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Abstract

Fulerian and semi-Lagrangian finite element methods are analyzed for stability and accuracy
for the one-dimensional advection-diffusion equation. The methods studied are a class of schemes
called theta algorithms that yield the explicit (8 = 0), semi-implicit (§ = %), and implicit (6 = 1)
methods. The stability analysis shows that the semi-Lagrangian method is unconditionally
stable for all values of 8 while the FEulerian method is only unconditionally stable for % <6<
1. The accuracy analysis shows that the semi-Lagrangian and Fulerian methods are second
order accurate in both space and time only for § = 1. This analysis shows that the best

2
methods are the § = 1 which are the semi-implicit methods. In essence this paper compares

a semi-implicit Eulerifm method with a semi-implicit semi-Lagrangian method, analytically
and numerically. The analysis shows that the semi-implicit semi-Lagrangian method exhibits
better amplitude, dispersion and group velocity errors than the semi-implicit Fulerian method
thereby achieving better results. Numerical experiments are performed on the two-dimensional
advection and advection-diffusion equations having known analytic solutions. The numerical
results corroborate the analysis by demonstrating that the semi-Lagrangian method is superior
to the Eulerian method while using time steps two to four times greater. This property makes
them more attractive than Eulerian methods particularly for integrating atmospheric and ocean
equations because long time histories are sought for such problems.

1 Introduction

Eulerian and semi-Lagrangian finite element models for the advection and advection-diffusion equa-
tions are presented. The best methods are found to be the semi-implicit methods (6 = %) There-
fore this paper essentially compares a semi-implicit Eulerian method with a semi-implicit semi-
Lagrangian method. The majority of the numerical models developed in the past have used Eulerian
methods. In numerical weather prediction, attention has recently shifted towards semi-Lagrangian
methods because they are not bound by the CFL restrictions of Eulerian methods and as a result
can use time steps four times greater. In short, they offer increased efficiency without a decrease in
accuracy. The analysis performed in this paper shows that the maximum allowable Courant num-
ber should not exceed four. For values larger than four, dispersion errors can adversely affect the
accuracy of the semi-Lagrangian solution.
Semi-Lagrangian methods and other related methods such as Characteristic Galerkin and Eulerian-

Lagrangian methods have been studied using the advection equation in two-dimensions [14] and the
advection-diffusion equation in one [11] and two-dimensions [13]. In [11] a class of schemes similar to

*This research was conducted while the author was an NRC associate at the Naval Postgraduate School.
t Author to whom all correspondence should be addressed.



International Journal for Numerical Methods in Fluids (submitted March 1996) 2

semi-Lagrangian methods are studied for amplification errors but only for Lagrange interpolation.
In this paper, we analyze a family of two-time-level semi-Lagrangian methods for amplification,
dispersion and group velocity errors. In addition, this paper compares semi-Lagrangian methods in
two-dimensions using Lagrange, Hermite, and spline interpolation.

Semi-Lagrangian methods have been implemented successfully for numerical weather prediction
models by Bates and McDonald [1], Robert [16], and Staniforth and Temperton [17]. However, most
of these methods have used finite difference spatial discretizations but finite elements have many
advantages over finite difference methods including optimality and generalization to unstructured
grids. In section 2, the finite element discretization of the two-dimensional advection-diffusion equa-
tion using Eulerian and semi-Lagrangian methods is introduced. Bilinear rectangular finite elements
are used for the spatial discretization. For a comparison of various triangular and rectangular fi-
nite element discretizations see Neta and Williams [10] who recommend either bilinear rectangular
or 1sosceles triangular elements. Section 3 contains the stability and accuracy analyses of these
methods. Section 3 also discusses the properties of the operators discretized by the finite element
method for the Eulerian and semi-Lagrangian methods, and how the structure of the resulting ma-
trices affects the choice of matrix solvers. Section 4 presents the numerical experiments performed
on the two-dimensional advection and advection-diffusion equations to validate the methods and
corroborate the one-dimensional analysis. Finally, section 5 contains the concluding remarks and a
discussion of the direction of future work.

2 Discretization

The differential form of the 2D advection-diffusion equation is

e
ot

where ¢ is some conservation variable, @ is the velocity vector, and K is the diffusion coefficient.

+id-Vo=KV%p (1)

2.1 Eulerian

In Eulerian schemes the evolution of the system is monitored from fixed positions in space and as a
consequence, are the easiest methods to implement as all variable properties are computed at fixed
grid points in the domain. Discretizing this equation by the finite element method, we arrive at the
following elemental equations

Me+(A+D)p =R
where M is the mass matrix, A the advection, D the diffusion, and R the boundary terms which are
given by

M = / iy d,
Q

: A, A,
Aij = /ﬂ; (wﬂw/%a—; + vwwz'a—y]) ds2,

g [ (9% 0% 9% 0Y;
D”_A/Q<6x Oz + dy Oy dsd,

an
where 1 are the bilinear shape functions and 7 is the outward pointing normal vector of the bound-
aries. Discretizing this relation in time gives the theta algorithm

[M + At0(A + D))"t = [M — At(1 — 0)(A + D)]e™ + At(R* ! 4 (1 — ) R™) (2)

where 6 = 0, %, 1 gives the explicit, semi-implicit, and implicit methods, respectively [7]. For other

possible time discretizations see [18].
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2.2 Semi-Lagrangian

Semi-Lagrangian methods belong to the general class of upwinding methods. These methods incor-
porate characteristic information into the numerical scheme. The Lagrangian form of Equation (1)
1s

de -2

Y _ K

o =KV (3)
dz .

= d4(Z,1) (4)

where 7 denotes the total derivative. Discretizing this equation by the two-time level theta semi-

Lagrangian method yields
"t ALKV = o + At(1 - 0) KV (5)

where "t = p(Z,t + At) and ¢" = o(¥ — d,t) are the solutions at the arrival and departure (d)
points, respectively and (integrating (4) by the mid-point rule)

v AL
&:Atﬁ(j’—%,t+—) (6)

defines a recursive relation for the semi-Lagrangian departure points. Discretizing this relation in
space by the finite element method, we get

[M + AtOD] "+ = [M — At(1— 0)D] oy + ALOR™' + (1 - 0) 1) (7

where the matrices are defined as in the Eulerian case.

3 Stability and Accuracy Analysis

In order to determine the linear stability of the methods, let us turn our attention toward the
one-dimensional advection-diffusion equation

3.1 Eulerian

The discretization of the theta algorithm gives

1[121] ou 0K
n+1 n+1 n+17 _
(30 555] - a0 -1 ool 2.0 G o+ e =

11 21] (1-6u 1-0)K o
(E |:6a ga 6:| + %[1,0,_1]‘1‘ %[L_Qa 1]) : [@j_l,@j,@j+1] (9)

where linear finite elements are used. This discretization is obtained by constructing the global
equations from the element equations and is now defined at the grid points. Note that linear finite
elements are very similar to second order centered finite differences; the only difference being the
consistent mass matrix. If the mass matrix were to be lumped, then we would arrive at an identical
second order centered finite difference discretization. Let us introduce the Fourier mode

gp?"'l = G lexpil® (10)

where (G is the amplification factor, j is the grid point, ¢ = /=1, ¢ = kAx is the phase angle, & is
the wave number, and n denotes the time level. Substituting (10) into (9) and letting

Atu AtK
= — t b d p=—-+
o (Courant number) and p .7

Azx

(diffusion coefficient)
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Figure 1: The Amplification Error for the Eulerian method for K = 0 and o = 7. The three values
for @ illustrated are 0 (dotted), % (solid) and 1 (dashed).
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Figure 2: The Amplification Error for the Eulerian method for K = 7 x 10* and ¢ = T- The three
values for @ illustrated are 0 (dotted), % (solid) and 1 (dashed).
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Figure 3: The Dispersion Error for the Eulerian methods for K = 7 x 10*. The Courant numbers
for 6 = % illustrated are o = % (dotted), T (dashed), and 7 (dashed-dotted). The Courant number
for 0 = 1 illustrated is ¢ = § (solid).
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Figure 4: The Group Velocity Error for the Eulerian methods for K = 7x 10*. The Courant numbers
for 6 = % illustrated are ¢ = % (dotted), 7 (dashed), and 7 (dashed-dotted). The Courant number

1
for 0 = 1 illustrated is ¢ = § (solid).
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we get the amplification factor

g—i— %cosd)—i—?u(l—ﬁ)(cosqb— 1) —ioc(1l —0)sing
G =

71 (11)
3 + gcosqb —2u0(cos ¢ — 1) +iofsin ¢
and the amplification error
cq = |G exp (12)
For advection (K = p = 0) the method is unconditionally unstable for 0 < 6 < % and unconditionally
stable for % < 8§ < 1. For advection-diffusion the method is conditionally stable for 0 < 8 < % and
unconditionally stable for % < 0 < 1. Writing G = |G| exp™'® we get the dispersion relation

® = arctan {%} (13)

where

2 1
a:a<§—|—§cos¢) sin ¢,

b= g—i—%cosqS—i—Qu(l—H)(cosqS—l)] [g—i—%cosqS—QuH(cosqb—l) —o%0(1 — 0)sin? ¢

and the dispersion error is given by

@
=4
The group velocity is defined as the derivative of the frequency w with respect to the wave number
k and is given by

€p (14)

dw _ Az dtan® 1

= = - 15
dk At d¢p sec?d (15)
where @ = wAt. The derivative of the tan function is given by
dtan® da - b—V -a
do b2 (16)
where ) ) )
a = o [<§ + gcosqb) cos ¢ — gsinqu]
and
, 1. ) 2 1
b = —35111415—2#(1—9)8111(/) g—i—gcosqS—QuH(cosqb—l)
1. . 2 1
+ <_§ sin ¢ + Quﬁsmqb) <§ + 3 cos ¢ + 2u(l — 9))
—2020(1 — 6) sin ¢ cos ¢
which yields the group velocity error
1 dtan® 1
v T 5 d¢ sec?d’ (17)

Figures 1 and 2 show the behavior of the amplitude errors for advection and advection-diffusion
for the three Fulerian methods. Figures 3 and 4 show the dispersion and group velocity errors for
advection-diffusion for the semi-implicit and fully-implicit Eulerian methods - the curves for the
explicit method are not included because this method has stability problems and hence is a poor
choice. By virtue of figures 1 and 3 we can see that for advection the § = % algorithm yields the
best solution; one which has no amplitude (damping) error. In addition, for advection-diffusion
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the 6§ = % algorithm also yields the best algorithm, albeit it has an associated damping error due
to the diffusion introduced by the governing equation. However, the dispersion and group velocity
errors associated with the 8 = % algorithm are quite large as ¢ — 7 (short waves) and increase
with increasing o. These figures tell us that for advection (figures 1, 3 and 4), the semi-implicit
Eulerian method (0 = %) suffers from dispersion and group velocity errors because these waves are
not damped. On the other hand, it performs better for advection-diffusion (see figures 2, 3, and 4)
because the short dispersive waves are damped by the diffusion terms in the governing equation.
Figure 4 shows that the group velocity approaches the actual advection speed u for the long waves
(¢ = 0) but goes to zero for the short waves (¢ — 7). As o increases, the group velocity error
becomes greater than one for some phase angles and negative for other phase angles meaning that
the information is propagating faster than the theoretical wave speed or in the wrong direction. As

an example, for the Courant number o = m we get

d 2

£>u for 0<(/><?7T
and

dw

27
— < —.
T 0 for ¢ > 3

Note that dispersion and group velocity plots for the fully-implicit method are given only for o =
By comparing these curves with those for the semi-implicit method it is evident that this method is
much more dispersive than the semi-implicit method and consequently not as accurate.

ERENE

For the accuracy analysis we expand via a Taylor series to fourth order in space and third order
in time about the point (jAz,t) and get
;=¥
Ax? Az3

n Az? Ag?
gpj—l =¥ — Al‘@x + Tgpxx - T@x@'x + O(Al‘)4

n+1 Atz 3
e; " = o+ Atpy + Pt + O(At)”,

eI = o+ Atpy + Athson + Az, + Aszsom + ATstoxm
+AtAz Py + A%sz%m + A%m%xm
AtzAx Prte + %@tth + #Sﬁtmm + O(At?’, Al‘4),
it = o+ At + Athson — Azp, + Aszsom - ATxBQDxxx
—AtAzp, + A%sz%m - Atﬁx?) Pirea
- AtzAx Pt + %@ttm - #Sﬁtmm + O(A? Az?),

which when substituted into (9) gives the local discretization error

At
L{x,t) = o1 + upy — Kpgp + T%t + Atubpre — AtOK i | + O(Atz, sz).
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Differentiating the original equation
Koee = o1 + upe
with respect to ¢ we obtain
Kotos = @t + upts

which can be substituted into the local discretization error to yield
1
L{x,t) = o1 + upy — Kpge + [Atgott (5 — 9)] + O(Atz, Aa:z). (18)

This relation shows that the method is second order accurate in both time and space for § = % For
all other values, the method is only first order accurate in time. For K = 0 (advection) we can write

_..2
Sott =u Soxx

and we then get
1
L{x,t) = @1 + upy + [At u? P (5 — 9)] + O(Atz, sz) (19)

which yields a diffusion-like term for 8 > % which explains why implicit methods are unconditionally
stable. However, this diffusion term dissipates the solution and hence diminishes its accuracy. For
f < % the scheme adds this quantity thereby explaining the reason for the instabilities encountered
by this second order explicit method. In section 4 (numerical experiments) the explicit method used

in the numerical experiments 1s a first order upwind method.

3.2 Semi-Lagrangian
The Lagrangian form of the one-dimensional advection-diffusion equation is

dyp

— — Kps = 2
o~ Neae =0 (20)
Ccll—f = u(xz,1) (21)

and the discretized form is

111 21 oK
n+1 n+1 n+171 __
(3 [55:5] - mertt -2 0) ot el =

1 1 21 (1—9)[( n n ~n
A 6’3’6 +T[1’_2’1] '[@d-p%ﬁd,sﬁdﬂ] (22)
o At
= At — = t+ —
o U (x 5 + 9 )

where d is the departure point and ¢} is the interpolation of ¢/} using grid point values. Introducing
the Fourier modes we obtain the amplification factor

% + %cosqb +2pf(cos ¢ — 1)
G = [fd] 2 1 (23)

3 + gcosqb—?ﬂ(l — 0)(cos ¢ — 1)

where .
¥d
fa= "% (24)
%
which is a generalized stability criteria and is valid for any type of approximation used for ¢7. The
amplification error is again defined by (12). Assuming no interpolation is required because we know
the value at the departure point, then the interpolation function is

¢i=¢"(jAzr —a)



International Journal for Numerical Methods in Fluids (submitted March 1996) 9

15F

Amplitude Error
-
]
1
1
|
I
i
|
i

0.5F

1
0 45 90 135 180
Phase Angle

Figure 5: The Amplification Error for the semi-Lagrangian method using cubic spline interpolation
for K = 0. The four values for & illustrated are 0.25 and 0.75 (dashed), 0.50 (dotted), and 1 (solid).

This figure is valid for all values of p and 6.
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Figure 6: The Amplification Error for the semi-Lagrangian method using cubic spline interpolation
for K =7 x 10%. The four values for & illustrated are 0.25 and 0.75 (dashed), 0.50 (dotted), and 1
(solid). This figure is valid for all values of p and 6.
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Figure 7: The Dispersion Error for the semi-Lagrangian method using cubic spline interpolation.
The four values for & illustrated are 0.25 (dotted), 0.75 (dashed), 0.5 and 1 (solid) where p = 0.
Thus ¢ = 0.25, 0.50, 0.75 and 1. This figure is valid for all values of K and 6.
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Figure 8: The Dispersion Error for the semi-Lagrangian method using cubic spline interpolation.

The four values for & illustrated are 0.25 (dotted), 0.50 (dashed), 0.75 (solid) and 1 (dashed-dotted)

where p = 1. Thus ¢ = 1.25, 1.50, 1.75 and 2. This figure 1s valid for all values of K and 6.
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Figure 9: The Dispersion Error for the semi-Lagrangian method using cubic spline interpolation.

The four values for & illustrated are 0.25 (dotted), 0.50 (dashed), 0.75 (solid) and 1 (dashed-dotted)

where p = 2. Thus ¢ = 2.25, 2.50, 2.75 and 3. This figure 1s valid for all values of K and 6.
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Figure 10: The Dispersion Error for the semi-Lagrangian method using cubic spline interpolation.

The four values for & illustrated are 0.25 (dotted), 0.50 (dashed), 0.75 (solid) and 1 (dashed-dotted)

where p = 3. Thus ¢ = 3.25, 3.50, 3.75 and 4. This figure 1s valid for all values of K and 6.
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Figure 11: The Dispersion Error for the semi-Lagrangian method using cubic spline interpolation.

The four values for & illustrated are 0.25 (dotted), 0.50 (dashed), 0.75 (solid) and 1 (dashed-dotted)

where p = 4. Thus ¢ = 4.25, 4.50, 4.75 and 5. This figure 1s valid for all values of K and 6.
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Figure 12: The Group Velocity Error for the semi-Lagrangian method using cubic spline inter-
polation. The four values for & illustrated are 0.25 (dotted), 0.50 (dashed), 0.75 (solid) and 1
(dashed-dotted) where p = 0. Thus ¢ = 0.25, 0.50, 0.75 and 1. This figure is valid for all values of

K and 6.
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Figure 13: The Group Velocity Error for the semi-Lagrangian method using cubic spline inter-
polation. The four values for & illustrated are 0.25 (dotted), 0.50 (dashed), 0.75 (solid) and 1
(dashed-dotted) where p = 1. Thus ¢ = 1.25, 1.50, 1.75 and 2. This figure is valid for all values of

K and 6.
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Figure 14: The Group Velocity Error for the semi-Lagrangian method using cubic spline inter-
polation. The four values for & illustrated are 0.25 (dotted), 0.50 (dashed), 0.75 (solid) and 1
(dashed-dotted) where p = 2. Thus ¢ = 2.25, 2.50, 2.75 and 3. This figure is valid for all values of

K and 6.
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Figure 15: The Group Velocity Error for the semi-Lagrangian method using cubic spline inter-
polation. The four values for & illustrated are 0.25 (dotted), 0.50 (dashed), 0.75 (solid) and 1
(dashed-dotted) where p = 3. Thus ¢ = 3.25, 3.50, 3.75 and 4. This figure is valid for all values of
K and 6.
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Figure 16: The Group Velocity Error for the semi-Lagrangian method using cubic spline inter-
polation. The four values for & illustrated are 0.25 (dotted), 0.50 (dashed), 0.75 (solid) and 1
(dashed-dotted) where p = 4. Thus o = 4.25, 4.50, 4.75 and 5. This figure is valid for all values of
K and 6.
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which gives the amplification factor
fi = exp=ime

which is stable for any value of «. Generally speaking, the departure points do not lie on grid
points thereby requiring some form of interpolation. In this paper, cubic spline interpolation is
used to approximate the departure points. Using anything lower than cubic interpolation eliminates
any advantages that the semi-Lagrangian method might offer [13]. In addition, using Lagrange
interpolation as opposed to Hermite or spline interpolation also greatly diminishes the accuracy of
the solution. For cubic spline interpolation we obtain

¢q = Pj—p—aj_pt 5‘2[3(30j—p—1 — @i—p) + Pi-p-1 + 20 ]
—a®[2(pj-p—1 = Pj—p) + Pj—p-1 + Pj—p]

where we have defined the departure point as in [1] to be p grid intervals away from the arrival point
j and

et

Y= — — 25

A ! (25)

is the residual Courant number and ¢ = —— is the Courant number. In addition, the terms ¢;_,

x
are obtained from the recurrence relation

Pj-p-1+t4Pjp+ i1 =3(Pip1 —pip-1) J—P=1,..n
where n is the number of gridpoints in the mesh. This interpolation yields
fa = [exp™®?][1 + a%(2a — 3)(1 — cos ¢) — a*(& — 1)(1 — cos? ¢)]
—isin gla(q — 1)(a(1l + cos ¢) — 1) — &*(2a — 3)]

which says that the method is stable for all p, since 0 < & < 1 by definition. Thus the two-time
level semi-Lagrangian method is unconditionally stable for advection (K = p = 0) and advection-
diffusion. The dispersion relation is given by

® — arctan {%} (26)
where
a = Bsinpg + Acospg,
b= Bcospéd — Asinpe,
and

A=[a(a—1)(a(1+cos¢) — 1) — a*(2a — 3)]sin ¢,
B =[1+a*2a — 3)(1 —cos ) — a*(a — 1)(1 — cos? ¢)],
and the dispersion error is defined by (14). The group velocity and group velocity error are defined
once again by equations (15) and (17) where the derivative of the tan function is given by (16) where

a’ = sinp@(B’' — Ap) + cospé(Bp + A'),

b = cospd(B’ — Ap) —sinpg(Bp + A'),

and

A" = cos¢ {a(a—1[a(l+cosg) — 1] —a*(2a — 3)} — sin® pa’(a — 1)
B = a”sin¢ 24 — 3 — 2(a — 1) cos ¢].

Figures 5 and 6 show the amplitude errors for different values of & for advection and advection-
diffusion, respectively. Figures 7 - 15 show the dispersion and group velocity errors for different
values of & for advection-diffusion. By looking at the dispersion and group velocity relations for the
semi-Lagrangian method, we can see that these errors are associated only with advection, because
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the diffusion terms drop out from these relations. Therefore, these errors are independent of K and
# because # only affects the diffusion terms. The four different values of & shown are 0.25, 0.50, 0.75
and 1 which correspond to the departure point lying one-quarter, one-half, three-quarters, and one
grid point distance away from the p grid point. First considering advection, figures 5 and 7 - 10
show that while the dispersion error is large for ¢ — 7 (short waves) these short dispersive waves
are dampened for o < 4 as long as the dispersion occurs at phase angles ¢ > %. This damping
for the short dispersive waves keeps the solution stabilized and accurate. Note that figures 1 and
3 show that the short dispersive waves are not damped for the Eulerian case and as a result, the
solution is adversely affected by dispersion errors. Figure 11 shows that for o > 4, there is dispersion
associated with some phase angles ¢ < % which include long waves. Thus as the Courant number
increases beyond 4, the semi-Lagrangian method suffers from inaccuracies due to dispersion errors
that are not damped by the amplitude error. Figures 12-16 show that the group velocities approach
the actual advection speed u for all waves for @ = 0.25, 0.75 and 1, but goes to zero for the short
waves (¢ = 7) for & = 0.5 and moves in the opposite direction for the short waves for & = 0.25
and p = 0. However there are two points which salvage the semi-Lagrangian method: first, by
looking at figure 5 (amplitude plot), we can see that these waves are damped and so do not affect
the solution, and second, that as p and hence the Courant number ¢ increases, the group velocities
approach the advection speed u for all values of & except for 0.5. At & = 0.5, the numerical method
exhibits dispersion errors accompanied by amplitude errors thereby eliminating any ill effects that the
short dispersive waves may have caused. Figure 6 shows that for advection-diffusion, the diffusion
associated with the governing equations eliminates one of the advantages of the semi-Lagrangian
method over the Eulerian method, namely, the diffusion of the short dispersive waves. This means
that for advection-diffusion, the semi-implicit Eulerian method will be competitive with the semi-
implicit semi-Lagrangian method. However, the semi-Lagrangian method clearly exhibits a more
realistic group velocity behavior than the Fulerian method.

For the order of accuracy analysis we expand to fourth order in space and third order in time
about (jAwz,t), as in the Eulerian case, to get

([p+ 3]Az)? ([p + 3]Az)3

jopms = ¢ = [P+ 3800 + T e — S paae + O(A2),

Pipa =% —[p+2Avps + Wﬂwm - W%m +0(Az)*,

Fipr == o+ Nanp, 4 LTI PR, oy,
¢i_p =~ PArp, + (pA;)z%x - (pAGx)S@xxx +0(Az)",

([ — 1]Ax)* ([p— JAz)®

Tr — TrT A 4a
5 ¢ c Prre + O(Ax)

@?—p+1 =p—[p—1]Azp, +

(p — 2]Ax)? (- 2JAx)®

_ 4

@?—pq-z =p—[p—2|Azp; +

which, after substituting the Taylor series expansions and the relation p+ & = Ai into (22), gives
x

the local discretization error

i At Atu? . . 2 A2
L{x,t) = ot +upy — Kpgyp + 5 Pt T o e ALK prpg + A1 — O uK ppy | + O(AL?, Az”).

(27)
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For pure advection (K=0) we may use the original pde

Pt = —UPs
to obtain
Pt = —UPxt
and
Pte =— —UPrx
thereby yielding the discretization error
L(x,t) = ¢ + ups — Kgpw + [0] + O(AE?, Ax?). (28)

For advection-diffusion (K > 0) we may use the original equation

to obtaln the relations
KQire = @i + Uper

and

which, when substituted into the local discretization error, yields

1
L{x,t) = o1 + upy — Kpge + [At(§ = 0) (e + 2upry + uzgom)] + O(Atz, Aa:z). (29)

This relation shows that the method is second order accurate in both space and time for 8 = %
The semi-Lagrangian method itself is second order accurate in space and time but the accuracy of
the numerical scheme is dependent on the order of the interpolation functions used to determine
the departure point and on the time discretization, such as explicit, implicit or semi-implicit. In
order to obtain second order accuracy, the interpolation functions have to be at least second order
accurate, and the time discretization must be semi-implicit for advection-diffusion. In addition,
the interpolation functions need not be Hermite or spline, but can also be Lagrange interpolation

functions.

3.3 Operator and Matrix Properties

By looking at the Eulerian differential form of the advection-diffusion equation (1) we can see that
the operator is not self-adjoint. The self-adjointness of the operator has significant implications for
the finite element discretization. If the operator is not self-adjoint, then we cannot obtain classical
variational principles for the problem. The finite element method can still be used but finite element
equations can only be obtained through the method of weighted residuals. For the semi-Lagrangian
differential form (5) the operator is self-adjoint which means that we can obtain variational principles.
Because the finite element method is optimal for the discretization of operators having variational
principles, the combination of the semi-Lagrangian time integration with the finite element space
discretization yields a complementary and powerful numerical technique.

Looking at it another way, consider the Eulerian discretization in (2) with the semi-Lagrangian
discretization in (7). From the definitions of the matrices M, A, and D we can see that the resulting
coefficient matrix for the Eulerian method is not symmetric while it is for the semi-Lagrangian
method. Let us now see how this affects the manner in which we solve the resulting system of linear
equations. Firstly, we can try to solve the Eulerian matrix using Jacobi-type iterative methods but
we are not guaranteed to converge to a solution. On the other hand, the symmetric property of the
semi-Lagrangian matrix not only ensures convergence but also only necessitates the storage of half
the matrix. Therefore, by taking advantage of these properties we can solve the semi-Lagrangian
matrix by conjugate gradient methods using an incomplete Choleski factorization. This yields a
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very powerful and efficient method for solving this class of matrices. For the Eulerian method, we
have to resort to either Krylov subspace methods, such as GMRES, or to direct methods which
are relatively inefficient. GMRES is a generalized conjugate gradient method that is applicable to
non-symmetric matrices. These methods are the best of the unsymmetric solvers but are not as
reliable as their symmetric counterparts, namely, the conjugate gradient methods.

4 Numerical Experiments

Numerical experiments are performed on the two-dimensional advection and advection-diffusion
equations. For both test cases the domain is defined as

LTmin S €T S Tmax and Ymin S Yy S Ymax

where

(V= 1)10° (N —1)10°

Tmin = Ymin = 9 ) Tmazr = Ymax 9 )

Az = Ay = 10° and N is the number of points in the z and y directions. The initial waves are

centered at

_ Tmazr — Tmin _ Ymaz — Ymin
To = Tmin + ’ Yo = Ymin + 9

4

and the velocity field rotates about the center of the domain and is defined as
u=+Qy and v = —Qz (30)

with Q = 1075,

4.1 Semi-Lagrangian Interpolation

For the semi-Lagrangian method, four different methods of computing the trajectories are studied.
These are exact trajectory calculation and trajectory interpolation using cubic spline, cubic Hermite,
and cubic Lagrange polynomials. The exact trajectory computation uses cubic spline interpolation
for the departure point interpolation. The other methods use the same method for interpolation
used for the trajectory computation.

4.1.1 Exact Trajectories

Using the relations for the Lagrangian trajectories (4) and the velocity (30), we write

dx dy
— =40 d —=-Q
a — Yo v

which can be integrated to yield the equations
z(t) = xocos U + yosin2t and  y(t) = —w,sin Qt + y, cos
where
o= g sinQt + At) + ygcos Qt + At) and y, = x4 cos Q(t + At) — y, sin Q(t + Af) (31)

and z, = z(t + At) and y, = y(t + At) are the arrival points. The semi-Lagrangian midpoint
trajectories then become

a1 = x,[cos Qt + At) — cos Q] + yo[sin Q(t + At) — sin Q] (32)
ag = —x,[sin Q(F + At) — sin Q] + y,[cos Q(t + At) — cos Qt]. (33)
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4.1.2 Cubic Lagrange
From the one-dimensional version of the trajectory equation (4) we obtain the relation

At
a:Atu(xj—%,t—l—T).

Since we do not know the departure interval « a priori, we can iterate this relation to obtain it.
However, because the iterated midpoint departure point z, = z; — «/2 generally falls between
grid points, we need to interpolate these non-grid point values. Lagrange interpolation yields C°
approximations. A cubic Lagrange interpolation of the velocity u can be written as

4

(@) = vil€n)us
i=1
where ¢;(£), i = 1,...,4 are the Lagrange polynomials and are defined by
Yi(§) = —15(€ = 1)~ 5)
Va(€) = T —5)(E = 1)
Us() = ~H(E+3)E -

Yaé) = H(E+D(E - 1)

2 - c
Ae—a) :@mdmzmﬂl,

where & = X , Te
x

4.1.3 Cubic Hermite

Hermite interpolation uses not only the values at the grid points but also the derivatives, which
makes the interpolation C''. A Hermite interpolant for the velocity can be written as

U(Tm) = ag + arém + asé’, + asél,

where
ap = u(0)
0
@ = 5¢(0)

Ou Ou
az = 3[u(1) — u(0)] — 2%(0) - %(1)

oa = 20u(0) — ()] + 57 0)+ 52 1)

Notice that generally, only the values of u at the grid points are known whereas the derivatives at
the grid points are not. These derivatives are computed locally using the procedure described in
[5] where all of the surrounding elements are used to compute the derivatives at each grid point,
thereby using a three-point stencil in one dimension and a nine-point stencil in two dimensions.

4.1.4 Cubic Spline

Cubic splines use the same interpolating functions as in cubic Hermite interpolation; however, they
are C'?. Once again, only the grid point values of u are known and it remains to compute the
derivatives. The manner in which these derivatives are computed for spline interpolation differs from
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Hermite interpolation. In spline interpolation, the derivatives are computed globally by enforcing
slope and curvature continuity at all grid points yielding the following relations

ou ou ou .
<%)i_l + 4(%)2 + <%)i+l = 3(uwjg1 —u—1) for i=1..,n

which defines a tridiagonal system that can be solved efficiently.

4.2 2D Advection

The advection equation
dp | dp | dp
ot +u3x +v3y =0

is given by setting K = 0 in (1). The initial condition is given as in [13] by the cosine wave

i

where r = \/(l‘ —2,)%+ (y—y,)? and R =4Azx.

The boundary conditions are assumed periodic in all directions. The analytic solution of this problem
is

Pexact (T, Y, 1) = @o(x — ut,y — v, 1)
which is the rotation of the cosine wave about the center of the domain without any dissipation or
deformation. The £2? error norm is defined in the following way

_ ff[go(x,y,t) — Pexact (T, ¥, 1) ]*dzdy
el = \/ ff[%pexact(gfa y,t)|2dzdy . (34)

Table 1 shows the results obtained using the Eulerian methods for 8 = %, 1 and 0. The results are
illustrated for up to five revolutions. It is clear that the best Eulerian method is obtained by 6 = %
This is the semi-implicit Eulerian method which is second order accurate in both time and space.
The superiority of the 6 = % method over the other two can be seen not only by comparing the 2
error norm but also by the values of ¢,,4,. In addition, this method best conserves the first and

second moments of the conservation variable. However, one discernible problem with this method 1is
its minimum values. The analytic maximum and minimum should be 100 and 0. The 8 = % method
clearly yields unwanted dispersion errors in the form of large negative numbers for the minimum
values (see table 1).

Table 2 shows the results obtained using the semi-Lagrangian method. For pure advection, this
method is second order accurate in both time and space for all values of . This table shows the
results for the semi-Lagrangian method using four different types of interpolation methods. This
test was carried out to determine the amount of error introduced by iteratively computing the
trajectories and interpolating the departure point values. In this case we have the luxury of a known
velocity field, but in practice, it is unknown. The four methods of interpolation are: exact, cubic
Lagrange, cubic Hermite, and cubic spline interpolation. In the exact method, the trajectories are
computed exactly by virtue of equations 31 - 33 but the departure point values are interpolated
using cubic splines. This test serves to show the error introduced by using cubic splines to compute
the trajectories. Table 2 shows that very little error is introduced by numerically computing the
trajectories using cubic splines. This table also shows that there is little difference between the
cubic Lagrange and Hermite interpolation, however, they yield much less accurate solutions than
the cubic spline. Nonetheless, all of these semi-Lagrangian methods yield much better results than
the Eulerian methods, including the semi-implicit Eulerian method. This can be seen not just by
comparing the (2 norms but by comparing the maximum and minimum values as well. Note that
the semi-Lagrangian method introduces very little dispersion error while the Eulerian methods are
hampered by dispersion and/or damping errors. However, the semi-Lagrangian method does seem
to suffer from non-conservation.
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2

6 Revolutions [le]]ez Pmaz Ormin _Pi 23’#
YPexact,; Spexact,j
1/2 1 0.2442 96.66 -13.63 1.001 1.000
2 0.4052 91.24 -20.01 0.998 1.000
3 0.5136 84.61 -23.43 1.000 1.000
4 0.5913 78.76 -24.35 1.004 1.001
5 0.6505 75.83 -25.41 0.996 1.002
1 1 0.6478 37.93 -0.38 1.000 0.347
2 0.7486 27.67 -0.41 1.000 0.253
3 0.7951 22.88 -0.42 1.000 0.208
4 0.8230 19.87 -0.34 0.999 0.181
5 0.8422 17.79 -0.40 0.999 0.163
0 1 0.9374 4.83 0.00 1.042 0.039
2 0.9744 2.26 0.00 1.056 0.027
3 0.9838 1.67 0.00 1.061 0.026
4 0.9863 1.51 0.00 1.062 0.026
5 0.9870 1.47 0.00 1.063 0.026

Table 1: The Eulerian method for the advection equation. # = % 1s the semi-implicit method, § = 1

is the implicit method, and @ = 0 is the explicit method. The grid is 33 x 33 and ¢ = 7.

7
Interpolation | Revolutions | ||e],2 Omaz Ormin Py 23’#
Pexact,; Spexact”v

Exact 1 0.0459 98.45 -1.26 0.998 0.968

2 0.0732 95.79 -1.75 1.001 0.941

3 0.0970 92.98 -1.98 1.004 0.918

4 0.1186 90.33 -2.12 1.008 0.897

5 0.1383 87.91 -2.26 1.010 0.878

Spline 1 0.0674 98.28 -1.36 1.000 0.968

2 0.1210 95.05 -1.81 0.999 0.942

3 0.1714 91.37 -2.03 1.000 0.918

4 0.2194 87.67 -1.97 1.001 0.897

5 0.2652 85.33 -2.09 1.003 0.878

Hermite 1 0.1846 83.91 -3.11 0.999 0.863

2 0.2913 71.99 -3.36 1.000 0.778

3 0.3672 64.47 -3.86 1.003 0.717

4 0.4252 59.74 -3.67 1.007 0.669

5 0.4719 55.86 -3.56 1.013 0.631

Lagrange 1 0.1973 80.98 -1.65 0.999 0.813

2 0.3054 68.88 -1.91 1.001 0.713

3 0.3797 61.00 -1.91 1.004 0.646

4 0.4354 55.30 -1.89 1.009 0.597

5 0.4798 51.26 -1.89 1.014 0.558

Table 2: The semi-Lagrangian method for the advection equation. Four types of interpolation
methods are illustrated. These are exact, cubic spline, cubic Hermite, and cubic Lagrange. The grid

1s 33 x 33 and o = 7.
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7
o | Revolutions | ||e]|e= Cmagz Omin . - 23’#
Pexact,; Spexact,j

I 1 0.0674 98.28 -1.36 1.000 0.968

2 0.1210 95.05 -1.81 0.999 0.942

3 0.1714 91.37 -2.03 1.000 0.918

4 0.2194 87.67 -1.97 1.001 0.897

5 0.2652 85.33 -2.09 1.003 0.878

2m 1 0.1911 96.52 -1.10 1.002 0.987

2 0.3713 97.28 -1.39 1.002 0.974

3 0.5391 95.38 -1.35 1.002 0.961

4 0.6919 92.13 -1.53 1.003 0.949

5 0.8280 92.05 -1.62 1.003 0.938

Table 3: The semi-implicit semi-Lagrangian method (0 = %) with cubic spline interpolation for the
advection equation using different Courant numbers. The grid is 33 x 33, and ¢ = 7 and 27.

The semi-Lagrangian method has been known to be non-conservative ( [13], [14] ) and table
2 clearly shows the loss in the second moment of the conservation variable. It is important to
understand that while the semi-Lagrangian method is clearly superior to the Eulerian method, it
has achieved these results using Courant numbers four times greater than that used for the Eulerian
method. However, as the Courant number is increased beyond four, the semi-Lagrangian method
suffers inaccuracies due to dispersion errors. Table 3 compares the semi-implicit semi-Lagrangian
method using Courant numbers of ¢ = 7 and 27. Clearly, the error norm has more than doubled
while the time step was only increased by a factor of 2 and this trend worsens after each revolution.
For increasing Courant number, the dispersion and group velocity errors become progressively worse,
which is what the stability analysis of section 3 predicted thus confirming our numerical results.

Figures 17 - 22 compare the solutions graphically for the semi-implicit Eulerian method (8 =
%) with the semi-implict semi-Lagrangian method using cubic spline interpolation. These figures
show the solution after one, three and five revolutions. These figures clearly show the unwanted
dispersion errors introduced by the Eulerian method. After five revolutions, the solution obtained
by the Eulerian method is no longer acceptable due to the ever increasing errors. In contrast, the
semi-Lagrangian method captures the analytic solution much more accurately without suffering the
dispersion errors that plague the Eulerian method.

4.3 2D Advection-Diffusion

The initial condition for the advection-diffusion problem is given as in [13] by the following expo-

nential function

7“2

v, = 100 exp_ 4Azx?

All of the variables are defined as in the advection problem, and the diffusion coefficient K assumes
the values 1 x 10%, 5 x 10%, and 7 x 10*. The boundary condition is

Ve -ii=0

where 7 is the outward pointing normal vector to the boundaries. In an infinite plane, the analytic
solution of this problem is given as in [13] by

T exp 4Aa? 4Kt

x’ ’t =
Pexact (T, Y, 1) T+

Ax?
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Method | 6 o K [le]]ez Omaz Ormin . - 3 Lk
Pexact,; Spexact”v

Eulerian | 1/2 | «/4 | 1 x 10* | 0.1185 55.96 -3.47 1.000 0.989

5x 10% | 0.0165 23.61 0.00 1.002 0.991

7x 10 | 0.0117 18.21 0.00 1.009 0.994

1 | #/4]1x10%] 0.3477 32.69 0.00 1.000 0.555

5x 10% | 0.1318 17.11 0.00 1.006 0.723

7 x 10% | 0.0974 13.97 0.00 1.018 0.768

0 [ m/4]1x10%] 0.7081 6.17 0.00 1.070 0.117

5x 10% | 0.3847 5.70 0.00 1.084 0.270

7x10% | 0.3155 5.50 0.00 1.094 0.340

SLM 1/2 ™ 1 x10% | 0.0341 61.86 0.00 1.000 1.009

spline 5x 10 | 0.0185 25.21 0.00 1.003 1.021

7x10* | 0.0154 19.24 0.00 1.011 1.020

1 T | 1x10" | 0.0419 58.02 0.00 1.000 0.976

5x 10% | 0.0133 23.82 0.00 1.004 0.994

7x10* | 0.0124 18.42 0.00 1.012 1.000

0 ™ 1 x10* | 0.5768 12.11 0.00 1.021 0.213

5x 10% | 0.2596 9.40 0.00 1.036 0.414

7 x 10% | 0.2000 8.45 0.00 1.047 0.490

Table 4: The Eulerian and semi-Lagrangian methods for the advection-diffusion equation. § =
the semi-implicit method, # = 1 i1s the implicit method, § = 0 is the explicit method, and SLM is
the semi-Lagrangian method. The grid is 33 x 33, and ¢ = 7} for the Eulerian methods and o = 7
for the semi-Lagrangian methods.

o | K| el | fmer | @min Pij Rl
Pexact,; Spexact,j

7/2 | 1x 107 | 0.0292 | 58.17 0.00 1.000 0.983
5% 10% | 0.0109 | 24.90 0.00 1.003 1.017
7x10% | 0.0108 | 19.11 0.00 1.011 1.018

m | 1x 107 | 0.0341 | 61.86 0.00 1.000 1.009
5x10% | 0.0185 | 25.21 0.00 1.003 1.021

7x 104 | 0.0154 | 19.24 0.00 1.011 1.020

37/2 | 1 x 10% | 0.0818 | 62.18 0.00 1.000 1.016
5x10% | 0.0352 | 25.21 0.00 1.004 1.024
7x10% | 0.0276 | 19.24 0.00 1.011 1.023

Lis

Table 5: The semi-implicit semi-Lagrangian method (0 = %) with cubic spline interpolation for the

advection-diffusion equation using different Courant numbers. The grid is 33 x 43, and 0 = %, 7

37
and -
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7
Method 6 | o K [le]]ez Omaz Ormin _ i 23’#
Pexact,; Spexact”v

SLM 1/2 | = [ 1x10* [ 0.0900 52.00 -0.315 1.000 0.915

Lagrange 5x10* | 0.0132 24.07 -0.098 1.001 0.999

7x 10 | 0.0131 18.70 -0.172 1.005 1.007

1 | 7] 1x10* | 0.1088 49.99 -0.382 1.000 0.893

5x 10% | 0.0202 22.95 -0.085 1.001 0.974

7 x 10* | 0.0159 17.99 -0.161 1.008 0.988

0 7| 1x10* | 0.5790 11.97 -0.308 1.012 0.214

5x 10 | 0.2633 9.34 -0.403 1.025 0.421

7 x 10* | 0.2053 8.40 -0.439 1.034 0.503

SLM /2 = | 1x10* | 0.0841 53.55 -0.513 1.000 0.936

Hermite 5x 104 | 0.0152 | 24.30 | -0.101 1.001 1.005

7x10% | 0.0141 | 18.82 | -0.176 1.005 1.001

T |7 | 1x107 | 0.1015 | 51.34 | -0.588 1.000 0.912

5x 10 | 0.0193 23.14 -0.087 1.001 0.979

7 x 10* | 0.0155 18.08 -0.165 1.007 0.992

0 7| 1x10* | 05791 12.00 -0.320 1.011 0.214

5x 10 | 0.2628 9.36 -0.418 1.021 0.420

7x10* | 0.2049 8.41 -0.455 1.034 0.502

Table 6: The semi-Lagrangian method for the advection-diffusion equation using cubic Lagrange
and Hermite interpolation. ¢ = % is the semi-implicit method, § = 1 is the implicit method, § = 0
is the explicit method. The grid is 33 x 33 and ¢ = 7.

where
T=x —x,c0o80% —yosinQt  and §=y+ x,sinQt — y, cos .

Table 4 shows the results for the Eulerian and semi-Lagrangian methods for various values of
K and 8. The integration is carried out for one revolution only because it is assumed that up
to this point, the boundaries do not affect the solution and the domain can be assumed infinite.
Once again, the best solutions are given by the semi-implicit methods (6 = %) For the lower
diffusion coefficient (1 x 10%), the semi-implicit Eulerian method is still affected by dispersion as is
illustrated in figure 23. But as the diffusion coefficient K increases, the equation is dominated by
diffusion rather than advection and the dispersion error dissipates and as a result the accuracy of
the numerical solution increases. This tells us that the numerical scheme does a much better job
of capturing the diffusion effects as opposed to the advection thereby confirming the results of the
one-dimensional analysis presented in section 3.

The bottom half of table 4 shows the results obtained using the semi-Lagrangian method using
cubic spline interpolation. This table illustrates the poor solution quality yielded by the explicit form
of the semi-Lagrangian method. It is still better than its Eulerian counterpart, but it is nonetheless
not a good choice and should be avoided.

For the lower value of K (1 x 10%) the solution obtained by the semi-implicit semi-Lagrangian
method (figure 24) is better than that obtained by the semi-implicit Eulerian method (figure 23),
while using a Courant number four times larger. But as K increases, we see that the semi-implicit
Eulerian solution becomes competitive with the semi-Lagrangian method. For K = 5 x 10* and
7 x 10* the semi-implicit Eulerian solution is slightly better than the semi-Lagrangian method for
o = m and twice as accurate as the semi-Lagrangian method for o = 37” This tells us two things:
one, that the semi-Lagrangian method is diminishing in accuracy for Courant numbers greater than
four, and that for advection-diffusion the semi-implicit Eulerian method appears to become more
accurate than the semi-Lagrangian method.
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To confirm that this is not the case and that the semi-Lagrangian method is still more accurate
than the Eulerian method, we have run the semi-implicit semi-Lagrangian model using a Courant
number only two times greater. These results are illustrated in table 5. In other words the semi-
Lagrangian model was run at a Courant number o = 7 showing that the semi-Lagrangian method
1s still superior to the Eulerian method for all values of K.

Table 6 illustrates the results for the semi-Lagrangian method using cubic Lagrange and Hermite
interpolation. There do not appear to be too many differences between the two methods. However,
it is important to note that as the diffusion coefficient increases, the Lagrange and Hermite semi-
Lagrangian methods compete with the cubic spline semi-Lagrangian method. Nonetheless; all of
the semi-Lagrangian methods prove to be more accurate and efficient than the Eulerian methods
whether for advection or advection-diffusion.

5 Conclusions and Future Work

A family of Fulerian and semi-Lagrangian finite element methods were analyzed for stability and
accuracy. This included explicit, implicit, and semi-implicit methods. The semi-implicit Eulerian
and semi-Lagrangian methods are second order accurate in both space and time. In addition,
both methods are unconditionally stable. However, for very large time steps the accuracy of both
methods diminishes but the semi-Lagrangian method still allows time steps two to four times larger
than the semi-implicit Eulerian method for a given level of accuracy. This property makes semi-
Lagrangian methods more attractive than Eulerian methods for integrating atmospheric and ocean
equations particularly because long time histories are sought for such problems. The semi-implicit
Eulerian method (6 = %) was shown to be too dispersive for advection because this method has no
accompanying damping for the short dispersive waves. For the semi-Lagrangian method, there is
no dispersion associated with the long waves and for the short dispersive waves there is a damping
associated with them thereby resulting in a more accurate solution than obtained by the Eulerian
method. The analysis also shows that the accuracy of the semi-implicit semi-Lagrangian method
greatly diminishes for Courant numbers greater than four because dispersion errors are introduced
for the long waves (¢ > T) which are not damped by the amplitude errors of the semi-Lagrangian
method. The numerical studies corroborate the amplitude, dispersion and group velocity error
analyses.

Numerical experiments were performed on the two-dimensional advection and advection-diffusion
equations and the results demonstrate the superiority of the semi-implicit semi-Lagrangian method
over the semi-implicit Eulerian method not just in terms of accuracy but in terms of efficiency as
well, as is evident by the larger time steps allowed by the semi-Lagrangian method. Because the
resulting operator for the semi-Lagrangian method is self-adjoint the finite element method offers
the optimal discretization. In other words, the resulting coefficient matrix for the semi-Lagrangian
method is symmetric positive-definite which means that highly efficient methods of solution, such as
the ICCG (incomplete Choleski conjugate gradient method) can be used. This method is extremely
efficient because only half the matrix needs to be stored.

Three types of interpolation (cubic spline, cubic Hermite, and cubic Lagrange) for the trajectory
and departure point calculations of the semi-Lagrangian method were compared. The numerical
results show that cubic spline interpolation is superior to both Lagrange and Hermite interpolation
and that very little differences are seen between the latter two types of interpolation. The numerical
results also show that the cubic spline method yields results very similar to those obtained by the
exact trajectory calculations. Thus, neither the trajectory calculation, nor the departure point
computation are responsible for the total mass and energy losses exhibited by semi-Lagrangian
methods. Ritchie [15] found that these total energy losses become negligible when the grid resolution
is increased. Perhaps an efficient approach may be to employ grid refinement methods [4] or quadtree
methods. In addition, mass conserving semi-Lagrangian methods for the advection equation, and
mass and energy conserving semi-Lagrangian methods for the shallow water equations need to be

explored further ( [6], [12] ).
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