�
tion evaluations in gps�t� using fmins
m �called gps�t�s
m� versus that using fminu
m

�gps�t�u
m��
The results for gps�t�s
m are given in the following tables
 �rst for the local optimization

part �Table ��� and then for the global optimization �Table ����

Data �le Number of function Function value
name evaluations

p�sep��mat ��� �������
�
�� �����	��	
�
 ����������

p��jul�	��mat �� ����
�
	� ������

a�p��c
�mat �� �����

�� �����	

Table ��� Local Optimization Using gps�t�s�m

For the global optimization part gps�t�s
m requires ���� sec using data �le p�sep��mat�

Data �le name� p�sep��mat p��jul�	� a�p��c

Number of function evaluations� ���� ��
 ���
Function value� ����	
�


 ������ ���	�
RMS ������ ����� ���	�

Table ��� Global Optimization Using gps�t�s�m
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Now to gps�t�u� For the local optimization part we summarize the result in Table ���

Data �le name Number of function Function value
evaluations

p�sep��mat �� ��������
�
�	 �����	���
�� ����������

p��jul�	��mat �� ����
�
�	 ������

a�p��c
�mat 
 �����

�	 �����	

Table ��� Local Optimization Using gps�t�u�m

For the global optimization �see Table �	� gps�t�u
m requires ��� sec for the global
optimization part using data �le p�sep��mat �compare to ���� sec for gps�t�s�

Data �le name� p�sep��mat p��jul�	��mat a�p��c
�mat
Number of function evaluations� �	
 ��
 	�
Function value� ��������� ������ ����	�
RMS �
�	�	 ��	�� �����

Table �	� Global Optimization Using gps�t�u�m

��


