Parallel Solution of Initial Value Problems

B. Neta
Naval Postgraduate School
Department of Mathematics
Code MA/Nd
Monterey, CA 93943

Keywords: Initial Value Problems, Boundary Value Problems, Parallel Processing, Hy-
percube, Box Scheme, Recursive Doubling, Extrapolation, Euler’s Scheme, Gragg’s Method,

Method of Lines.
MOS Subject Classification: 65L, 65W

Abstract

This talk will be divided to three parts. In the first part we discuss the solution of
linear ordinary differential systems of equations. Initial value as well as boundary value
problems will be considered. The second part will cover nonlinear ordinary differential
systems. In this case the algorithm is based on extrapolation and as such is efficient
only on small parallel computers. We close with the method of lines and its use to

solve partial differential equations on parallel computers.



1 Introduction

In the paper we discuss the parallel solution of ordinary initial and boundary value problems
and the use of method of lines to solve partial differential equations on parallel computers. We
open with a brief survey of parallel computing. The algorithm for linear ordinary differential
equations will be discussed in section 3. The next section will detail the parallel solution of
nonlinear ordinary differential equations. We close with a section on the method of lines and
its use to solve partial differential equations on parallel computers.

2 Parallel Computing

The complexity of scientific computing today demands faster computers. Greater detailed
models require a substantial amount of computation. Faster computers are needed to provide
the result of the computation in a timely manner. Two approaches are possible:

i. increase the speed of circuitry. This is bounded by speed of light and cost.
ii. parallel computers.

Parallel processing is an efficient form of information processing which emphasizes the ex-
ploitation of concurrent events in the computing process. Concurrency implies parallellism,
simultaneity and pipelining. Parallel events may occur in multiple resources during the same
time interval; simultaneous events may occur at the same time instant; and pipelining events
may occur in overlapped time spans. These concurrent events are attainable in a computer
system at various processing levels, (see Hwang (1984, p. 6))

i. program level (executing multiple programs by time sharing),
ii. task level,
iil. inter-instruction level,

iv. intra-instruction level.

2.1 Classification of Parallel Computers by Type

Parallelism can be achieved in several ways:

1. temporal parallelism - pipeline computer (Cray - 1) computations are divided into a
number of stages or segments with the output of one being the input of the next.

2. spatial parallelism - array processor (CM). Use multiple synchronized processing ele-
ments.

3. Asynchronous parallelism - multiprocessor (C'm*). These processors are capable of
performing independent operations, but share resources such as memory.



4. Multicomputer (INTEL hypercube) - a refinement of a multiprocessor. The processors
are as in 3 but have their own local memory. These offer an added degree of freedom
in programming, however interaction between processors may require synchronization.

Remark: many array processors, multicomputers and multiprocessors employ pipeline pro-
CESSOors.

2.2 Classification by Architecture
1. Single instruction, single data (SISD) - serial computers include pipeline.
2. SIMD - array processors.
3. MISD - No current computer.

4. MIMD - multi processors or multicomputers. See Flynn (1966). The INTEL iPSC is
a MIMD machine.

2.3 Classification by Topology

By the interprocessor connections (which are the means of communication).
Mesh
Pyramid
Butterfly

Hypercube
See Quinn (1987, pp. 25-30)

The following figures show a variety of parallel computers.



2.4 Measures of Performance

Two common measures of performance are: speedup & efficiency.
Speedup is defined by

where
T, - time to complete task on a serial computer

T, - time to complete task on a parallel computer with p processors.
Parallel programs often contain additional operations to accomodate parallelism. Many
suggest that T should be measured on the fastest serial computer. However, the variation in
the technical specifications of both computers may cloud the issue whether parallel processing
is beneficial. As in many other articles we take T} for 7.

The other measure, E, efficiency, accounts for the relative cost of achieving a specific
speedup.

where p, the number of processors, is also the theoretical speedup.
Many factors could limit the speedup and efficiency:

1. number of sequential operations that cannot be parallelized,
2. communication time,

3. idle time to get synchronization.
This is stated as Amdahl’s (1967) law:

1

S < iy
f+ =5

where f is a fraction of operations to be performed sequentially.

2.5 INTEL iPSC/2 Hypercube

The iPSC/2 is a MIMD multicomputer with a hypercube topology. It consists of a system
resource manager (host) and processors (nodes). The host, a 386-based computer, provides
the interface between the user and the nodes.

The nodes are self-contained INTEL 80386 microprocessors, each containing 80387 nu-
meric coprocessor, its own local memory and a direct-connect communication module (DCM).
Each computing node may be augmented by a vector extension module for pipelined vector
operations.

Communications are completed through message passing. The DCM allows messages to
be sent directly to the receiving node without disturbing the other node processors. The
iPSC/2 uses a UNIX operating system and may be programmed in Fortran or C languages.

4



(1]

et

(c) (d)
2 " g
O O—0O
0 = nool
CF ——O—0 st
I Z = laval 2
o« O—O—O0—~C0

Figure 1: MIMD interconnection network topologies (a) ring; (b) mesh; (¢) tree; (d) hyper-
cube; (e) tree mapped to a reconfigurable mesh. See Duncan 1990



NN A Rank )

Rank 1

Rank 1
) Rank 3

Nutterily

Figure 3: Hypercubes of dimension zero through four. See Duncan 1990

6



My | D00

ot

0o

QT

M- | 11T

miaintn

Figure 4: MIMD shared memory interconnection schemes: (a) bus interconnection; (b) 2x2
crossbar; (c) 8x8 omega MIN routing a P3— request to M3. See Duncan 1990



2.6 Methods of Parallelization

We mention here two methods of parallelization.
1. Vectorizatoin

The process of converting blocks of sequential operations into vector instructions that
may be pipelined.
2. Distributing Computations

In order to partition a program into parallel tasks to distribute among the processors
of a multicomputer, a different strategy is needed. The strategy depends on the parallel
computer used. Two decomposition strategies are suggested:

Control decomposition and domain decomposition.

i. Control Decomposition

This is the strategy of dividing tasks or processes among the nodes. This incorporates a
divide and conquer approach.

One method of control decomposition is for the parallel program to self-schedule tasks.
For this method one node assumes the role of a manager with the rest assuming roles of
workers. The manager maintains a list of processes to be accomplished and assigns processes
to the working nods. The working nodes request jobs, receive processes and perform the
indicated tasks.

A second method is to pre-schedule the processes. The exact tasks required of each node
are explicitly stated in the parallel program. This method saves the cost of the manager, but
the progammer has to ensure that processes are evenly distributed among the nodes (load
balancing).

1. Domain Decomposition

In this strategy the input data or domain is divided among the nodes. The major
difference between control and domain decomposition is that domain decomposition strategy
requires each node to perform essentially the same tasks but with different input data.

Domain decompoisiton is recommended if the calculations are based on a large data
structure and the amount of work is the same for each node. An example is a multiplication
of two large matrices by using block multiplication. The user should be aware of load
balancing since not every input data requires the same amount of work.

2.7 Performance

The following three factors should be considered:
i. Load balance,
ii. Communication to computation ratio,
iii. Sequential bottlenecks.

Load balance refers to the degree to which all nodes are active. If the work is not evenly
distributed among the processors, the parallel algorithm will show constrained speedup. Load
balancing maybe achieved by reducing the grain size of the parallel tasks, self-scheduling
tasks or redistributing the domain.



Communication time is inherent in parallel algorithms. A large communication to com-
putation ratio constrains efficiency. Reduction of this ratio maybe achieved by increasing the
grain size, grouping messages, or recalculating values instead of receiving them from another
node.

Sometimes tasks cannot begin until completion of a previous task. A sequential bottle-
neck happens when other processors are waiting for another node to complete a task before
they may continue. The portion of operations that are not completed in parallel restricts
speedup as can be seen by Amdahl’s law. The only method to remove such bottlenecks is to
modify or reorder the algorithm in order to overlap sequential code with other computations

(if possible).

3 Ordinary Initial Value Problems

The numerical solution of ordinary differential systems of equations is an intrinsically se-
quential procedure: given the data at a point x (or at several points x,x — h,---, @ — mh),
one advances to the following point = + h.

In order ot parallelize this procedure, we first consider linear systems, i.e.

Ql(x) = A(l')g(l') + i(:l?) a<xz<b

where y and f are n dimensional vectors and A is a nxn matrix. The idea here is based on
the following:
For homogeneous systems

V(@) = Al)y(e) a<w<b )
the solution at the right endpoint is a linear function of the values at the left endpoint, i.e.

y(b) = Yiany(a).

Here Y, is the value at z = b of the fundamental solution matrix ¥, which is defined as

where Y is nxn and [ is the identity matrix.

Theorem:
Let
0
o) = (1) e gth
0



Let g(i) be solutions of
y=4

RS

satisfying the initial conditions
g(l)(a) —
then g(i) form a fundamental set of solutions of the system.

Remark:

Yo Yio,g = Yiad fora<b<e.

To solve the problem on the interval [a, b], we propose to assign N contiguous subintervals

[a, 1], [x1,22],- -, [2n_1,0]

to the NV processors, and let each of them compute in parallel, the corresponding fundamen-
tal solution. This is a task requiring a possibly large number of sequential steps, for the
numerical evaluation of Y[z;, z;11].

One way of doing this is described here.
Let
r; = a+7jh 7=0,1,2,---.m
b—a

m

h =

be a uniform mesh.
The box scheme (see e.g. Keller, 1976) applied to the system (1) yields

gﬂ—l = g]‘ + h{Aj-I-l/?(g]‘_H + %)/2 + ij-|—1/2} ’

where
Ajpiz = Ala+ (5 +1/2)h)
fron = Ha+ Gt 1/2m)
and Y, is the approximation to y(z;). Let {j;,¢ =1,---,s} be a strictly increasing sequence

such that 7; > 0 and j; = m. Let ®; be nxn matrices defined by
o, = H;l:_]j_l([ - %Aj+1/2)_1([ + %Aj+1/2)7 1=1,2,--0 .8

where jo = 0 and h is sufficiently small so that [ — %Aj-l—l/Q are nonsingular.
Similarly, let
3

—1

(/- %Aﬁ—l/?)_l([ + %AJ‘,‘—1/2)Q

Ji—1=ji—1

-I'h([ — %Aji—l/z)_liji_1/27 = 1727 Ty S

where



and

~ h _ h .
U = U= 5m00) I+ oAtz U 1S e
j:07"'7ji_ji—1 — 2.

Then it was shown by Keller and Nelson (1987)

g]_:q)ig,l—l-g 1 =1,2,---,5

Ji—

Notes:
1. The last factor in ®; is the matrix required for ¢..

2. The vector g . can be computed in the same loop ®; is computed since they

Zii—1=ji—1
require the same matrices.

As can be seen in the above description, this procedure may be extended to inhomogeneous
equations, with initial data y(a) = given or two point boundary data

Biy(a) 4+ Bay(b) = given.

11



The algorithm for the initial value problem

Step 1. Using N processors to solve the linear inhomogeneous system with initial condi-

y'(x) = A(z)y(x) + f(x)
Y(Tmin) = g

divide the required interval into /N subintervals:

tions:

[xminv xl]v [xlv 1’2], B [xN—lv xmaX] :
The algorithm will produce numerical approximations for y(x;), 7 =1,2,---, N.

Step 2. Do in parallel:

Processor j, working on the interval [x;_1, 2;] solves numerically the following two

A()Y,

systems:

J
I the identity matrix

The matrix Y; is the fundamental solution on the subinterval, while @j incor-
porates the inhomogeneous effect of the forcing function f. When this step is
completed, one may recursively compute y(z;) from:

‘|‘?1($1)
(z1) +¢,(22)

J(ow) = Valewly(enas)  +y(ax)

<

Step 3. The last step of the algorithm is an efficient performance of the recursion above,
assuming that N = 2™. This is a generalization of the recursive doubling algorithm

due to Stone (1973)
a) For 1 < 7 < N, initialize:

g]‘ = ?]‘(xj)v
M; = Yj(x;)
also : y, = Q—I—Mlgl,
k=1

b) For all j > k

y* = g —I_M]y] k
M: = M;M,_,



c¢) For all j > k replace M,y by M*,y*

Y, = Y
M; = M;

d) Set k = 2k. If k < N, repeat steps b-c. Otherwise the algorithm ends with Y,
the numerical approximation to the solution at z;.

3.1 Experimenting with IVPs

We have solved several systems of a variety of order. We will only give results for 3x3 and
10x10. The system is
Y=y +ayipr + [ 0<:<n-1
y7/1 =Yu+ fa
where f; are chosen so the solution is
(1, e, e e ¥ e . sinw,cosx) n =10
1,e",e™”

(7 ” ) n=3

The number of steps per processor was varied from 10 to 80. The following table gives the
ratio of communication to total time.

# of steps 3x3 3x3 10x10

per processor message type send on demand send on demand

Y
Y

10 64% 73% 14%
20 47% 60% 6%
40 31% 43% 4%
80 21% 26% 2%

Bianchini (1993) implemented this solver on T805 transpoter system with an 8 processor
ring topology. Each processor computes 20 steps. The communication time is 11 msec, the
computation time for the solution is 1158 msec and for the recursive doubling is 48 msec.
Therefore 0.9% of time is spent on communication. We can estimate the total running time
as follows: a single processor to solve a system nxn using s steps will require

ksn

(evaluating n right hand sides s times, ignoring matrix-vector multiplications). Using N
processors, our algorithm requires

S 2

—n

N
because we compute the nxn fundamental matrix. Heuristically, there is gain in parallelism
only if the order of the system is smaller than the number of processors. Even if there is no
obvious gain, the algorithm may become efficient when used as the first step of an inverse
problem, or distributed parameter problem.

13



3.2 Algorithm for BVPs

Step 1. Using N processors to solve

y' = Az)y
B1g( a)+ Bz

=+
i
||\_/

divide the interval into N subintervals.

Step 2. Do in parallel:

Processor j, working on the interval [x;_1, ;] solves numerically

Y= A,
Yi(zja) =1
L= Ax o + f(x)

Step 3.
3a) For 1 <j <N

M; = YJ(xJ)
E =1
3b) For 5 > k
g; = y —I_ M]y] k

M* = M;M,_,

3c) For all j > k replace M,y by M*,y*
3d) set k =2k. If k < N, repeat 3b-3c above.

Step 4. Processor N solves the following for n

4a) Bin + Ba(Myn + QN) = g then broadcasts n to all processors. This is the
initial value consistent with the boundary condition.

4b) For all j compute in parallel

y, =y, + M

4 Nonlinear Systems

The idea here is to use extrapolation. One can solve the system using Fuler’s method or
Gragg’s method and then extrapolate to obtain a high accuracy solution.

14



4.1 Solver

Fuler’s method
Yn+1 = Yn + hf(wna yn)

with truncation

Yn — y(nh) = Alh + A2h2 + A3h3 + .-
Gragg’s method

Z1/2 = Yo + %f(x07y0)
Y1 = yo + hf(x12, 21/2)
Znt12 = Zn—1/2 + hf (20, yn)
n=119 ...

=

Ynt1 = Yn + hf($n+1/27 Zn+1/2)

with truncation

Yo — y(nh) = Boh® + By + -

Each processor uses an ODE solver with

N
hy = —H

7

The common points are x; =a+ (7 — 1) NH.

4.2 Extrapolation

Given

{hr7y($i7hr)|r:0,17-.-7]\[—1; Z:17277M}

The solution at those M points in (a,b) is computed by the same scheme by all N possible
h's).
Find a polynomial of degree N — 1

Hy_1(h,) = y(z4, hy)

or a rational function

R, (h.) =ylx;, h,).

For polynomial extrapolation we construct a table of values T,, as follows

TrO = y(l’z, hr)
Tr s—1 Trs—
Trs = Tr—l—ls—l + e :

(Foy -1

hr+s

15



~ = 1 for Euler
= 2 for Gragg

For rational functions we construct a table of values as follows
Tr—l - 0
TrO = y(l’z, hr)

Trs = Tr-l—l s—1 —I_ ( L )’7[1 . Trg1s—1—Tr s ] -1
hrts Trg1s—1—Try1 c—2

s=1,2,---,N—1
r=0,1,---,N—s—1

Tr—l—l s—1 — Tr s—1

assuime

N -1
o=
= N—-1—-p

Extrapolation will yield O(R"), O(h*) accuracy for Euler, Gragg schemes respectively.
In the following table we show which processor computes which part of the solution.

4.3 Experimenting with nonlinear systems

Example 1
y' = ysinz, 0 <a<h,
y(0) = ™",
The exact solution is
y — e—COSl’ .

In the next table we summarize the results of the experiment with Euler method and extrap-
olation using N processors. It is clear that the results using polynomial extrapolation are
much better. The accuracy (||yn — ye||o, where yy, is the result of extrapolation) is increasing
with the number of processors. The results using rational extrapolation are not as good and
not improving after 5 processors.

To measure the order of the method, we have computed y, and /5 (the solution after
extrapolation with step h/2 instead of h). The columns entitled ‘error reduction’ in each
table report the error quotient ‘coarse to fine’.

16



processor step proc 1l proc?2 proc3 proc4d proch proc6 proc 7

Too 1 SH
To
Tho 2 4H Too
T Tos
Tao 3 %H Tz To4
1o Tis Tos
T30 4 2H 132 T4 Toe
T3 Tas Tis Tor
Tyo ) %H 132 124 Tie
Ty 133 15
Ts0 6 %H Ty T34
Ts: Ty
Tso 7 %H T
161
T7o 8 H

Table 1: Extrapolation assigned to each processor

The accuracy using Gragg’s Method in higher machine accuracy (double precision) has
been reached with 5 processors if polynomial extrapolation is used.
The error quotient close to (47) until machine accuracy is reached.

Example 2
Y, = Jy;jyjjl j=1,2-n—1 6<az<10
POLYNOMIAL RATIONAL

Processor coarse(1/4) fine(1/8) error coarse (1/4) fine (1/8) error
reduction reduction

2 1.55-02 4.54-03 3 5.15-03 1.26-03 4

3 1.17-03 1.78-04 7 3.52-04 4.03-05 9

4 6.71-05 5.23-06 13 9.04-04 4.23-05 21

5 3.05-06 1.22-07 25 1.11-04 2.11-06 53

6 1.19-07 2.42-09 49 6.38-06 1.05-06 6

7 3.92-09 4.06-11 97 1.26-05 5.67-05 0

8 1.14-10 5.01-13 228 2.11-04 5.29-05 4

Table 2: Euler scheme

17



POLYNOMIAL
Processor coarse(1/4) fine(1/8)

error

reduction

16
66

268

8

2
0
0

RATIONAL
coarse (1/4)

6.72-06
9.99-09
2.06-10
1.59-10
6.04-12
4.37-13
1.22-08

Table 3: Gragg method

2 3.06-06 1.88-07
3 7.72-09 1.17-10
4 1.66-11 6.20-14
) 3.01-14 3.99-15
6 4.73-15 2.92-15
7 4.81-15 1.20-14
8 3.36-14 2.98-14
’ nYnlY1
Yy 22
y; (6) =¢

The exact solution is y; = 7.

POLYNOMIAL
Processor coarse(1/4) fine(1/8)

1.33-01
3.89-02
1.06-02
2.78-03
6.82-04
1.55-04
3.24-05

SO =1 O Ut = W N

4.4 Speedup and Efficiency

5.70-02
1.07-02
1.88-03
3.02-04
4.40-05
5.79-06
6.94-07

error

reduction

2
4
6
9
16
27
47

RATIONAL
coarse (1/4)

6.95-02
1.03-01
2.69-03
1.39-03
3.99-03
8.73-05
5.35-03

Table 4: Euler scheme

fine (1/8)

4.16-07
1.54-10
2.87-12
2.18-13
1.08-13
1.44-14
7.60-10

fine (1/8)

2.56-02
2.97-03
3.54-04
4.61-04
1.69-05
1.34-05
1.54-03

Gragg’s method for example 2 (n=4) and polynomial extrapolation

18

error
reduction
16

65

72

729

56

30

16

error
reduction
3

35



POLYNOMIAL RATIONAL

Processor coarse(1/4) fine(1/8) error coarse (1/4) fine (1/8) error
reduction reduction

2 7.51-03 7.18-04 10 5.00-03 4.79-04 10

3 4.56-04 1.27-05 36 1.39-04 1.12-06 124

4 2.06-05 1.59-07 130 8.22-06 1.40-07 59

5 6.89-07 1.45-09 475 7.29-07 1.25-08 58

6 1.80-08 1.03-11 1748 3.61-06 1.25-08 289

7 3.85-10 5.38-14 7156 8.62-09 1.60-10 54

8 7.10-12 2.55-14 278 1.15-05 7.35-07 16

Table 5: Gragg scheme

H T(1) in msec T(8) in msec Speedup Efficiency
A 759 152 4.96 .62
.05 1509 247 6.08 .76

Table 6: Speedup and efficiency for example 2

5 Method of Lines

There is an extensive literature, primarily of Russian origin, for the method lines which has
been summarized to 1965 by Liskovets (1965). See also Mikhlin and Smolitskiy (1967). The
method is simple in concept - for a given system of partial differential equations discretize
all but one of the independent variable (see Ames, 1977 ). This semidiscretization yields
a coupled system of ordinary differential equations which are then numerically solved by a
parallel scheme described above. For example, consider the nonlinear diffusion equation

ur = [D(x, tw)ug)e + fle,tu,ug), 0<a<l, 0<t<T

subject to the initial and boundary conditions

u(x,0)=F(x), 0<a<1,

(D0, 1) + Bu(ua(0,6) = (1), 0<1<T,

aoul(1, 1) + Balyua(1,0) = t), 0 <1<T,
where D is a bounded function. The semidiscretization is given by the following system

1 =0

duo B { 0 lf 61 = 0

E B e e e R AR if 61 # 0

Pl N

19



Up 3—11 if 61 =0
1< <N-1
du;  Diyia(wipr — i) — Dicqja(u; — uiq) Uil — Ui—q
&% b, =L
1 =N
duN . 9
dt —[DNWﬁﬂ—DN-1/2%]+JC($NJ,UN,”&) if By # 0
2 2

uy = 2 if By = 0

O

The initial data

Chang and Madsen (1973) used the method of lines to solve a two dimensional chemical
kinetics transport problem.

We conclude with a linear system

Y

Y =Ay O0<ax<4

1

0
where A = (a;;) is a symmetric tridiagonal matrix whose elements are

CL“'Z—Q 1=1,2 N

g Ly ooy

Qg1 = Gy, =1, 1=1,2,...,N -1

=

This system resulting from approximating the one dimensional heat equation
Uy = Ugpy.

The results are summarized in Table 7. The error quotient is much better than 2? when
using polynomial extrapolation. The accuracy, though, is not very high, and in linear systems
it is cheaper and more accurate to use the idea developed by Lustman et al (1991).

20



POLYNOMIAL RATIONAL

Processor coarse(1/4) fine(1/8) error coarse (1/4) fine (1/8) error
reduction reduction

2 7.88-01 2.16-02 36 8.21-01 5.78-02 14

3 3.75-01 2.98-03 126 3.02-02 4.98-03 6

4 1.27-01 6.49-04 196 5.86-02 3.40-03 17

5 3.40-02 1.18-04 288 2.02-02 3.01-04 67

6 7.82-03 1.69-05 463 5.36-03 5.89-04 9

7 1.62-03 2.01-06 806 1.64-03 2.27-05 72

8 3.11-04 2.07-07 1502 5.06-03 1.10-03 5

Table 7: solution by method of lines

References

G. Amdahl, Validity of the single processor approach to achieving large scale computing
capabilities, AFIPS Conf. Proc., 30 (1967), 483-485.

W. F. Ames, Numerical Methods for Partial Differential Equations, second edition, Academic
Press, New York, 1973.

M. Bianchini, Implementation of parallel ODE software on T805 transputer, personal com-
munication, 1993.

J. 5. Chang and N. K. Madsen, Global transport and kinetics models, UCRL-75062, Lawrence
Livermore Laboratory, 1973.

R. Duncan, A survey of parallel computer architectures, Computer, Feb. 1990, pp. 5-16.
M. J. Flynn, Very high-speed computing systems, Proc. IEEE, 54 (1966), 1901-1909.

K. Hwang, F. A. Briggs, Computer architecture and parallel processing, McGraw Hill, New
York , 1984.

H. B. Keller, Numerical Solution of two point boundary value problems, STAM, Philadelphia,
1976.

H. B. Keller, P. Nelson, Hypercube implementations of parallel shooting, Appl. Math. Comp.,
1987.

O. A. Liskovets, The method of lines, (English Translation) J. Diff. Egs., 1, (1965), 1308.

L. Lustman, B. Neta, C. P. Katti, Solution of linear systems of ordinary differential equations

on an Intel hypercube, STAM J. Sci. Stat. Comput., 12 (1991), 1480-1485.

L. Lustman, B. Neta, W. Gragg, Solution of ordinary differential initial value problems on
an Intel hypercube, Computers Math Applic., 23 (1992), 65-72.

L. Lustman, B. Neta, Software for the parallel solution of systems of ordinary differential

equations, Naval Postgraduate School Technical Report NP5-MA-91-009, Monterey, CA,

21



1991.

S. G. Mikhlin and K. L. Smolitskiy, Approximate Methods for Solution of Differential and
Integral Equations, Elsevier, New York, 1967.

B. Neta, C. P. Katti, Solution of initial value problems on a hypercube, Naval Postgraduate
School Technical Report NPS-53-89-001, Monterey, CA, 1989.

M. J. Quinn, Designing efficient algorithms for parallel computers, Mc Graw Hill, New York,
1987.

H. S. Stone, An efficient parallel algorithm for the solution of a tridiagonal linear system of
equations, J. ACM, 20, (1973), 27-38.

22



