
Parallel Solution of Initial Value Problems

B� Neta
Naval Postgraduate School
Department of Mathematics

Code MA�Nd
Monterey� CA �����

Keywords� Initial Value Problems� Boundary Value Problems� Parallel Processing� Hy�
percube� Box Scheme� Recursive Doubling� Extrapolation� Euler�s Scheme� Gragg�s Method�
Method of Lines�

MOS Subject Classi�cation� �	L� �	W

Abstract

This talk will be divided to three parts� In the �rst part we discuss the solution of

linear ordinary di�erential systems of equations� Initial value as well as boundary value

problems will be considered� The second part will cover nonlinear ordinary di�erential

systems� In this case the algorithm is based on extrapolation and as such is e�cient

only on small parallel computers� We close with the method of lines and its use to

solve partial di�erential equations on parallel computers�






� Introduction

In the paper we discuss the parallel solution of ordinary initial and boundary value problems
and the use of method of lines to solve partial di�erential equations on parallel computers� We
open with a brief survey of parallel computing� The algorithm for linear ordinary di�erential
equations will be discussed in section �� The next section will detail the parallel solution of
nonlinear ordinary di�erential equations� We close with a section on the method of lines and
its use to solve partial di�erential equations on parallel computers�

� Parallel Computing

The complexity of scienti�c computing today demands faster computers� Greater detailed
models require a substantial amount of computation� Faster computers are needed to provide
the result of the computation in a timely manner� Two approaches are possible�

i� increase the speed of circuitry� This is bounded by speed of light and cost�

ii� parallel computers�

Parallel processing is an e
cient form of information processing which emphasizes the ex�
ploitation of concurrent events in the computing process� Concurrency implies parallellism�
simultaneity and pipelining� Parallel events may occur in multiple resources during the same
time interval� simultaneous events may occur at the same time instant� and pipelining events
may occur in overlapped time spans� These concurrent events are attainable in a computer
system at various processing levels� �see Hwang �
���� p� ���

i� program level �executing multiple programs by time sharing��

ii� task level�

iii� inter�instruction level�

iv� intra�instruction level�

��� Classi�cation of Parallel Computers by Type

Parallelism can be achieved in several ways�


� temporal parallelism � pipeline computer �Cray � 
� computations are divided into a
number of stages or segments with the output of one being the input of the next�

�� spatial parallelism � array processor �CM�� Use multiple synchronized processing ele�
ments�

�� Asynchronous parallelism � multiprocessor �Cm��� These processors are capable of
performing independent operations� but share resources such as memory�

�



�� Multicomputer �INTEL hypercube� � a re�nement of a multiprocessor� The processors
are as in � but have their own local memory� These o�er an added degree of freedom
in programming� however interaction between processors may require synchronization�

Remark� many array processors� multicomputers and multiprocessors employ pipeline pro�
cessors�

��� Classi�cation by Architecture


� Single instruction� single data �SISD� � serial computers include pipeline�

�� SIMD � array processors�

�� MISD � No current computer�

�� MIMD � multi processors or multicomputers� See Flynn �
����� The INTEL iPSC is
a MIMD machine�

��� Classi�cation by Topology

By the interprocessor connections �which are the means of communication��

Mesh

Pyramid

Butter�y

Hypercube
See Quinn �
���� pp� �	����
The following �gures show a variety of parallel computers�

�



��� Measures of Performance

Two common measures of performance are� speedup � e
ciency�
Speedup is de�ned by

Sp �
Ts
Tp

where

Ts � time to complete task on a serial computer

Tp � time to complete task on a parallel computer with p processors�
Parallel programs often contain additional operations to accomodate parallelism� Many
suggest that Ts should be measured on the fastest serial computer� However� the variation in
the technical speci�cations of both computers may cloud the issue whether parallel processing
is bene�cial� As in many other articles we take T� for Ts�
The other measure� E� e
ciency� accounts for the relative cost of achieving a speci�c

speedup�

Ep �
Sp

p

where p� the number of processors� is also the theoretical speedup�
Many factors could limit the speedup and e
ciency�


� number of sequential operations that cannot be parallelized�

�� communication time�

�� idle time to get synchronization�

This is stated as Amdahl�s �
���� law�

Sp �



f � ��f
p

where f is a fraction of operations to be performed sequentially�

��� INTEL iPSC�� Hypercube

The iPSC�� is a MIMD multicomputer with a hypercube topology� It consists of a system
resource manager �host� and processors �nodes�� The host� a ����based computer� provides
the interface between the user and the nodes�
The nodes are self�contained INTEL ����� microprocessors� each containing ����� nu�

meric coprocessor� its own local memory and a direct�connect communicationmodule �DCM��
Each computing node may be augmented by a vector extension module for pipelined vector
operations�
Communications are completed through message passing� The DCM allows messages to

be sent directly to the receiving node without disturbing the other node processors� The
iPSC�� uses a UNIX operating system and may be programmed in Fortran or C languages�

�



Figure 
� MIMD interconnection network topologies �a� ring� �b� mesh� �c� tree� �d� hyper�
cube� �e� tree mapped to a recon�gurable mesh� See Duncan 
���

	



Figure �� Pyramid on left and butter�y on the right� See Duncan 
���

Figure �� Hypercubes of dimension zero through four� See Duncan 
���

�



Figure �� MIMD shared memory interconnection schemes� �a� bus interconnection� �b� �x�
crossbar� �c� �x� omega MIN routing a P�� request to M�� See Duncan 
���

�



��	 Methods of Parallelization

We mention here two methods of parallelization�


� Vectorizatoin

The process of converting blocks of sequential operations into vector instructions that
may be pipelined�

�� Distributing Computations

In order to partition a program into parallel tasks to distribute among the processors
of a multicomputer� a di�erent strategy is needed� The strategy depends on the parallel
computer used� Two decomposition strategies are suggested�

Control decomposition and domain decomposition�

i� Control Decomposition

This is the strategy of dividing tasks or processes among the nodes� This incorporates a
divide and conquer approach�
One method of control decomposition is for the parallel program to self�schedule tasks�

For this method one node assumes the role of a manager with the rest assuming roles of
workers� The manager maintains a list of processes to be accomplished and assigns processes
to the working nods� The working nodes request jobs� receive processes and perform the
indicated tasks�
A second method is to pre�schedule the processes� The exact tasks required of each node

are explicitly stated in the parallel program� This method saves the cost of the manager� but
the progammer has to ensure that processes are evenly distributed among the nodes �load
balancing��

ii� Domain Decomposition

In this strategy the input data or domain is divided among the nodes� The major
di�erence between control and domain decomposition is that domain decomposition strategy
requires each node to perform essentially the same tasks but with di�erent input data�
Domain decompoisiton is recommended if the calculations are based on a large data

structure and the amount of work is the same for each node� An example is a multiplication
of two large matrices by using block multiplication� The user should be aware of load
balancing since not every input data requires the same amount of work�

��
 Performance

The following three factors should be considered�
i� Load balance�
ii� Communication to computation ratio�
iii� Sequential bottlenecks�

Load balance refers to the degree to which all nodes are active� If the work is not evenly
distributed among the processors� the parallel algorithmwill show constrained speedup� Load
balancing maybe achieved by reducing the grain size of the parallel tasks� self�scheduling
tasks or redistributing the domain�

�



Communication time is inherent in parallel algorithms� A large communication to com�
putation ratio constrains e
ciency� Reduction of this ratio maybe achieved by increasing the
grain size� grouping messages� or recalculating values instead of receiving them from another
node�
Sometimes tasks cannot begin until completion of a previous task� A sequential bottle�

neck happens when other processors are waiting for another node to complete a task before
they may continue� The portion of operations that are not completed in parallel restricts
speedup as can be seen by Amdahl�s law� The only method to remove such bottlenecks is to
modify or reorder the algorithm in order to overlap sequential code with other computations
�if possible��

� Ordinary Initial Value Problems

The numerical solution of ordinary di�erential systems of equations is an intrinsically se�
quential procedure� given the data at a point x �or at several points x� x� h� � � � � x�mh��
one advances to the following point x� h�
In order ot parallelize this procedure� we �rst consider linear systems� i�e�

y��x� � A�x�y�x� � f �x� a � x � b

where y and f are n dimensional vectors and A is a nxn matrix� The idea here is based on
the following�
For homogeneous systems

y��x� � A�x�y�x� a � x � b �
�

the solution at the right endpoint is a linear function of the values at the left endpoint� i�e�

y�b� � Y�a�b�y�a� �

Here Y�a�b� is the value at x � b of the fundamental solution matrix Y � which is de�ned as

Y � � A�x�Y

Y �a� � I

where Y is nxn and I is the identity matrix�

Theorem�
Let

e�i� �

�
BBBBBBBBBB�

�
���


�
���
�

�
CCCCCCCCCCA
�� ith

�



Let y�i� be solutions of
y� � A y

satisfying the initial conditions
y�i��a� � e�i�

then y�i� form a fundamental set of solutions of the system�

Remark�
Y�a�b�Y�b�c� � Y�a�c� for a � b � c �

To solve the problem on the interval �a� b�� we propose to assign N contiguous subintervals

�a� x��� �x�� x��� � � � � �xN��� b�

to the N processors� and let each of them compute in parallel� the corresponding fundamen�
tal solution� This is a task requiring a possibly large number of sequential steps� for the
numerical evaluation of Y �xi� xi����

One way of doing this is described here�
Let

xj � a� jh j � �� 
� �� � � � �m

h �
b� a

m

be a uniform mesh�
The box scheme �see e�g� Keller� 
���� applied to the system �
� yields

y
j��
� y

j
� hfAj�����yj��

� y
j
��� � f

j����
g �

where

Aj���� � A�a� �j � 
���h�

f
j����

� f�a� �j � 
���h�

and y
j
is the approximation to y�xj�� Let fji� i � 
� � � � � sg be a strictly increasing sequence

such that j� � � and js � m� Let �i be nxn matrices de�ned by

�i �
Qji��

j	ji�� �I �
h
�
Aj�����

���I � h
�
Aj������ i � 
� �� � � � � s

where j
 � � and h is su
ciently small so that I �
h
�Aj���� are nonsingular�

Similarly� let

�
i
� �I � h

�Aji�����
���I � h

�Aji������yji���ji��

�h�I � h
�Aji�����

��f
ji����

� i � 
� �� � � � � s

where
�y


� �


�



and

�y
j��

� �I �
h

�
Aj�����ji���

��

�
�I �

h

�
Aj�����ji����yj � hf

j�����ji��

�

j � �� � � � � ji � ji�� � ��

Then it was shown by Keller and Nelson �
����

y
ji
� �iyji��

� �
i

i � 
� �� � � � � s

Notes�


� The last factor in �i is the matrix required for �i�

�� The vector �y
ji���ji��

can be computed in the same loop �i is computed since they

require the same matrices�

As can be seen in the above description� this procedure may be extended to inhomogeneous
equations� with initial data y�a� � given or two point boundary data

B�y�a� �B�y�b� � given �







The algorithm for the initial value problem

Step �� Using N processors to solve the linear inhomogeneous system with initial condi�
tions�

y��x� � A�x�y�x� � f �x�
y�xmin� � g

divide the required interval into N subintervals�

�xmin� x��� �x�� x��� � � � � �xN��� xmax� �

The algorithm will produce numerical approximations for y�xj�� j � 
� �� � � � � N �

Step �� Do in parallel�

Processor j� working on the interval �xj��� xj� solves numerically the following two
systems�

Y �

j � A�x�Yj
Yj�xj��� � I the identity matrix

��
j
�x� � A�x��

j
�x� � f�x�

�
j
�xj��� � �

The matrix Yj is the fundamental solution on the subinterval� while �j incor�

porates the inhomogeneous e�ect of the forcing function f � When this step is
completed� one may recursively compute y�xj� from�

y�x�� � Y��x��g ��
�
�x��

y�x�� � Y��x��y�x�� ��
�
�x��

� � �
y�xN� � YN �xN�y�xN��� ��

N
�xN �

Step �� The last step of the algorithm is an e
cient performance of the recursion above�
assuming that N � �m� This is a generalization of the recursive doubling algorithm
due to Stone �
����

a� For 
 � j � N� initialize�

y
j
� �

j
�xj��

Mj � Yj�xj�

also � y
�
� g �M�y��

k � 


b� For all j � k

y�
j
� y

j
�Mjyj�k

M�

j � MjMj�k


�



c� For all j � k replace M�y by M�� y�

y
j
� y�

j
�

Mj � M�

j

d� Set k � �k� If k � N� repeat steps b�c� Otherwise the algorithm ends with y
j

the numerical approximation to the solution at xj�

��� Experimenting with IVPs

We have solved several systems of a variety of order� We will only give results for �x� and

�x
�� The system is

y�i � yi � xyi�� � fi � � i � n� 

y�n � yn � fn

where fi are chosen so the solution is

y � �
� ex� e�x� e�x� e��x� e�x� e��x� x� sinx� cosx� n � 
�
y � �
� ex� e�x� n � �

The number of steps per processor was varied from 
� to ��� The following table gives the
ratio of communication to total time�

 of steps �x� �x� 
�x
�
per processor message type send on demand send on demand


� ��! ��! 
�!
�� ��! ��! �!
�� �
! ��! �!
�� �
! ��! �!

Bianchini �
���� implemented this solver on T��	 transpoter system with an � processor
ring topology� Each processor computes �� steps� The communication time is 

 msec� the
computation time for the solution is 

	� msec and for the recursive doubling is �� msec�
Therefore ���! of time is spent on communication� We can estimate the total running time
as follows� a single processor to solve a system nxn using s steps will require

ksn

�evaluating n right hand sides s times� ignoring matrix�vector multiplications�� Using N
processors� our algorithm requires

s

N
n�

because we compute the nxn fundamental matrix� Heuristically� there is gain in parallelism
only if the order of the system is smaller than the number of processors� Even if there is no
obvious gain� the algorithm may become e
cient when used as the �rst step of an inverse
problem� or distributed parameter problem�


�



��� Algorithm for BVPs

Step �� Using N processors to solve

y� � A�x�y � f�x�
B�y�a� �B�y�b� � g

divide the interval into N subintervals�

Step �� Do in parallel�

Processor j� working on the interval �xj��� xj� solves numerically

Y �

j � A�x�Yj
Yj�xj��� � I
��
j
� A�x��

j
� f �x�

�
j
�xj��� � �

Step ��

�a� For 
 � j � N

y
j
� �

j
�xj��

Mj � Yj�xj�

k � 


�b� For j � k

y�
j
� y

j
�Mjyj�k

M�

j � MjMj�k

�c� For all j � k replace M�y by M�� y�

�d� set k � �k� If k � N� repeat �b��c above�

Step �� Processor N solves the following for �

�a� B�� � B��MN� � y
N
� � g then broadcasts � to all processors� This is the

initial value consistent with the boundary condition�

�b� For all j compute in parallel

y
j
� y

j
�Mj�

� Nonlinear Systems

The idea here is to use extrapolation� One can solve the system using Euler�s method or
Gragg�s method and then extrapolate to obtain a high accuracy solution�


�



��� Solver

Euler�s method
yn�� � yn � hf�xn� yn�

with truncation

yn � y�nh� � A�h�A�h
� �A�h

� � � � �

Gragg�s method

z��� � y
 �
h
�
f�x
� y
�

y� � y
 � hf�x���� z���������
���	

zn���� � zn���� � hf�xn� yn�

n � 
� �� � � �

yn�� � yn � hf�xn����� zn�����

with truncation
yn � y�nh� � B�h

� �B�h
� � � � �

Each processor uses an ODE solver with

hr �
N

r
H

The common points are xj � a� �j � 
�NH�

��� Extrapolation

Given
fhr� y�xi� hr�jr � �� 
� � � � � N � 
� i � 
� �� � � � �Mg

The solution at those M points in �a� b� is computed by the same scheme by all N possible
h�s��
Find a polynomial of degree N � 


"N���hr� � y�xi� hr�

or a rational function

R����hr� � y�xi� hr��

For polynomial extrapolation we construct a table of values Trs as follows

Tr
 � y�xi� hr�

Trs � Tr��s�� �
Tr��s�� � Trs��

� hr
hr�s
�� � 



	



s � �� 
� � � � � N � 


r � �� 
� � � � � N � s

	 � 
 for Euler

� � for Gragg

For rational functions we construct a table of values as follows

Tr�� � �

Tr
 � y�xi� hr�

Trs � Tr�� s�� �
Tr�� s�� � Tr s��

� hr
hr�s
�� �
� Tr�� s���Tr s��

Tr�� s���Tr�� s��
�� 


s � 
� �� � � � � N � 


r � �� 
� � � � � N � s� 


assume


 � �
N � 


�
�

� � N � 
 � 


Extrapolation will yield O�hN �� O�h�N� accuracy for Euler� Gragg schemes respectively�
In the following table we show which processor computes which part of the solution�

��� Experimenting with nonlinear systems

Example 

y� � y sinx� � � x � 	�
y��� � e���

The exact solution is
y � e� cosx �

In the next table we summarize the results of the experiment with Euler method and extrap�
olation using N processors� It is clear that the results using polynomial extrapolation are
much better� The accuracy �jjyh� yejj
� where yh is the result of extrapolation� is increasing
with the number of processors� The results using rational extrapolation are not as good and
not improving after 	 processors�
To measure the order of the method� we have computed yh and yh�� �the solution after

extrapolation with step h�� instead of h�� The columns entitled #error reduction� in each
table report the error quotient #coarse to �ne��


�



processor step proc 
 proc � proc � proc � proc 	 proc � proc �
T

 
 �H

T
�
T�
 � �H T
�

T�� T
�
T�
 � �

�
H T�� T
�

T�� T�� T


T�
 � �H T�� T�� T
�

T�� T�� T�
 T
�
T�
 	 �



H T�� T�� T��

T�� T�� T�

T

 � �

�H T�� T��
T
� T��

T�
 � �
�H T
�

T��
T�
 � H

Table 
� Extrapolation assigned to each processor

The accuracy using Gragg�s Method in higher machine accuracy �double precision� has
been reached with 	 processors if polynomial extrapolation is used�
The error quotient close to ��p� until machine accuracy is reached�

Example �

y�j �
jyjyj��

xj��
j � 
� �� � � � � n� 
 � � x � 
�

POLYNOMIAL RATIONAL
Processor coarse�
��� �ne�
��� error coarse �
��� �ne �
��� error

reduction reduction
� 
�		��� ��	���� � 	�
	��� 
������ �
� 
�
���� 
������ � ��	���� ������	 �
� ���
��	 	������ 
� ������� ������	 �

	 ���	��� 
������ �	 
�

��� ��

��� 	�
� 
�
���� ������� �� ������� 
��	��� �
� ������� �����

 �� 
�����	 	�����	 �
� 
�
��
� 	��
�
� ��� ��

��� 	�����	 �

Table �� Euler scheme


�



POLYNOMIAL RATIONAL
Processor coarse�
��� �ne�
��� error coarse �
��� �ne �
��� error

reduction reduction
� ������� 
������ 
� ������� ��
���� 
�
� ������� 
�
��
� �� ������� 
�	��
� �	
� 
����

 �����
� ��� �����
� �����
� ��
	 ���
�
� �����
	 � 
�	��
� ��
��
� ���
� �����
	 �����
	 � �����
� 
����
� 	�
� ���
�
	 
����
� � �����
� 
����
� ��
� �����
� �����
� � 
������ �����
� 
�

Table �� Gragg method

y�n �
nyny�
x�

yj ��� � �j

The exact solution is yj � xj�

POLYNOMIAL RATIONAL
Processor coarse�
��� �ne�
��� error coarse �
��� �ne �
��� error

reduction reduction
� 
�����
 	������ � ���	��� ��	���� �
� ������� 
������ � 
�����
 ������� �	
� 
������ 
������ � ������� ��	���� �
	 ������� ������� � 
������ ���
��� �
� ������� ������	 
� ������� 
�����	 ���
� 
�		��� 	������ �� ������	 
�����	 �
� ������	 ������� �� 	��	��� 
�	���� �

Table �� Euler scheme

��� Speedup and E�ciency

Gragg�s method for example � �n��� and polynomial extrapolation


�



POLYNOMIAL RATIONAL
Processor coarse�
��� �ne�
��� error coarse �
��� �ne �
��� error

reduction reduction
� ��	
��� ��
���� 
� 	������ ������� 
�
� ��	���� 
�����	 �� 
������ 
�
���� 
��
� ������	 
�	���� 
�� ������� 
������ 	�
	 ������� 
��	��� ��	 ������� 
��	��� 	�
� 
������ 
����

 
��� ���
��� 
��	��� ���
� ���	�
� 	����
� �
	� ������� 
����
� 	�
� ��
��
� ��		�
� ��� 
�
	��	 ���	��� 
�

Table 	� Gragg scheme

H T�
� in msec T��� in msec Speedup E
ciency
�
 �	� 
	� ���� ���
��	 
	�� ��� ���� ���

Table �� Speedup and e
ciency for example �

� Method of Lines

There is an extensive literature� primarily of Russian origin� for the method lines which has
been summarized to 
��	 by Liskovets �
��	�� See also Mikhlin and Smolitskiy �
����� The
method is simple in concept � for a given system of partial di�erential equations discretize
all but one of the independent variable �see Ames� 
��� �� This semidiscretization yields
a coupled system of ordinary di�erential equations which are then numerically solved by a
parallel scheme described above� For example� consider the nonlinear di�usion equation

ut � �D�x� t� u�ux�x � f�x� t� u� ux�� � � x � 
� � � t � T

subject to the initial and boundary conditions

u�x� �� � F �x�� � � x � 
�

���t�u��� t� � 
��t�ux��� t� � 	��t�� � � t � T�

���t�u�
� t� � 
��t�ux�
� t� � 	��t�� � � t � T�

where D is a bounded function� The semidiscretization is given by the following system
i � �

du

dt
�

���
�	
� if 
� � �

�

h
�D���

u� � u

h

�D

	� � ��u



�
� � f�x
� t� u
�

	� � ��u


�

� if 
� �� �


�



u
 �
��
��
if 
� � �


 � i � N � 


dui
dt
�

Di�����ui�� � ui��Di�����ui � ui���

h�
� f�x� t� ui�

ui�� � ui��

�h
�

i � N

duN
dt

�

���
�	
� if 
� � �

�

h
�DN

	� � ��uN

�

�DN����
uN � uN��

h
� � f�xN � t� uN �

	� � ��uN

�

� if 
� �� �

uN �
��
��
if 
� � �

The initial data
ui��� � F �xi� i � �� 
� � � � � N �

Chang and Madsen �
���� used the method of lines to solve a two dimensional chemical
kinetics transport problem�
We conclude with a linear system

y� � Ay � � x � �

y��� �

�
BBBBBBBBBB�



���
�
�
���
�

�
CCCCCCCCCCA

where A � �aij� is a symmetric tridiagonal matrix whose elements are

aii � �� i � 
� �� � � � � N

ai�i�� � ai���i � 
� i � 
� �� � � � � N � 
�

This system resulting from approximating the one dimensional heat equation

ut � uxx�

The results are summarized in Table �� The error quotient is much better than �p when
using polynomial extrapolation� The accuracy� though� is not very high� and in linear systems
it is cheaper and more accurate to use the idea developed by Lustman et al �
��
��

��



POLYNOMIAL RATIONAL
Processor coarse�
��� �ne�
��� error coarse �
��� �ne �
��� error

reduction reduction
� ������
 ��
���� �� ���
��
 	������ 
�
� ���	��
 ������� 
�� ������� ������� �
� 
�����
 ������� 
�� 	������ ������� 
�
	 ������� 
�
���� ��� ������� ���
��� ��
� ������� 
�����	 ��� 	������ 	������ �
� 
������ ���
��� ��� 
������ ������	 ��
� ��

��� ������� 
	�� 	������ 
�
���� 	

Table �� solution by method of lines

References

G� Amdahl� Validity of the single processor approach to achieving large scale computing
capabilities� AFIPS Conf� Proc�� �� �
����� ������	�

W� F� Ames� NumericalMethods for Partial Di�erential Equations� second edition� Academic
Press� New York� 
����

M� Bianchini� Implementation of parallel ODE software on T��	 transputer� personal com�
munication� 
����

J� S� Chang and N� K� Madsen� Global transport and kineticsmodels� UCRL��	���� Lawrence
Livermore Laboratory� 
����

R� Duncan� A survey of parallel computer architectures� Computer� Feb� 
���� pp� 	�
��

M� J� Flynn� Very high�speed computing systems� Proc� IEEE� �� �
����� 
��
�
����

K� Hwang� F� A� Briggs� Computer architecture and parallel processing� McGraw Hill� New
York � 
����

H� B� Keller� Numerical Solution of two point boundary value problems� SIAM� Philadelphia�

����

H� B� Keller� P� Nelson� Hypercube implementations of parallel shooting� Appl� Math� Comp��

����

O� A� Liskovets� The method of lines� �English Translation� J� Di�� Eqs�� �� �
��	�� 
����

L� Lustman� B� Neta� C� P� Katti� Solution of linear systems of ordinary di�erential equations
on an Intel hypercube� SIAM J� Sci� Stat� Comput�� �� �
��
�� 
����
��	�

L� Lustman� B� Neta� W� Gragg� Solution of ordinary di�erential initial value problems on
an Intel hypercube� Computers Math Applic�� �� �
����� �	����

L� Lustman� B� Neta� Software for the parallel solution of systems of ordinary di�erential
equations� Naval Postgraduate School Technical Report NPS�MA��
����� Monterey� CA�

�





��
�

S� G� Mikhlin and K� L� Smolitskiy� Approximate Methods for Solution of Di�erential and
Integral Equations� Elsevier� New York� 
����

B� Neta� C� P� Katti� Solution of initial value problems on a hypercube� Naval Postgraduate
School Technical Report NPS�	�������
� Monterey� CA� 
����

M� J� Quinn� Designing e
cient algorithms for parallel computers� Mc Graw Hill� New York�

����

H� S� Stone� An e
cient parallel algorithm for the solution of a tridiagonal linear system of
equations� J� ACM� ��� �
����� ������

��


