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Abstract

Eulerian and semi�Lagrangian �nite element methods are analyzed for stability and accuracy
for the one�dimensional advection�di�usion equation� The methods studied are a class of schemes
called theta algorithms that yield the explicit �� � �	
 semi�implicit �� � �

�
	
 and implicit �� � �	

methods� The stability analysis shows that the semi�Lagrangian method is unconditionally
stable for all values of � while the Eulerian method is only unconditionally stable for �

�
� � �

�� The accuracy analysis shows that the semi�Lagrangian and Eulerian methods are second
order accurate in both space and time only for � � �

�
� This analysis shows that the best

methods are the � � �

�
which are the semi�implicit methods� In essence this paper compares

a semi�implicit Eulerian method with a semi�implicit semi�Lagrangian method
 analytically
and numerically� The analysis shows that the semi�implicit semi�Lagrangian method exhibits
better amplitude
 dispersion and group velocity errors than the semi�implicit Eulerian method
thereby achieving better results� Numerical experiments are performed on the two�dimensional
advection and advection�di�usion equations having known analytic solutions� The numerical
results corroborate the analysis by demonstrating that the semi�Lagrangian method is superior
to the Eulerian method while using time steps two to four times greater� This property makes
them more attractive than Eulerian methods particularly for integrating atmospheric and ocean
equations because long time histories are sought for such problems�

� Introduction

Eulerian and semi�Lagrangian �nite element models for the advection and advection�di�usion equa�
tions are presented� The best methods are found to be the semi�implicit methods �� � �

�
�� There�

fore this paper essentially compares a semi�implicit Eulerian method with a semi�implicit semi�
Lagrangian method� The majority of the numerical models developed in the past have used Eulerian
methods� In numerical weather prediction	 attention has recently shifted towards semi�Lagrangian
methods because they are not bound by the CFL restrictions of Eulerian methods and as a result
can use time steps four times greater� In short	 they o�er increased e
ciency without a decrease in
accuracy� The analysis performed in this paper shows that the maximum allowable Courant num�
ber should not exceed four� For values larger than four	 dispersion errors can adversely a�ect the
accuracy of the semi�Lagrangian solution�

Semi�Lagrangianmethods and other related methods such as Characteristic Galerkin and Eulerian�
Lagrangian methods have been studied using the advection equation in two�dimensions ��� and the
advection�di�usion equation in one ���� and two�dimensions ����� In ���� a class of schemes similar to
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semi�Lagrangian methods are studied for ampli�cation errors but only for Lagrange interpolation�
In this paper	 we analyze a family of two�time�level semi�Lagrangian methods for ampli�cation	
dispersion and group velocity errors� In addition	 this paper compares semi�Lagrangian methods in
two�dimensions using Lagrange	 Hermite	 and spline interpolation�

Semi�Lagrangian methods have been implemented successfully for numerical weather prediction
models by Bates and McDonald ���	 Robert ����	 and Staniforth and Temperton ����� However	 most
of these methods have used �nite di�erence spatial discretizations but �nite elements have many
advantages over �nite di�erence methods including optimality and generalization to unstructured
grids� In section �	 the �nite element discretization of the two�dimensional advection�di�usion equa�
tion using Eulerian and semi�Lagrangian methods is introduced� Bilinear rectangular �nite elements
are used for the spatial discretization� For a comparison of various triangular and rectangular ��
nite element discretizations see Neta and Williams ���� who recommend either bilinear rectangular
or isosceles triangular elements� Section � contains the stability and accuracy analyses of these
methods� Section � also discusses the properties of the operators discretized by the �nite element
method for the Eulerian and semi�Lagrangian methods	 and how the structure of the resulting ma�
trices a�ects the choice of matrix solvers� Section  presents the numerical experiments performed
on the two�dimensional advection and advection�di�usion equations to validate the methods and
corroborate the one�dimensional analysis� Finally	 section � contains the concluding remarks and a
discussion of the direction of future work�

� Discretization

The di�erential form of the �D advection�di�usion equation is

��

�t
� �u � r� � Kr�� ���

where � is some conservation variable	 �u is the velocity vector	 and K is the di�usion coe
cient�

��� Eulerian

In Eulerian schemes the evolution of the system is monitored from �xed positions in space and as a
consequence	 are the easiest methods to implement as all variable properties are computed at �xed
grid points in the domain� Discretizing this equation by the �nite element method	 we arrive at the
following elemental equations

M ��� �A �D�� � R

where M is the mass matrix	 A the advection	 D the di�usion	 and R the boundary terms which are
given by

Mij �

Z
�

�i�jd��

Aij �

Z
�

�X
���

�
u����i

��j
�x

� v����i
��j
�y

�
d��

Dij � K

Z
�

�
��i
�x

��j
�x

�
��i
�y

��j
�y

�
d��

Ri � K

Z
��

�i�r� � �n�dS�

where � are the bilinear shape functions and �n is the outward pointing normal vector of the bound�
aries� Discretizing this relation in time gives the theta algorithm

�M ��t��A�D���n�� � �M ��t��� ���A �D���n ��t��Rn�� � �� � ��Rn� ���

where � � �� �
�
� � gives the explicit	 semi�implicit	 and implicit methods	 respectively ���� For other

possible time discretizations see �����
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��� Semi�Lagrangian

Semi�Lagrangian methods belong to the general class of upwinding methods� These methods incor�
porate characteristic information into the numerical scheme� The Lagrangian form of Equation ���
is

d�

dt
� Kr�� ���

d�x

dt
� �u��x� t� ��

where
d

dt
denotes the total derivative� Discretizing this equation by the two�time level theta semi�

Lagrangian method yields

�n�� ��t�Kr��n�� � �nd ��t��� ��Kr��nd ���

where �n�� � ���x� t��t� and �nd � ���x � ��� t� are the solutions at the arrival and departure �d�
points	 respectively and �integrating �� by the mid�point rule�

�� � �t�u

�
�x� ��

�
� t�

�t

�

�
���

de�nes a recursive relation for the semi�Lagrangian departure points� Discretizing this relation in
space by the �nite element method	 we get

�M ��t�D��n�� � �M ��t��� ��D��nd ��t��Rn�� � ��� ��Rn
d � ���

where the matrices are de�ned as in the Eulerian case�

� Stability and Accuracy Analysis

In order to determine the linear stability of the methods	 let us turn our attention toward the
one�dimensional advection�di�usion equation

�t � u�x �K�xx � �� ���

��� Eulerian

The discretization of the theta algorithm gives�
�

�t

�
�

�
�
�

�
�
�

�

�
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��x
��� ������ �K

�x�
������ ��

�
� ��n��j�� � �

n��
j � �n��j�� � ��

�
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�
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�

�

�
�

�� � ��u

��x
��� ������ ��� ��K

�x�
������ ��

�
� ��nj��� �nj � �nj��� ���

where linear �nite elements are used� This discretization is obtained by constructing the global
equations from the element equations and is now de�ned at the grid points� Note that linear �nite
elements are very similar to second order centered �nite di�erences� the only di�erence being the
consistent mass matrix� If the mass matrix were to be lumped	 then we would arrive at an identical
second order centered �nite di�erence discretization� Let us introduce the Fourier mode

�n��j � Gn�� expij� ����

where G is the ampli�cation factor	 j is the grid point	 i �
p��	 	 � k�x is the phase angle	 k is

the wave number	 and n denotes the time level� Substituting ���� into ��� and letting


 �
�tu

�x
�Courant number� and � �

�tK

�x�
�di�usion coe
cient�
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Figure �� The Ampli�cation Error for the Eulerian method for K � � and 
 � �
�
� The three values

for � illustrated are � �dotted�	 �
�
�solid� and � �dashed��
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Figure �� The Ampli�cation Error for the Eulerian method for K � �� ��� and 
 � �
�
� The three

values for � illustrated are � �dotted�	 �

�
�solid� and � �dashed��
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Figure �� The Dispersion Error for the Eulerian methods for K � � � ���� The Courant numbers
for � � �

�
illustrated are 
 � �

�
�dotted�	 �

�
�dashed�	 and � �dashed�dotted�� The Courant number

for � � � illustrated is 
 � �
�
�solid��
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Figure � The Group Velocity Error for the Eulerian methods forK � ������ The Courant numbers
for � � �

�
illustrated are 
 � �

�
�dotted�	 �

�
�dashed�	 and � �dashed�dotted�� The Courant number

for � � � illustrated is 
 � �
�
�solid��
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we get the ampli�cation factor

G �

�
��
�

�
�

�

�
cos 	� ����� ���cos 	� ��� i
�� � �� sin 	

�

�
�

�

�
cos 	� ����cos 	� �� � i
� sin	

	

� ����

and the ampli�cation error

G � jGj exp���� � ����

For advection �K � � � �� the method is unconditionally unstable for � � � � �

�
and unconditionally

stable for �

�
� � � �� For advection�di�usion the method is conditionally stable for � � � � �

�
and

unconditionally stable for �

�
� � � �� Writing G � jGj exp�i� we get the dispersion relation

� � arctan
ha
b

i
����

where

a � 


�
�

�
�

�

�
cos 	

�
sin	�

b �

�
�

�
�

�

�
cos 	� ����� ���cos 	� ��

� �
�

�
�

�

�
cos 	� ����cos 	� ��

�
� 
���� � �� sin� 	

and the dispersion error is given by

� �
�


	
� ���

The group velocity is de�ned as the derivative of the frequency � with respect to the wave number
k and is given by

d�

dk
�

�x

�t

d tan�

d	

�

sec��
����

where � � ��t� The derivative of the tan function is given by

d tan�

d	
�

a� � b� b� � a
b�

����

where

a� � 


��
�

�
�

�

�
cos 	

�
cos 	 � �

�
sin� 	

�
and

b� �

�
��

�
sin	� ����� �� sin	

��
�

�
�

�

�
cos 	� ����cos 	� ��

�

�

�
��

�
sin	� ��� sin	

��
�

�
�

�

�
cos	� ����� ��

�
��
����� �� sin	 cos 	

which yields the group velocity error

gv �
�




d tan�

d	

�

sec��
� ����

Figures � and � show the behavior of the amplitude errors for advection and advection�di�usion
for the three Eulerian methods� Figures � and  show the dispersion and group velocity errors for
advection�di�usion for the semi�implicit and fully�implicit Eulerian methods � the curves for the
explicit method are not included because this method has stability problems and hence is a poor
choice� By virtue of �gures � and � we can see that for advection the � � �

�
algorithm yields the

best solution� one which has no amplitude �damping� error� In addition	 for advection�di�usion
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the � � �

�
algorithm also yields the best algorithm	 albeit it has an associated damping error due

to the di�usion introduced by the governing equation� However	 the dispersion and group velocity
errors associated with the � � �

�
algorithm are quite large as 	 � � �short waves� and increase

with increasing 
� These �gures tell us that for advection ��gures �	 � and �	 the semi�implicit
Eulerian method �� � �

�
� su�ers from dispersion and group velocity errors because these waves are

not damped� On the other hand	 it performs better for advection�di�usion �see �gures �	 �	 and �
because the short dispersive waves are damped by the di�usion terms in the governing equation�
Figure  shows that the group velocity approaches the actual advection speed u for the long waves
�	 � �� but goes to zero for the short waves �	 � ��� As 
 increases	 the group velocity error
becomes greater than one for some phase angles and negative for other phase angles meaning that
the information is propagating faster than the theoretical wave speed or in the wrong direction� As
an example	 for the Courant number 
 � � we get

d�

dk
� u for � � 	 �

��

�

and
d�

dk
� � for 	 �

��

�
�

Note that dispersion and group velocity plots for the fully�implicit method are given only for 
 � �
�
�

By comparing these curves with those for the semi�implicit method it is evident that this method is
much more dispersive than the semi�implicit method and consequently not as accurate�

For the accuracy analysis we expand via a Taylor series to fourth order in space and third order
in time about the point �j�x� t� and get

�nj � �

�nj�� � ���x�x �
�x�

�
�xx �

�x�

�
�xxx � O��x���

�nj�� � ���x�x �
�x�

�
�xx � �x�

�
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�n��j � ���t�t �
�t�

�
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�
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�
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��t�x�tx �
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�
�txx �

�t�x�

�
�txxx

�
�t��x

�
�ttx �

�t��x�


�ttxx �

�t��x�

��
�ttxxx � O��t���x���

�n��j�� � ���t�t �
�t�

�
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�x�
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which when substituted into ��� gives the local discretization error

L�x� t� � �t � u�x �K�xx �

�
�t

�
�tt ��t u � �tx ��t � K �txx

�
� O��t���x���
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Di�erentiating the original equation
K�xx � �t � u�x

with respect to t we obtain
K�txx � �tt � u�tx

which can be substituted into the local discretization error to yield

L�x� t� � �t � u�x �K�xx �

�
�t�tt

�
�

�
� �

��
�O��t���x��� ����

This relation shows that the method is second order accurate in both time and space for � � �

�
� For

all other values	 the method is only �rst order accurate in time� For K � � �advection� we can write

�tt � u��xx

and we then get

L�x� t� � �t � u�x �

�
�t u��xx

�
�

�
� �

��
�O��t���x�� ����

which yields a di�usion�like term for � � �

�
which explains why implicit methods are unconditionally

stable� However	 this di�usion term dissipates the solution and hence diminishes its accuracy� For
� � �

�
the scheme adds this quantity thereby explaining the reason for the instabilities encountered

by this second order explicit method� In section  �numerical experiments� the explicit method used
in the numerical experiments is a �rst order upwind method�

��� Semi�Lagrangian

The Lagrangian form of the one�dimensional advection�di�usion equation is

d�

dt
�K�xx � � ����

dx

dt
� u�x� t� ����

and the discretized form is�
�

�t
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�
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�
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�
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n��
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� � ��nd��� ��nd � ��nd��� ����

� � �t u

�
x� �

�
� t�

�t

�

�
where d is the departure point and ��nd is the interpolation of �nd using grid point values� Introducing
the Fourier modes we obtain the ampli�cation factor

G � �fd�

�
��

�

�
�

�

�
cos 	� ����cos 	� ��

�

�
�

�

�
cos 	� ����� ���cos 	� ��

	

� ����

where

fd �
��nd
�nj

���

which is a generalized stability criteria and is valid for any type of approximation used for ��nd � The
ampli�cation error is again de�ned by ����� Assuming no interpolation is required because we know
the value at the departure point	 then the interpolation function is

��nd � �n�j�x� ��
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Figure �� The Ampli�cation Error for the semi�Lagrangian method using cubic spline interpolation
for K � �� The four values for �� illustrated are ���� and ���� �dashed�	 ���� �dotted�	 and � �solid��
This �gure is valid for all values of p and ��
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Figure �� The Ampli�cation Error for the semi�Lagrangian method using cubic spline interpolation
for K � �� ���� The four values for �� illustrated are ���� and ���� �dashed�	 ���� �dotted�	 and �
�solid�� This �gure is valid for all values of p and ��
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Figure �� The Dispersion Error for the semi�Lagrangian method using cubic spline interpolation�
The four values for �� illustrated are ���� �dotted�	 ���� �dashed�	 ��� and � �solid� where p � ��
Thus 
 � ����� ����� ���� and �� This �gure is valid for all values of K and ��
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Figure �� The Dispersion Error for the semi�Lagrangian method using cubic spline interpolation�
The four values for �� illustrated are ���� �dotted�	 ���� �dashed�	 ���� �solid� and � �dashed�dotted�
where p � �� Thus 
 � ����� ����� ���� and �� This �gure is valid for all values of K and ��
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Figure �� The Dispersion Error for the semi�Lagrangian method using cubic spline interpolation�
The four values for �� illustrated are ���� �dotted�	 ���� �dashed�	 ���� �solid� and � �dashed�dotted�
where p � �� Thus 
 � ����� ����� ���� and �� This �gure is valid for all values of K and ��
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Figure ��� The Dispersion Error for the semi�Lagrangian method using cubic spline interpolation�
The four values for �� illustrated are ���� �dotted�	 ���� �dashed�	 ���� �solid� and � �dashed�dotted�
where p � �� Thus 
 � ����� ����� ���� and � This �gure is valid for all values of K and ��
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Figure ��� The Dispersion Error for the semi�Lagrangian method using cubic spline interpolation�
The four values for �� illustrated are ���� �dotted�	 ���� �dashed�	 ���� �solid� and � �dashed�dotted�
where p � � Thus 
 � ���� ���� ��� and �� This �gure is valid for all values of K and ��
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Figure ��� The Group Velocity Error for the semi�Lagrangian method using cubic spline inter�
polation� The four values for �� illustrated are ���� �dotted�	 ���� �dashed�	 ���� �solid� and �
�dashed�dotted� where p � �� Thus 
 � ����� ����� ���� and �� This �gure is valid for all values of
K and ��
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Figure ��� The Group Velocity Error for the semi�Lagrangian method using cubic spline inter�
polation� The four values for �� illustrated are ���� �dotted�	 ���� �dashed�	 ���� �solid� and �
�dashed�dotted� where p � �� Thus 
 � ����� ����� ���� and �� This �gure is valid for all values of
K and ��
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Figure �� The Group Velocity Error for the semi�Lagrangian method using cubic spline inter�
polation� The four values for �� illustrated are ���� �dotted�	 ���� �dashed�	 ���� �solid� and �
�dashed�dotted� where p � �� Thus 
 � ����� ����� ���� and �� This �gure is valid for all values of
K and ��
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Figure ��� The Group Velocity Error for the semi�Lagrangian method using cubic spline inter�
polation� The four values for �� illustrated are ���� �dotted�	 ���� �dashed�	 ���� �solid� and �
�dashed�dotted� where p � �� Thus 
 � ����� ����� ���� and � This �gure is valid for all values of
K and ��
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Figure ��� The Group Velocity Error for the semi�Lagrangian method using cubic spline inter�
polation� The four values for �� illustrated are ���� �dotted�	 ���� �dashed�	 ���� �solid� and �
�dashed�dotted� where p � � Thus 
 � ���� ���� ��� and �� This �gure is valid for all values of
K and ��
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which gives the ampli�cation factor
fd � exp�im�

which is stable for any value of �� Generally speaking	 the departure points do not lie on grid
points thereby requiring some form of interpolation� In this paper	 cubic spline interpolation is
used to approximate the departure points� Using anything lower than cubic interpolation eliminates
any advantages that the semi�Lagrangian method might o�er ����� In addition	 using Lagrange
interpolation as opposed to Hermite or spline interpolation also greatly diminishes the accuracy of
the solution� For cubic spline interpolation we obtain

��nd � �j�p � �� ��j�p � �������j�p��� �j�p� � ��j�p�� � � ��j�p�

��������j�p�� � �j�p� � ��j�p�� � ��j�p�

where we have de�ned the departure point as in ��� to be p grid intervals away from the arrival point
j and

�� �
�

�x
� p ����

is the residual Courant number and 
 �
�

�x
is the Courant number� In addition	 the terms ��j�p

are obtained from the recurrence relation

��j�p�� �  ��j�p � ��j�p�� � ���j�p�� � �j�p��� j � p � �� ���� n

where n is the number of gridpoints in the mesh� This interpolation yields

fd �
�
exp�ip�


�� � �������� ����� cos	� � ������� ����� cos� 	��

�i sin	������� ������� � cos 	�� ��� �������� ���

which says that the method is stable for all p	 since � � �� � � by de�nition� Thus the two�time
level semi�Lagrangian method is unconditionally stable for advection �K � � � �� and advection�
di�usion� The dispersion relation is given by

� � arctan
ha
b

i
����

where
a � B sin p	� A cos p	 �

b � B cos p	�A sin p	 �

and
A � ������� ������� � cos	� � ��� �������� ��� sin	 �

B � �� � �������� ����� cos 	�� ������� ����� cos� 	�� �

and the dispersion error is de�ned by ���� The group velocity and group velocity error are de�ned
once again by equations ���� and ���� where the derivative of the tan function is given by ���� where

a� � sin p	�B� �Ap� � cos p	�Bp � A�� �

b� � cos p	�B� � Ap�� sin p	�Bp � A�� �

and
A� � cos 	

�
������ ������� � cos	� � ��� �������� ��

� � sin� 	������� ��

B� � ��� sin	 ����� �� ����� �� cos 	� �

Figures � and � show the amplitude errors for di�erent values of �� for advection and advection�
di�usion	 respectively� Figures � � �� show the dispersion and group velocity errors for di�erent
values of �� for advection�di�usion� By looking at the dispersion and group velocity relations for the
semi�Lagrangian method	 we can see that these errors are associated only with advection	 because
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the di�usion terms drop out from these relations� Therefore	 these errors are independent of K and
� because � only a�ects the di�usion terms� The four di�erent values of �� shown are ����� ����� ����
and � which correspond to the departure point lying one�quarter	 one�half	 three�quarters	 and one
grid point distance away from the p grid point� First considering advection	 �gures � and � � ��
show that while the dispersion error is large for 	 � � �short waves� these short dispersive waves
are dampened for 
 �  as long as the dispersion occurs at phase angles 	 � �

�
� This damping

for the short dispersive waves keeps the solution stabilized and accurate� Note that �gures � and
� show that the short dispersive waves are not damped for the Eulerian case and as a result	 the
solution is adversely a�ected by dispersion errors� Figure �� shows that for 
 � 	 there is dispersion
associated with some phase angles 	 � �

�
which include long waves� Thus as the Courant number

increases beyond 	 the semi�Lagrangian method su�ers from inaccuracies due to dispersion errors
that are not damped by the amplitude error� Figures ����� show that the group velocities approach
the actual advection speed u for all waves for �� � ����� ���� and �	 but goes to zero for the short
waves �	 � �� for �� � ��� and moves in the opposite direction for the short waves for �� � ����
and p � �� However there are two points which salvage the semi�Lagrangian method� �rst	 by
looking at �gure � �amplitude plot�	 we can see that these waves are damped and so do not a�ect
the solution	 and second	 that as p and hence the Courant number 
 increases	 the group velocities
approach the advection speed u for all values of �� except for ���� At �� � ���	 the numerical method
exhibits dispersion errors accompanied by amplitude errors thereby eliminating any ill e�ects that the
short dispersive waves may have caused� Figure � shows that for advection�di�usion	 the di�usion
associated with the governing equations eliminates one of the advantages of the semi�Lagrangian
method over the Eulerian method	 namely	 the di�usion of the short dispersive waves� This means
that for advection�di�usion	 the semi�implicit Eulerian method will be competitive with the semi�
implicit semi�Lagrangian method� However	 the semi�Lagrangian method clearly exhibits a more
realistic group velocity behavior than the Eulerian method�

For the order of accuracy analysis we expand to fourth order in space and third order in time
about �j�x� t�	 as in the Eulerian case	 to get

�nj�p�� � �� �p� ���x�x �
��p� ���x��

�
�xx � ��p� ���x��

�
�xxx � O��x���

�nj�p�� � �� �p� ���x�x �
��p� ���x��

�
�xx � ��p� ���x��

�
�xxx � O��x���

�nj�p�� � �� �p� ���x�x �
��p� ���x��

�
�xx � ��p� ���x��

�
�xxx � O��x���

�nj�p � �� p�x�x �
�p�x��

�
�xx � �p�x��

�
�xxx � O��x���

�nj�p�� � �� �p� ���x�x �
��p� ���x��

�
�xx � ��p� ���x��

�
�xxx � O��x���

�nj�p�� � �� �p� ���x�x �
��p� ���x��

�
�xx � ��p� ���x��

�
�xxx � O��x���

which	 after substituting the Taylor series expansions and the relation p� �� �
�

�x
into ����	 gives

the local discretization error

L�x� t� � �t�u�x�K�xx�

�
�t

�
�tt � �tu�

�
�xx ��t�K�txx ��t��� ��uK�xxx

�
�O��t���x���

����
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For pure advection �K��� we may use the original pde

�t � �u�x
to obtain

�tt � �u�xt
and

�tx � �u�xx
thereby yielding the discretization error

L�x� t� � �t � u�x �K�xx � ��� �O��t���x��� ����

For advection�di�usion �K � �� we may use the original equation

K�xx � �t � u�x

to obtain the relations
K�txx � �tt � u�tx

and
K�xxx � �tx � u�xx

which	 when substituted into the local discretization error	 yields

L�x� t� � �t � u�x �K�xx � ��t�
�

�
� ����tt � �u�tx � u��xx�� � O��t���x��� ����

This relation shows that the method is second order accurate in both space and time for � � �

�
�

The semi�Lagrangian method itself is second order accurate in space and time but the accuracy of
the numerical scheme is dependent on the order of the interpolation functions used to determine
the departure point and on the time discretization	 such as explicit	 implicit or semi�implicit� In
order to obtain second order accuracy	 the interpolation functions have to be at least second order
accurate	 and the time discretization must be semi�implicit for advection�di�usion� In addition	
the interpolation functions need not be Hermite or spline	 but can also be Lagrange interpolation
functions�

��� Operator and Matrix Properties

By looking at the Eulerian di�erential form of the advection�di�usion equation ��� we can see that
the operator is not self�adjoint� The self�adjointness of the operator has signi�cant implications for
the �nite element discretization� If the operator is not self�adjoint	 then we cannot obtain classical
variational principles for the problem� The �nite element method can still be used but �nite element
equations can only be obtained through the method of weighted residuals� For the semi�Lagrangian
di�erential form ��� the operator is self�adjoint which means that we can obtain variational principles�
Because the �nite element method is optimal for the discretization of operators having variational
principles	 the combination of the semi�Lagrangian time integration with the �nite element space
discretization yields a complementary and powerful numerical technique�

Looking at it another way	 consider the Eulerian discretization in ��� with the semi�Lagrangian
discretization in ���� From the de�nitions of the matrices M�A� and D we can see that the resulting
coe
cient matrix for the Eulerian method is not symmetric while it is for the semi�Lagrangian
method� Let us now see how this a�ects the manner in which we solve the resulting system of linear
equations� Firstly	 we can try to solve the Eulerian matrix using Jacobi�type iterative methods but
we are not guaranteed to converge to a solution� On the other hand	 the symmetric property of the
semi�Lagrangian matrix not only ensures convergence but also only necessitates the storage of half
the matrix� Therefore	 by taking advantage of these properties we can solve the semi�Lagrangian
matrix by conjugate gradient methods using an incomplete Choleski factorization� This yields a
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very powerful and e
cient method for solving this class of matrices� For the Eulerian method	 we
have to resort to either Krylov subspace methods	 such as GMRES	 or to direct methods which
are relatively ine
cient� GMRES is a generalized conjugate gradient method that is applicable to
non�symmetric matrices� These methods are the best of the unsymmetric solvers but are not as
reliable as their symmetric counterparts	 namely	 the conjugate gradient methods�

� Numerical Experiments

Numerical experiments are performed on the two�dimensional advection and advection�di�usion
equations� For both test cases the domain is de�ned as

xmin � x � xmax and ymin � y � ymax

where

xmin � ymin � � �N � ����	

�
� xmax � ymax

�N � ����	

�
�

�x � �y � ��	 and N is the number of points in the x and y directions� The initial waves are
centered at

xo � xmin �
xmax � xmin


� yo � ymin �

ymax � ymin

�

and the velocity �eld rotates about the center of the domain and is de�ned as

u � ��y and v � ��x ����

with � � ���	�

��� Semi�Lagrangian Interpolation

For the semi�Lagrangian method	 four di�erent methods of computing the trajectories are studied�
These are exact trajectory calculation and trajectory interpolation using cubic spline	 cubic Hermite	
and cubic Lagrange polynomials� The exact trajectory computation uses cubic spline interpolation
for the departure point interpolation� The other methods use the same method for interpolation
used for the trajectory computation�

����� Exact Trajectories

Using the relations for the Lagrangian trajectories �� and the velocity ����	 we write

dx

dt
� ��y and

dy

dt
� ��x

which can be integrated to yield the equations

x�t� � xo cos�t� yo sin�t and y�t� � �xo sin�t� yo cos �t

where

xo � xa sin��t��t� � ya cos ��t��t� and yo � xa cos ��t��t�� ya sin��t��t� ����

and xa � x�t � �t� and ya � y�t � �t� are the arrival points� The semi�Lagrangian midpoint
trajectories then become

�� � xo�cos��t��t�� cos �t� � yo�sin��t ��t�� sin�t� ����

�� � �xo�sin��t��t�� sin�t� � yo�cos��t��t�� cos �t�� ����
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����� Cubic Lagrange

From the one�dimensional version of the trajectory equation �� we obtain the relation

� � �t u

�
xj � �

�
� t�

�t

�

�
�

Since we do not know the departure interval � a priori	 we can iterate this relation to obtain it�
However	 because the iterated midpoint departure point xm � xj � ��� generally falls between
grid points	 we need to interpolate these non�grid point values� Lagrange interpolation yields C


approximations� A cubic Lagrange interpolation of the velocity u can be written as

u�xm� �
�X
i��

�i��m�ui

where �i���� i � �� ����  are the Lagrange polynomials and are de�ned by

����� � � �
��
�� � ����� � �

�
�

����� �
�

��
�� � �

�
���� � ��

����� � ��

��
�� � �

�
���� � ��

����� �
�

��
�� � ����� � �

�
�

where � �
��x� xc�

�x
	 xc �

x� � x�
�

and �x � x� � x��

����� Cubic Hermite

Hermite interpolation uses not only the values at the grid points but also the derivatives	 which
makes the interpolation C�� A Hermite interpolant for the velocity can be written as

u�xm� � a
 � a��m � a��
�
m � a��

�
m

where
a
 � u���

a� �
�u

��
���

a� � ��u���� u����� �
�u

��
��� � �u

��
���

a� � ��u���� u���� �
�u

��
��� �

�u

��
����

Notice that generally	 only the values of u at the grid points are known whereas the derivatives at
the grid points are not� These derivatives are computed locally using the procedure described in
��� where all of the surrounding elements are used to compute the derivatives at each grid point	
thereby using a three�point stencil in one dimension and a nine�point stencil in two dimensions�

����� Cubic Spline

Cubic splines use the same interpolating functions as in cubic Hermite interpolation� however	 they
are C�� Once again	 only the grid point values of u are known and it remains to compute the
derivatives� The manner in which these derivatives are computed for spline interpolation di�ers from
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Hermite interpolation� In spline interpolation	 the derivatives are computed globally by enforcing
slope and curvature continuity at all grid points yielding the following relations�

�u

��

�
i��

� 

�
�u

��

�
i

�

�
�u

��

�
i��

� ��ui�� � ui��� for i � �� ���� n

which de�nes a tridiagonal system that can be solved e
ciently�

��� �D Advection

The advection equation
��

�t
� u

��

�x
� v

��

�y
� �

is given by setting K � � in ���� The initial condition is given as in ���� by the cosine wave

�o �
���

�

h
� � cos

�r

R

i
where r �

p
�x� xo�� � �y � yo�� and R � �x�

The boundary conditions are assumed periodic in all directions� The analytic solution of this problem
is

�exact�x� y� t� � �o�x� ut� y � vt� t�

which is the rotation of the cosine wave about the center of the domain without any dissipation or
deformation� The �� error norm is de�ned in the following way

jjejj�� �
sR R

���x� y� t� � �exact�x� y� t� �
�dxdyR R

��exact�x� y� t� �
�dxdy

� ���

Table � shows the results obtained using the Eulerian methods for � � �

�
	 � and �� The results are

illustrated for up to �ve revolutions� It is clear that the best Eulerian method is obtained by � � �

�
�

This is the semi�implicit Eulerian method which is second order accurate in both time and space�
The superiority of the � � �

�
method over the other two can be seen not only by comparing the ��

error norm but also by the values of �max� In addition	 this method best conserves the �rst and
second moments of the conservation variable� However	 one discernible problem with this method is
its minimum values� The analytic maximum and minimum should be ��� and �� The � � �

�
method

clearly yields unwanted dispersion errors in the form of large negative numbers for the minimum
values �see table ���

Table � shows the results obtained using the semi�Lagrangian method� For pure advection	 this
method is second order accurate in both time and space for all values of �� This table shows the
results for the semi�Lagrangian method using four di�erent types of interpolation methods� This
test was carried out to determine the amount of error introduced by iteratively computing the
trajectories and interpolating the departure point values� In this case we have the luxury of a known
velocity �eld	 but in practice	 it is unknown� The four methods of interpolation are� exact	 cubic
Lagrange	 cubic Hermite	 and cubic spline interpolation� In the exact method	 the trajectories are
computed exactly by virtue of equations �� � �� but the departure point values are interpolated
using cubic splines� This test serves to show the error introduced by using cubic splines to compute
the trajectories� Table � shows that very little error is introduced by numerically computing the
trajectories using cubic splines� This table also shows that there is little di�erence between the
cubic Lagrange and Hermite interpolation	 however	 they yield much less accurate solutions than
the cubic spline� Nonetheless	 all of these semi�Lagrangian methods yield much better results than
the Eulerian methods	 including the semi�implicit Eulerian method� This can be seen not just by
comparing the �� norms but by comparing the maximum and minimum values as well� Note that
the semi�Lagrangian method introduces very little dispersion error while the Eulerian methods are
hampered by dispersion and or damping errors� However	 the semi�Lagrangian method does seem
to su�er from non�conservation�
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� Revolutions jjejj�� �max �min

X �ij
�exactij

X ��ij
��exactij

��� � ���� ����� ������ ����� �����
� ����� ���� ������ ����� �����
� ������ ���� ����� ����� �����
 ������ ����� ����� ���� �����
� ������ ����� ����� ����� �����

� � ����� ����� ����� ����� ����
� ����� ����� ���� ����� �����
� ������ ����� ���� ����� �����
 ������ ����� ���� ����� �����
� ����� ����� ���� ����� �����

� � ����� ��� ���� ���� �����
� ���� ���� ���� ����� �����
� ������ ���� ���� ����� �����
 ������ ���� ���� ����� �����
� ������ ��� ���� ����� �����

Table �� The Eulerian method for the advection equation� � � �

�
is the semi�implicit method	 � � �

is the implicit method	 and � � � is the explicit method� The grid is ��� �� and 
 � �
�
�

Interpolation Revolutions jjejj�� �max �min

X �ij
�exactij

X ��ij
��exactij

Exact � ����� ���� ����� ����� �����
� ������ ����� ����� ����� ����
� ������ ����� ����� ���� �����
 ������ ����� ����� ����� �����
� ������ ����� ����� ����� �����

Spline � ����� ����� ����� ����� �����
� ������ ����� ����� ����� ����
� ����� ����� ����� ����� �����
 ����� ����� ����� ����� �����
� ������ ����� ����� ����� �����

Hermite � ����� ����� ����� ����� �����
� ������ ����� ����� ����� �����
� ������ ��� ����� ����� �����
 ����� ���� ����� ����� �����
� ����� ����� ����� ����� �����

Lagrange � ������ ����� ����� ����� �����
� ����� ����� ����� ����� �����
� ������ ����� ����� ���� ����
 ���� ����� ����� ����� �����
� ����� ����� ����� ���� �����

Table �� The semi�Lagrangian method for the advection equation� Four types of interpolation
methods are illustrated� These are exact	 cubic spline	 cubic Hermite	 and cubic Lagrange� The grid
is ��� �� and 
 � ��
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Figure ��� The semi�implicit Eulerian �� � �
�
� solution after one revolution for the advection

equation� The grid dimension is ��� �� and 
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Figure ��� The semi�implicit Semi�Lagrangian �� � �
�
� cubic spline solution after one revolution

for the advection equation� The grid dimension is ��� �� and 
 � ��
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Figure ��� The semi�implicit Eulerian �� � �
�
� solution after three revolutions for the advection

equation� The grid dimension is ��� �� and 
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Figure ��� The semi�implicitSemi�Lagrangian �� � �
�
� cubic spline solution after three revolutions

for the advection equation� The grid dimension is ��� �� and 
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Figure ��� The semi�implicit Eulerian �� � �
�
� solution after �ve revolutions for the advection

equation� The grid dimension is ��� �� and 
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Figure ��� The semi�implicit Semi�Lagrangian �� � �
�
� cubic spline solution after �ve revolutions

for the advection equation� The grid dimension is ��� �� and 
 � ��
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 Revolutions jjejj�� �max �min

X �ij
�exactij

X ��ij
��exactij

� � ����� ����� ����� ����� �����
� ������ ����� ����� ����� ����
� ����� ����� ����� ����� �����
 ����� ����� ����� ����� �����
� ������ ����� ����� ����� �����

�� � ������ ����� ����� ����� �����
� ������ ����� ����� ����� ����
� ������ ����� ����� ����� �����
 ������ ����� ����� ����� ����
� ������ ����� ����� ����� �����

Table �� The semi�implicit semi�Lagrangian method �� � �

�
� with cubic spline interpolation for the

advection equation using di�erent Courant numbers� The grid is ��� ��	 and 
 � � and ���

The semi�Lagrangian method has been known to be non�conservative � ����	 ��� � and table
� clearly shows the loss in the second moment of the conservation variable� It is important to
understand that while the semi�Lagrangian method is clearly superior to the Eulerian method	 it
has achieved these results using Courant numbers four times greater than that used for the Eulerian
method� However	 as the Courant number is increased beyond four	 the semi�Lagrangian method
su�ers inaccuracies due to dispersion errors� Table � compares the semi�implicit semi�Lagrangian
method using Courant numbers of 
 � � and ��� Clearly	 the error norm has more than doubled
while the time step was only increased by a factor of � and this trend worsens after each revolution�
For increasing Courant number	 the dispersion and group velocity errors become progressively worse	
which is what the stability analysis of section � predicted thus con�rming our numerical results�

Figures �� � �� compare the solutions graphically for the semi�implicit Eulerian method �� �
�
�
� with the semi�implict semi�Lagrangian method using cubic spline interpolation� These �gures

show the solution after one	 three and �ve revolutions� These �gures clearly show the unwanted
dispersion errors introduced by the Eulerian method� After �ve revolutions	 the solution obtained
by the Eulerian method is no longer acceptable due to the ever increasing errors� In contrast	 the
semi�Lagrangian method captures the analytic solution much more accurately without su�ering the
dispersion errors that plague the Eulerian method�

��� �D Advection�Di�usion

The initial condition for the advection�di�usion problem is given as in ���� by the following expo�
nential function

�o � ��� exp
�

r�

�x� �

All of the variables are de�ned as in the advection problem	 and the di�usion coe
cient K assumes
the values �� ���	 �� ���	 and �� ���� The boundary condition is

r� � �n � �

where �n is the outward pointing normal vector to the boundaries� In an in�nite plane	 the analytic
solution of this problem is given as in ���� by

�exact�x� y� t� �
���

� � Kt
�x�

exp
�

�x� � �y�

�x� � Kt
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Method � 
 K jjejj�� �max �min

X �ij
�exactij

X ��ij
��exactij

Eulerian ��� �� �� ��� ������ ����� ���� ����� �����
�� ��� ������ ����� ���� ����� �����
�� ��� ������ ����� ���� ����� ����

� �� �� ��� ����� ����� ���� ����� �����
�� ��� ������ ����� ���� ����� �����
�� ��� ����� ����� ���� ����� �����

� �� �� ��� ������ ���� ���� ����� �����
�� ��� ����� ���� ���� ���� �����
�� ��� ������ ���� ���� ���� ����

SLM ��� � �� ��� ����� ����� ���� ����� �����
spline �� ��� ������ ����� ���� ����� �����

�� ��� ����� ���� ���� ����� �����
� � �� ��� ����� ����� ���� ����� �����

�� ��� ������ ����� ���� ���� ����
�� ��� ����� ���� ���� ����� �����

� � �� ��� ������ ����� ���� ����� �����
�� ��� ������ ��� ���� ����� ���
�� ��� ������ ��� ���� ���� ����

Table � The Eulerian and semi�Lagrangian methods for the advection�di�usion equation� � � �
�
is

the semi�implicit method	 � � � is the implicit method	 � � � is the explicit method	 and SLM is
the semi�Lagrangian method� The grid is ��� ��	 and 
 � �

�
for the Eulerian methods and 
 � �

for the semi�Lagrangian methods�


 K jjejj�� �max �min

X �ij
�exactij

X ��ij
��exactij

��� �� ��� ������ ����� ���� ����� �����
�� ��� ������ ���� ���� ����� �����
�� ��� ������ ����� ���� ����� �����

� �� ��� ����� ����� ���� ����� �����
�� ��� ������ ����� ���� ����� �����
�� ��� ����� ���� ���� ����� �����

���� �� ��� ������ ����� ���� ����� �����
�� ��� ������ ����� ���� ���� ����
�� ��� ������ ���� ���� ����� �����

Table �� The semi�implicit semi�Lagrangian method �� � �

�
� with cubic spline interpolation for the

advection�di�usion equation using di�erent Courant numbers� The grid is �� � ��	 and 
 � �
�
	 �

and ��
�
�
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Method � 
 K jjejj�� �max �min

X �ij
�exactij

X ��ij
��exactij

SLM ��� � �� ��� ������ ����� ������ ����� �����
Lagrange �� ��� ������ ���� ������ ����� �����

�� ��� ������ ����� ������ ����� �����
� � �� ��� ������ ���� ������ ����� �����

�� ��� ������ ����� ������ ����� ����
�� ��� ������ ����� ������ ����� �����

� � �� ��� ������ ����� ������ ����� ����
�� ��� ������ ��� ����� ����� ����
�� ��� ������ ��� ����� ���� �����

SLM ��� � �� ��� ����� ����� ������ ����� �����
Hermite �� ��� ������ ���� ������ ����� �����

�� ��� ����� ����� ������ ����� �����
� � �� ��� ������ ���� ������ ����� �����

�� ��� ������ ���� ������ ����� �����
�� ��� ������ ����� ������ ����� �����

� � �� ��� ������ ����� ������ ����� ����
�� ��� ������ ���� ����� ����� ����
�� ��� ����� ��� ����� ���� �����

Table �� The semi�Lagrangian method for the advection�di�usion equation using cubic Lagrange
and Hermite interpolation� � � �

�
is the semi�implicit method	 � � � is the implicit method	 � � �

is the explicit method� The grid is ��� �� and 
 � ��

where
�x � x� xo cos�t� yo sin�t and �y � y � xo sin�t� yo cos �t�

Table  shows the results for the Eulerian and semi�Lagrangian methods for various values of
K and �� The integration is carried out for one revolution only because it is assumed that up
to this point	 the boundaries do not a�ect the solution and the domain can be assumed in�nite�
Once again	 the best solutions are given by the semi�implicit methods �� � �

�
�� For the lower

di�usion coe
cient ��� ����	 the semi�implicit Eulerian method is still a�ected by dispersion as is
illustrated in �gure ��� But as the di�usion coe
cient K increases	 the equation is dominated by
di�usion rather than advection and the dispersion error dissipates and as a result the accuracy of
the numerical solution increases� This tells us that the numerical scheme does a much better job
of capturing the di�usion e�ects as opposed to the advection thereby con�rming the results of the
one�dimensional analysis presented in section ��

The bottom half of table  shows the results obtained using the semi�Lagrangian method using
cubic spline interpolation� This table illustrates the poor solution quality yielded by the explicit form
of the semi�Lagrangian method� It is still better than its Eulerian counterpart	 but it is nonetheless
not a good choice and should be avoided�

For the lower value of K �� � ���� the solution obtained by the semi�implicit semi�Lagrangian
method ��gure �� is better than that obtained by the semi�implicit Eulerian method ��gure ���	
while using a Courant number four times larger� But as K increases	 we see that the semi�implicit
Eulerian solution becomes competitive with the semi�Lagrangian method� For K � � � ��� and
� � ��� the semi�implicit Eulerian solution is slightly better than the semi�Lagrangian method for

 � � and twice as accurate as the semi�Lagrangian method for 
 � ��

�
� This tells us two things�

one	 that the semi�Lagrangian method is diminishing in accuracy for Courant numbers greater than
four	 and that for advection�di�usion the semi�implicit Eulerian method appears to become more
accurate than the semi�Lagrangian method�
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Figure ��� The semi�implicit Eulerian �� � �
�
� solution after one revolution for the advection�

di�usion equation with K � �� ���� The grid dimension is ��� �� and 
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Figure �� The semi�implicit Semi�Lagrangian �� � �
�
� cubic spline solution after one revolution

for the advection�di�usion equation with K � �� ���� The grid dimension is ��� �� and 
 � ��
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To con�rm that this is not the case and that the semi�Lagrangian method is still more accurate
than the Eulerian method	 we have run the semi�implicit semi�Lagrangian model using a Courant
number only two times greater� These results are illustrated in table �� In other words the semi�
Lagrangian model was run at a Courant number 
 � �

�
showing that the semi�Lagrangian method

is still superior to the Eulerian method for all values of K�
Table � illustrates the results for the semi�Lagrangian method using cubic Lagrange and Hermite

interpolation� There do not appear to be too many di�erences between the two methods� However	
it is important to note that as the di�usion coe
cient increases	 the Lagrange and Hermite semi�
Lagrangian methods compete with the cubic spline semi�Lagrangian method� Nonetheless	 all of
the semi�Lagrangian methods prove to be more accurate and e
cient than the Eulerian methods
whether for advection or advection�di�usion�

� Conclusions and Future Work

A family of Eulerian and semi�Lagrangian �nite element methods were analyzed for stability and
accuracy� This included explicit	 implicit	 and semi�implicit methods� The semi�implicit Eulerian
and semi�Lagrangian methods are second order accurate in both space and time� In addition	
both methods are unconditionally stable� However	 for very large time steps the accuracy of both
methods diminishes but the semi�Lagrangian method still allows time steps two to four times larger
than the semi�implicit Eulerian method for a given level of accuracy� This property makes semi�
Lagrangian methods more attractive than Eulerian methods for integrating atmospheric and ocean
equations particularly because long time histories are sought for such problems� The semi�implicit
Eulerian method �� � �

�
� was shown to be too dispersive for advection because this method has no

accompanying damping for the short dispersive waves� For the semi�Lagrangian method	 there is
no dispersion associated with the long waves and for the short dispersive waves there is a damping
associated with them thereby resulting in a more accurate solution than obtained by the Eulerian
method� The analysis also shows that the accuracy of the semi�implicit semi�Lagrangian method
greatly diminishes for Courant numbers greater than four because dispersion errors are introduced
for the long waves �	 � �

	
� which are not damped by the amplitude errors of the semi�Lagrangian

method� The numerical studies corroborate the amplitude	 dispersion and group velocity error
analyses�

Numerical experiments were performed on the two�dimensional advection and advection�di�usion
equations and the results demonstrate the superiority of the semi�implicit semi�Lagrangian method
over the semi�implicit Eulerian method not just in terms of accuracy but in terms of e
ciency as
well	 as is evident by the larger time steps allowed by the semi�Lagrangian method� Because the
resulting operator for the semi�Lagrangian method is self�adjoint the �nite element method o�ers
the optimal discretization� In other words	 the resulting coe
cient matrix for the semi�Lagrangian
method is symmetric positive�de�nite which means that highly e
cient methods of solution	 such as
the ICCG �incomplete Choleski conjugate gradient method� can be used� This method is extremely
e
cient because only half the matrix needs to be stored�

Three types of interpolation �cubic spline	 cubic Hermite	 and cubic Lagrange� for the trajectory
and departure point calculations of the semi�Lagrangian method were compared� The numerical
results show that cubic spline interpolation is superior to both Lagrange and Hermite interpolation
and that very little di�erences are seen between the latter two types of interpolation� The numerical
results also show that the cubic spline method yields results very similar to those obtained by the
exact trajectory calculations� Thus	 neither the trajectory calculation	 nor the departure point
computation are responsible for the total mass and energy losses exhibited by semi�Lagrangian
methods� Ritchie ���� found that these total energy losses become negligible when the grid resolution
is increased� Perhaps an e
cient approach may be to employ grid re�nement methods �� or quadtree
methods� In addition	 mass conserving semi�Lagrangian methods for the advection equation	 and
mass and energy conserving semi�Lagrangian methods for the shallow water equations need to be
explored further � ���	 ���� ��
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