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Abstract—This paper analyzes the stability and accuracy of various finite element approximations
to the linearized two-dimensional advection equation. Four triangular elements with linear basis
functions are included along with a rectangular element with bilinear basis functions. In addition,
second- and fourth-order finite difference schemes are examined for comparison. Time is discretized
with the leapfrog method. The criss-cross triangle formulation is found to be unstable. The best
schemes are the isosceles triangles with linear basis functions and the rectangles with bilinear basis
functions.

1. INTRODUCTION

Advective processes are dominant in atmospheric and oceanic circulation systems, while
diffusive effects are important only in boundary layer regions. Any numerical model for
these circulation systems should treat advective effects accurately. In this paper we analyze
various finite element formulations of the linearized advection equation in two dimensions,
which can be written:

OF oF . .OF
E;+Vc0585;+Vsm85;-0, (1.1

where V is the mean flow speed and 8 is the wind direction relative to the x-axis. The
quantity F should be interpreted as vorticity or temperature, for example. The analytic
solution to (1.1) is

F(x,y,t)=F(x —tVcos0,y —t Vsin#8,0). (1.2)

The schemes considered in this study employ leapfrog time differencing and Galerkin
finite element spatial representations. The leapfrog time differencing will tend to increase
the phase speeds relative to the exact time variation. Linear elements on the following
triangles are treated: isosceles (Fig. 1), biased (Fig. 2), criss-crossed (Fig. 3), and unbiased
(Fig. 4). Bilinear basis functions on rectangles (Fig. 5) are also examined. Our results are
compared with second- and fourth-order finite differences (see Ref. [1]). The computational
stability conditions are derived for ecach scheme and the computational phase
speed is compared with the exact value given by (1.2). The eigensolutions are also provided
for comparison. Swartz and Wendroff [2] extended the results of Kreiss and Oliger [3] and
Douglas [4]. They compare the efficiency, as defined in [3] and [4], of finite elements and
finite differences for the approximation of F,=cF,.

In Section 2 the schemes are analyzed for the special case where the mean flow is along
the x-axis (6 =0). In Section 4, the isosceles triangles and rectangles are compared for
arbitrary 6. In Sections 2 and 4 cyclic boundary conditions are used in both x and y. In
Section 3, the case @ = 0, is again considered, but for flow in a channel. The conclusions
are given in Section 5.

tPermanent address: Texas Tech University, Department of Mathematics, Lubbock, TX 79409, U.S.A.
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Fig. 1. Isosceles triangles.
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Fig. 2. Biased grid, Ax = Ay =d. Fig. 3. Criss<cross grid, Ax = Ay =d.

2. ANALYSIS FOR 6 =0

If the basis functions are given by {¢(x, y)}, the Galerkin approximation to (1.1)
becomes

ox oy

for each i The following expressions for integration over triangles can be found in
Zienkiewicz [5]:

«1) ¢,¢dA+V ) Fi(t) | &i| cosf—= +sinf—=|d4 =0, 2.1
40 [0, o, . .08,

[=j
J #igydd { A2 i%j )
f d’,-%' d4 = b,/6, (2.3)
J' ¢: 6¢j dA T aj/6a (2-4)

where T is a triangular clemcnt, A is the area of T and the g; and b, are defined by
a, =X;— X, by =y,— s,
a=x—X;, bh=y;—y,
a=x—x, by=y —y,.

The vertices of the triangle (x;, ;) are numbered counter-clockwise. These relations will
be used in the first four cases of this section.

HQ R1

R3 Ra

1 K L M

Fig. 4. Unbiased grid, Ax = Ay =d. Fig. 5. Bilinear rectangular elements.
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In this section (2.1) is simplified by setting & = 0, which eliminates the last term in (2.1).
It is convenient to set

V=e (2.5

since V is the analytic phase speed in this case. The initial condition for this section, which
is periodic in x and y, is given by

F(x,y,0) = K et=+m), (2.6)
so that according to (1.2) the analytic solution is
F(x, y, 1) = K g+ —uen, 2.0
2.1 Isosceles triangles

In this case there are six triangles having a vertex in common, as indicated in Fig. 1.
The approximate solution at the vertices of the triangles may be obtained by solving the
following first-order ordinary differential equation (suppressing the ¢ variable),

F(x,y)+%{F(x +Ax,y)+F(x —Ax,y)—i-F(x +%,y +Ay)

(x —%x,y+Ay)+F(x +%,y—Ay)+F(x—éx2—,y-—Ay)}

ci {Z[F(x-!-Ax,y)—F(x —Ax,y)]+F(x +i‘2-x~,y+Ay)

=y

-l

W] —

-

Ax Ax
—F(x——A——zx,y +Ay)+F(x '+—2-,y —Ay)—F(x - —Ay)}:—-o. (2.8)

The solution to (2.8) should be of the form
F(x,y,t) = A(1) e +™), (2.9)
where the amplitude A(r) satisfies

a
j — = 2.
A+:AtA 0, (2.10)
and
sin gAx + sin yé-x-cos vAy
At 2
3+cosyAx+2cosp—2-costy

Note that the sign of ¢ does not depend on the sign of v.
The solution of (2.10) is approximated by the leapfrog scheme

n+l n—1
A—%‘—+i-§—t/!"=0, (2.12)
where A” is the solution at nAz. Let
A™ = A", (2.13)
then
A+ 2igd — 1 =0,
and

= —io £ /(1 - o?). (2.14)
In order for the method to be stable, the value of A should satisfy
A< 1. (2.15)
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This implies that

Al 045144
CAxS ¥ ; (2.16)

In this case the two values of 1 may be written in polar form as

Ai=g8 J,=plttn) (2.17)
where
o = arcsin g. (2.18)

The complete discrete solution F, then takes the form

Fp=[Me ™ + E ex+am] ghurtm), (2.19)
where M, E are arbitrary constants such that (by the initial condition)
M+ E=K.
Thus,
F,= (K —E) giulx —anfu+vplpy 4 (— ])ﬂ E etz +anjusvy/u) (2_20)

Note that the approximate solution consists of two waves or modes instead of one in the
true solution. The second term, describes a wave propagating in a direction opposite to
that of the true solution. This is called a computational mode. The constant in (2.20) will
be specified by prescribing the method for making the first time-step (see e.g. Ref. [1], p.
113).

The phase speed C; of the numerical solution is defined by

Cp=— @.21)

(see e.g. Ref. [1]).

The phase speed will be computed for various values of yAx and vAy and it will be
compared to the values obtained by other discretizations. The graphs will appear at the
end of the section.

2.2 Biased

The biased elements are one possible element when the nodal points are arranged in a
rectangular fashion. These elements are shown in Fig. 2.
When the formulae (2.2)+(2.4) are used for the elements in Fig. 2, eqn (2.1) becomes

Fx,y)+i{F(x +d,p)+ F(x —d, p)+ F(x,y +d) + F(x —d,y + d) + F(x,y — d)
+F(x+d,y —d)}+§c$ {2[F(x +d,y) — F(x ~d, y)]| + F(x,y +d)
—F(x —d,y +d)+ F(x +d,y —d)— F(x, y — d)} =0, (2.22)

where Ax = Ay = d. The solution of this equation is of the form (2.19) where ¢ is now given
by

At sin pd +3sinvd +isin (u —v)d

=4c— s 2.23
? Cd3+cospd+cosvd+cos(,u—v)d (2.23)
Note that o depends on the sign of v. The condition of stability is
A
c——t < 0.456. (2.24)

d
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2.3 Criss-cross

The criss-cross formulation was proposed by Fix [6] and it represents another break-
down from a rectangular array of points. In this case and the next, two types of points
involved. Type I points (like point H in Fig. 3) are common to eight triangles and type
II points (like D) are common to only four triangles. As a result the equations for each
type are different.

The eqn (2.1) at type I points is

Fx,y)+ {F(x+dy)+F(x dy)+F(x+‘;,y+g)+F(x +g,y—-‘—;)

+F(x—§,y+ )+F( d,y ;)+F(xy+d)+l"(xy d)}

2 Y 732

d d d d
+F(x+§,y—i)—F(x-§,y+—2-)}=0, (2.25)

+ic l{I-‘(x+a’y) F(x — dy)+F(x+‘;,y+d) F(x—E d)

and at type II points it becomes

F( -‘—;,y+d) +{E@Y) + Fry + )+ Fx—dy +d) + Fx — d, )}

+§C-J {Fx,y +d)—F(x —d,y +d)+ F(x,y)— F(x —d, y)} =0. (2.26)

To solve these equations we try
‘Fl = A cM+'y),
Fyy = BeWw=+m, 2.27)

Substituting in (2.25) and (2.26) yields two ordinary differential equations for the
unknowns A(t), B(t),

5 d d
A{4+cosyd+cosvd}+Bcosu§cosv—i

+2cil.4 sinpd+2cilBsin,u£cosv‘—21=0, (2.28a)

d d 2
1
A cos ud cos vd +B+2ciEA sin ud cos vd = 0. (2.28b)
Using the leapfrog scheme to approximate the solution, and letting
A= A ed B — B it (2.29)

one obtains

At [ —b £ ./(b*—4ae)
g = 2c7 [ % (2.30)
where
¢ = sin a A1,
d d
a =4+ cos ud + cos vd—cospdcospicosvdcos v
. . d
b = sin pd — sin (2 ud) cos vd cos V3
. . d d
€ = —sin pd sin g —cos vd cos v—. (2.31)

2 2
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It can be shown numerically that 5> —4ae is sometimes negative and thus ¢ can be
complex. Thus the method is unstable. This result shows the danger of having two
overlapping grids with a large difference in point spacing.

2.4 Unbiased

The unbiased elements, which are given in Fig. 4, represent a modification of the biased
elements given in Fig. 2. These elements have symmetry in the x-direction when viewed
in blocks such as A—-C-L~J in the figure below. In this case we also have two types of
points: type I points like G and type II points like H. As before eqn (2.1) is replaced by
two ordinary differential equations for F, and F;:

Fx,y)+3{Fux + d,p)+ Fyx —d, p) + E(x +d,y +d) + Fi(x —d,y + d)
+Fl(x +d,y—a‘)+F,(x—d,y—d)+F,,(x,y+d)+F..(x,y—d}}

1
+%CE {2AFy(x +4d,y) — Fy(x —d, p)]+ Fi(x +d,y+d)—F(x —dy+d)

+F(x+dy—d)—F(x —d,y —d)} =0 (2.32)
Fyx +d,y)+{{F(x +2d,y)+ F(x +d,y + d) + Ki(x, ) + F\(x + d, y — d)}
+ ¢ {Fy(x + 2d, y) — F|(x,y)} =0. (2.33)

Now introduce (2.27) into (2.32) and (2.33), which gives
1

A {4+2cosudcosvd}+5'{cospd+cosvd}+4cid

A sin ud cos vd

1

4ci
+ad

Bsinpud=0, (2.34)

i 1
A {cosud+cosvd}+23+4cit-fd sin ud = 0. (2.35)

The solution of this system is obtained as in the previous subsection,

At sin pd [cos pd + /(8 + 2 cos pd cos vd — cos*vd)]

=i At = .
G = B d 8 + 2 cos ud cos vd — cos? ud — cos® vd )
The solution for F; and F,, can now be written
FI = gllnr+w) {Clelm_dl + Cz( - l)" c—h_m + C3 eim A + C4(—- l)n e“ﬁ’*d'}, (2-37)

Fy=eW+M{R, C e™-4+ R Cy~1) e ™-4 4 R_Cye™+& 4 R_C(— 1) e-"+4}, (2.38)

where

Ar
o, (cos ud + cos vd) + 4c—d— sin ud

By 20,

The constants C; depend on the initial solution and the method for making the first time
step. If one uses the forward approximation (see e.g. Ref. [1], p. 113), then it can be shown
that

At .
1— ic—d- sin ud + e*-%

c.-K=R

'""R_—R, 2cosa_At ’
At .

K—R. 1——ic75in,ud—c"-°'

Cz— 1]

“R_= R, 2cosa_At
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At :
1 — ic — sin pd + e~ =+
.. R — ic 7 sin ud
""R.—R, 2cos a, At ’

At .
R —K l——ic; sin ud — e™+%

- R_—R, 2cosa At
The first terms in (2.37) and (2.38) represent the physical mode and the remaining three

terms are computational modes. Note that the previously considered stable schemes only
have one computational mode.

G

(2.39)

2.5 Bilinear rectangular elements

In this case one cannot use formulae (2.2)~(2.4), but similar expressions can be

developed. Let the common vertex of all rectangles with sides 2a and 2b be in the origin
in Fig. 5.

It is easy to show that the entries of the mass matrix are independent of the rectangle

and
A
R;

9 b
Ax A
J.J. ¢, dx dy = JJ‘R#’@A(‘J‘ dy '-'—l_s—y‘-
” iy =200 (2.40)
B 36

where ¢; are bilinear basis functions. The integrals containing d¢,/dx are easily computed
and we quote here the results for R,. The values for other rectangles are just a permutation

of these values.
d¢, _ 0¢, e Ay
J.J‘“¢l ax dx dy = J.J‘Rl¢i ax dx dy - 6 ]

;. 0%y, . by
ILIQS. S dxdy= - ”ﬁ' o dxdy =22, (2.41)

With these basis functions, eqn (2.1) becomes
F(x,y) +1{F(x,y + Ap) + E(x,y — Ap) + E(x — Ax, ) + F(x + Ax, y)}
+ % {F(x —Ax,y + Ay) + F(x +Ax,y + Ay)+ F(x — Ax,y — Ay)

1
+ F(x + Ax, y -Ay)}+fac§ {F(x + Ax,y + Ay) — F(x — Ax, y + Ay)

+ F(x + Ax,y —Ay) — F(x — Ax,y — Ap) + 4[F(x + Ax, y)
— F(x —Ax, )]} =0. (2.42)
Proceeding as before,

F(x,y)=A4 (l)ef"““'“ (2.43)
then

A {2+cosqu}+3ciA—le sin uAx =0, (2.44)

Using the leapfrog scheme and letting 4" = A(nAr) = 4 o4, one obtains 4 as in (2.14) where

a=3c£ sin uAx

Ax 2 +cos uAx’ (2.45)
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Fig. 6. Ratio C,/c for bilinear rectangular elements.

Note that this is the only case where ¢ is independent of the y-wavenumber, v. The
condition for stability is || < 1 which implies (see Ref. {71, p. 202),
s At 2 1
For comparison we quote the results in [1] for second and fourth order finite differences.
For second order (p. 114)

(2.46)

& = gt 247
=c 4 Sinpax, (2.47)
C-A—l <1 2.48
Ax ~ )
For fourth order (p. 136)
At : :
o =co (3sin uAx —Lsin2 pAx) (2.49)
At
c o <0.73. (2.50)

In order to compare the accuracy of the schemes treated in this section, the various
formulae will be evaluated numerically as functions of ud and vd. The time-step for each
scheme is selected so that the computational stability parameter will be 80% of the critical
value. This procedure is frequently used in numerical prediction models. Figure 6 contains
the ratio Cg/c for bilinear rectangular elements from (2.18), (2.21) and (2.45). In this case
the phase speed is independent of v, but the two-dimensional diagram is retained for
comparison with the schemes which are obtained for triangular elements. The scheme
shows excellent accuracy except for the smallest scales where the phase speed decreases to
zero for shortest resolvable wave.

Figure 7 contains C/c for the isosceles triangular elements from (2.18), (2.21) and (2.11).
With this scheme the phase speed is a function of the y-wavenumber v, but it is an even
function so that only the upper half plane is shown. Comparison of Figs 6 and 7 shows
that the isosceles elements give much better phase speeds than the rectangular elements
when the y-wavenumber v is small, similar results were found by Hinsman [7] with the
shallow water equations. However, for vd/n = 1 the rectangular elemenis give better phase
speeds than the triangles, which in the upper right-hand corner give negative phase speeds.
The difference in behavior between the two schemes can be explained by comparing (2.8)
with (2.42). When the fields are independent of y (v = 0) the approximation for 8F/dx will
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Fig. 7. Ratio Cyfc for isosceles triangular elements.

be better for the isosceles triangles because (2.8) contains terms of the form
F(x +Ax/2,y + Ay) — F(x — Ax/2, y + Ay) whereas the corresponding terms in (2.42)
are F(x —Ax,y + Ay) — F(x — Ax, y + Ay). If v is not small the improvement in dF[dx
by terms at y + Ay disappears.

Figure 8 contains C;/c for the biased triangular elements from (2.18), (2.21) and (2.23).
[n this case the solutions are not symmetric in v because of the biased form of the elements.
Comparison of Fig. 8 with Figs 6 and 7 shows that along v = 0 the biased triangles are

1.0 o=

oy

0.7

0.6
0.5
0.4 1
0.3 1
0.2 1
0.1 4

vd/w

0.0 -
0.1
-0.24
-0.3 -
I
-0.54
=-0.6 4

09

=07 4

-o_a-
-0.9 4 \
-1.0 T T T T T T T T T

00 01 02 03 04 05 06 07 OB 09 10

rd/w
Fig. 8. Ratio C,/c for biased triangular elements.
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Fig. 9. Ratio C/c for unbiased triangular elements.

clearly inferior to the isosceles triangles and slightly inferior to the rectangles. Along the
line v = u the biased elements are clearly superior to the isosceles triangles, while along
the line v = —u the biased elements are very poor. The behavior of the biased elements
can be explained in terms of the relation of the wave orientation to the element bias.

Figure 9 contains Cg/c for the unbiased triangular elements from (2.18) (2.21) and (2.36).
As a result of the unbiased formulation, the phase speed is independent of the sign of v.
Comparison of Figs 6 and 9 shows that the unbiased triangles give nearly the accuracy
of the rectangles except in the upper left-hand corner where the unbiased triangles
over-predict the phase speed. The major disadvantages of this scheme are the presence of
extra computational modes and the possibility that each node can have different
amplitudes on the two grids. It can be seen from (2.37) and (2.38) that the ratio of the
amplitudes of the physical modes on the two grids is given by R_. Figure 10 gives R_ as
a function of ud and vd. For small values of ud and vd the R_ is close to 1 so that the
solutions on the two grids have about the same amplitude, as would be expected for
large-scale fields. For larger values of ud and vd, R_ differs from 1.0 so that the solution
on the two grids will have different amplitudes. In this case the total solution will have
grid scale noise of amplitude [R_ — 1]. An examination of (2.39) shows that the amplitude

'3_ :“3: \\_‘

0.0'01 0.2 03 Oﬂ 05 06 o7 OB 09 10

c o o o
~ ©
| 1

(=}
w»
1

vd/w
Q
H
l

°© o o o0
~N
1

pd/w

Fig. 10. R_ as a function of ud and vd.
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Fig. 11. Ratio Cg/c for bilinear rectangular elements (1), second-order (2) and fourth-order (3)
finite differences.

of the computational modes C,, C;, and C, are small for large-scale waves (small ud and
vd) and they become important for small-scale waves.

Figure 11 gives Cy/c for the following schemes: (1) bilinear rectangular elements from
(2.18), (2.21) and (2.45), (2) second-order finite difference from (2.18) (2.21) and (2.47), (3)
fourth-order finite difference from (2.18), (2.21) amd (2.19). With those schemes the
solutions are independent of v. The finite element scheme is superior to both of the finite
difference schemes except at ud =n.

The results of this section show that the scheme with isosceles triangle elements is
superior to all of the schemes which use right triangles for elements. For small y
wavenumber the triangular basis functions give better accuracy than the rectangular basis
functions, but the rectangles became superior for the larger y wavenumbers. In addition,
the rectangles give phase speeds which are independent of v, so that there will be no
computational dispersion in y. The fourth-order finite difference scheme is better than the
second order scheme and they are both inferior to finite elements.

3. FLOW IN A CHANNEL

In this section we consider flow in a channel between walls at y = 0, W. The mean flow
is along the x-axis so that again 8 = 0. The boundary conditions are

F(x,0,1)=F(x, W,1) =0, 3.1

which according to (1.1) will be maintained if they are satisfied initially. The analytic
solution with these boundary conditions can be obtained by combining (2.7) with +v and
—v exponents, which gives

i EI_IE [elic+ vy —men _ glux—vy—pe] = K gin vy glly—en 3.2)

The boundary conditions are then satisfied by

muw
v —7, (33)

where m is a positive integer.



404 B. NETA and R. T. WiLLIAMS

The finite element and finite difference schemes can be combined in the manner of (3.2)
to satisfy the boundary conditions as long as the phase speed C is independent of the sign
of v. This independence condition is satisfied by all of the schemes which have symmetric
dependence on points in y. All of the schemes treated in Section 2 are of this type except
for the biased triangles (see 2.23). The solutions for biased triangles with the boundary
condition (3.1) will be derived in this section.

In order to include the boundary conditions we let

F(x,y, 1) = A(y, t)e™, (3.4)
where

A(y,)=0 y=0,W. (3.5)

Upon substitution into (2.22) and simplification, one obtains the following differential
equation for A(y, t):

A(y — Ay)e**cos pAx[2 + A(y)(3 + cos pAx) + A(y + Ay)e~ "2 cos pAx/2

|
+ 2ic—A—JE [4(y — Ay)e**?sin pAx[2 + 4A(y) sin uAx/2 cos uAx /2

+ A(y + Ay)e *2sin uAx/2] =0, O0<y < W. (3.6)
Now let
a = e,
b=acosulAx/2,
f=3+cospAx,
d=4cos uAx/2 and
e =2sin uAx/2; 3.7
then (3.6) can be written as a tridiagonal system of ordinary differential equations.
I b* A(Ay) ed ea* A(Ay)
b f b* . ea ed ea* ;
. +ic/Ax =0,
b f AW - Ay) eaed A(W —Ay)
(3.8)

where * indicates the complex conjugate. To obtain the eigenvalues and eigenfunctions of
this system we let

A(p, 1) = e*i8B(y). (3.9
Then
M+ed 2Ab*+ea* B(Ay)

&®
Ab+ea If+ed Ab*+ea 0. (3.10)

Ab+ea M+ed B(W — Ay)

Let D(a, B, y) be the determinant of the coefficient matrix in (3.10). Then generalizing a
result of Ford and Ruttan [8] we can show that the eigenvalues A, and eigenvectors B, are
given by

—2cosp%[r2—f1+r|:f—4coszp%{:|
hy=dsinp =" o . k=12....,n QI
e R Y
4r*cos’ u 3 i
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Fig. 12. Ratio C,/c for biased triangular elements in a channel.

(By)j=a’sin i .

2y k=1,2,...,n, (3.12)
where
krm
r—cosn_H. (3.13)

The eigenfunction (3.12) tilts in y due to the presence of the term &/, as can be seen by
substitution into (3.4). If the leapfrog time differences are introduced, it can be shown that

.| At
Ce=— F_ arcsin I:Z; cﬂ.]. (3.19)

The computational stability condition is given by

cAt

= |51 (3.15)

Figure 12 gives the ratio C¢/c from (3.14). When compared with the plane wave solutions
in Fig. 8, the phase speeds in Fig. 12 are much better along k = 0. However, if the initial
condition is of the form

kny
F(x, y,0) = K sin % e, (3.16)

it will be projected on all of the eigenfunctions (3.12). Since these modes move at different
phase speeds, The initial disturbance will become distorted in y. This will not happen with

the other schemes considered in the paper, because their eigenfunctions do not tilt for flow
in a channel.

4. TWO DIMENSIONS

In this section we consider the more general case where 8 # 0 so that the dF/dy term
in eqn (1.1.) will not be zero. Only isosceles triangles and bilinear rectangular elements are
compared since the other elements are inferior to these. Clearly, one now requires the

CAF. l44—F
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evaluation of the integral (2.4). With the initial condition (2.6), the exact solution (1.2)
becomes
F(x,y, )= Keldctrr-@Vooad +obaaty] 4.1)

Using isosceles triangles whose base angle is also 6 one has

: Ax .
At 3sinvAy cos,u—2-+sm plAx +cosvAy sinp%f
o =4V cos GA—x e s (4.2)
3 4+ cos uAx +2cosy7cos vAy

and the approximate solution is
Foz(K___E)el'Uu+vy—mAr)+(__ l)n Eei(nx+v,v+mnm}’ (4_3)

where 2 At = arcsin 0.
The relative phase speed is now given by

Cr _ o _ arcsin o 44
c —,chosﬂ+stinB_2At V cos 0 Ax A ’ )
Ay COSU\ET YA
with the use of sin & = 2(Ay/Ax)cos 6. For the rectangles, the results are
At | sinpAx sin vAy
=3V cos § —
7 % ax [2+cos,qu 2 +cos vAy]’ =

and where @ is the angle between the x-axis and the diagonal, and the phase speed becomes

Cr arcsin ¢

Y . (4.6)
Vcosé ~ (nAx + vAy)

It is known that cAt/Ax < 1/,/6 for both finite elements (see Cullen [9]). Clearly now the
rectangles do not have the advantage mentioned previously with respect to the time-step.
The corresponding formulae for finite differences are easily obtained from symmetry and
(2.47), (2.49). For second order, one has

o= V% cos 8 (sin uAx + sin vAy), 4.7)
_? - arcsin o ’ @8)
VE cos § (uAx + vAy)
and for the fourth order,
= V% cos @ [4(sin pAx + sin vAy) — i(sin 2uAx + sin 2vAy)], (4.9)

where again 8 is the angle between the x-axis and the diagonal.

The ratio C,/c for the isosceles triangle elements from (4.4) is presented in Fig. 13 for
@ = 45°. Figure 14 contains this ratio for rectangular elements from (4.6). The phase speeds
for the second- and fourth-order finite difference schemes [see (4.7)(4.9)] are given in Figs
15 and 16, respectively. All four schemes give the best phase speeds along the line u = v,
where the wave phase lines are normal to the wind vector. With this orientation, the
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rectangular elements and the finite difference schemes can calculate the space derivative
in the direction of wave propagation more accurately, because this direction is across the
diagonal of the grid. Comparison with the earlier solutions for 8 = 0. (Fig. 11) shows that
the current results along y = v are more accurate as a function of (u2+ v?)'? than those
in Fig. 11 as a function of u. The phase speeds along v = —pu appear to be poorer, but
according to (4.1) the phase speed along this line is zero so there is actually no error.
Figures 14-16 are generally similar, with the rectangular finite element being the best and
the second-order finite difference the worst. The isosceles triangle finite element scheme
(Fig. 13) does not do as well as the rectangular finite element scheme (Fig. 14) along the
line v = pu.

5. SUMMARY AND CONCLUSIONS

This paper has examined various finite element approximations to the linearized
two-dimensional advection equation. Four triangular elements with linear basis functions
were included, along with a rectangular element with bilinear basis functions. In addition,
second- and fourth-order finite difference schemes were examined for comparison.
Leapfrog time differences were used in all cases, although the results could easily be
generalized to other time differencing schemes.

The various finite element and finite difference schemes were compared for the case
where the mean flow was directed along the x-axis. The finite element formulation which
is based on isosceles triangles was clearly superior to the formulations which are based on
right triangles that are obtained from a rectangular array of nodal points. Staniforth
(private communication) pointed out that if the mean flow is along the y-axis (i.e. § = 90°)
then the phase speed when v = 0 becomes equal to the phase speed for the rectangles. The
biased triangles produced a highly distorted phase speed field as would be expected from
their non-symmetric form. The criss-cross arrangement was unstable, perhaps due to the
juxtaposition of elements of different size. The unbiased elements, which are obtained by
reversing alternate biased triangles, were found to give poorer phase speeds than the
isosceles triangles. The analysis of the unbiased scheme required the separation of the
nodal points into two types. The resulting solutions had three computational modes as
compared with one for most of the other schemes. The major disadvantages of this scheme
are the presence of extra computational modes and the likelihood that each mode will have
a different amplitude on each of the two grids. The latter effect will manifest itself as
small-scale noise. The phase speed for the rectangular finite element scheme was found to
be independent of the y-wavenumber. The isosceles triangle scheme gave better phase
speeds than the rectangle scheme for low y-wavenumbers, but the situation reversed for
the higher y-wavenumbers. The finite difference schemes gave similar but poorer behavior
compared to the rectangular finite elements scheme with the second-order finite difference
scheme being the poorest.

The schemes were also examined for flow in a channel and it was found that the solutions
for each scheme could be combined to satisfy the wall boundary conditions. The only
exception to this was the biased triangle scheme, for which a separate solution was
obtained. The eigenfunctions were found to tilt in the same sense as the elements.

The isosceles triangles and the rectangles were also compared for plane waves with the
mean flow at a 45° angle to the x-axis. It was found that the rectangles were best for waves
whose phase lines were normal to the mean wind direction, but considering all wave
orientations there was no great difference between the isosceles triangles and the rectangles.

The results of this paper show little difference in overall accuracy between the finite
element formulation with isosceles triangles or rectangles. If the resolution is uniform the
isosceles triangles may have a small advantage. However, if the resolution varies
appreciably, the triangles will be changed so that they are no longer isosceles; then the good
properties of the isosceles triangles would be lost. On the other hand, the rectangles can
retain their shape when the resolution is changed (see Staniforth and Mitchell [10]. Also,
with rectangles the equations can be solved more efficiently, as has been discussed by
Staniforth [11].
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Since eqn (1.1) is hyperbolic, it is expected that many of the results from this paper will
hold for other hyperbolic systems, such as the shallow water equations. For example,
Kelley and Williams [12] found considerable small-scale noise in a study of flow in a
channel with the shallow water equations. They used the unbiased triangular elements with
non-staggered basis functions. Schoenstadt [13] and Williams [14] showed that the use of
the shallow water equations with non-staggered elements can lead to small-scale noise.
From our present analysis it appears that the noise would be much worse due to the extra
computational modes with the unbiased elements.
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