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Abstract

Here we report on development of a high order fi-
nite element code for the solution of the shallow water
equations on the massively parallel computer MP-
1104. We have compared the parallel code to the
one available on the Amdahl serial computer. It is
suggested that one uses a low order finite element to
reap the benefit of the massive number of processors
available.

1. Introduction

The shallow water equations are first order non-
linear hyperbolic partial differential equations hav-
ing many applications in Meteorology and oceanog-
raphy. These equations can be used in studies of tides
and surface water run-off. They may also be used to
study large-scale waves in the atmosphere and ocean
if terms representing the effects of the Earth’s rota-
tion are included. See review article by Neta (1992).

Indeed, it had become customary, in developing
new numerical methods for weather prediction or
oceanography, to study first the simpler nonlinear
shallow water equations, which possess the same mix-
ture of slow and fast waves as the more complex baro-
clinic three-dimensional primitive equations. One of
the 1ssues associated with the numerical solution of
the shallow water equations is how to treat the non-
linear advective terms (Cullen and Morton, 1980,
Navon, 1987). In this paper the two-stage Galerkin
method combined with a high accuracy compact ap-
proximation to the first derivative is used. The
method was developed by Navon (1987). See also
Navon (1979, 1979, 1983). Our work here is to dis-
cuss porting issues of finite element onto a massively
parallel machine. Section 2 discusses the algorithm,
section 3 discusses the MasPar hardware and soft-
ware. In section 4 we detail our numerical experi-
ments and compare the results to the code running
on the Amdahl serial computer.
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2. Finite Element Solution

The barotropic nonlinear shallow-water equations
on a limited-area domain of a rotating earth (using
the S-plane assumption) have the following form:

U+ utg +vuy + o — fv =20
v+ uve Fvvy + oy + fu=20

er + (pu)e + (pv)y =0
0<2< L, 0<y<D, t>0.

Here u and v are the velocity components in the # and
y directions respectively, f is the Coriolis parameter
approximated by the 3 plane as

r=n+s(v-3).
where 3, fo, are constants and ¢ = gh 1s the geopo-
tential height. Periodic boundary conditions are as-
sumed in the z direction and rigid boundary condi-
tions (v = 0) are imposed in the y-direction. The
domain is a cylindrical channel simulating a lati-
tude belt around the earth (see e.g. Hinsman, 1975).
The finite element approximation leads to systems of
ODES which can be finite differenced in time (see
e.g. Douglas and Dupont, 1970). In the two stage
Galerkin (originally proposed by Cullen, 1974), we
let any of the 4 derivatives in the nonlinear terms
be approximated by the compact Numerov scheme,
1.e. for

ou

qu:a_x

we have

1
%[Zi+2 + 16241 + 362 + 162,71 + 2z_0] =

1
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Similarly for z;y, zy. and zy,.The approximation of

g—; requires an interpolation of the boundary values
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This stage will require a solution of a pentadiagonal
system. For the second stage, we let w be any of
the four nonlinear terms and we solve a tridiagonal
system. For

we have

1

glwi—1 4wy +wjp) =
—(vj—1zj-1 +vjzi-1 +vjoaz+

12
Uit17i + vizien + vz + 60;25)

This two stage approximation yields O (hg) approxi-
mation to the derivatives u,,uy,v,; and vy.
Now the approximation of the shallow water equa-
tions becomes
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and where V; are the finite element shape functions.
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and similarly for v*.

Schuman (1957) filter was applied every 12 time
steps to the v component of velocity in order to re-
cover the higher accuracy of the method.

Since the two-stage Galerkin method does not con-
serve integral invariants (Cullen [1979]) we apply an
aposteriori technique using an augmented Lagrangian
nonlinearly constrained optimization approach for en-
forcing the conservation of integral invariants of the
shallow water equations (see Navon and deVilliers

(1983) and Navon (1983)).

3. System Overview

The MasPar family of massively parallel processing
systems consists of arrays of 1K to 16K processing ele-
ments (PE), a scalar control unit (ACU) and a UNIX
subsystem. Architecturally, each PE is a custom 64-
bit RISC processor with 48 32-bit registers and 64
KB of data memory. All PEs execute instructions
which are broadcast from the ACU on data stored
in their local memory. Although there is only a sin-
gle instruction stream, the processors have a number
of autonomies, including the ability to generate in-
dependent addresses for indirect loads and stores to
memory.

The PEs share data using two communication
mechanisms: the xnet and the router. The xnet
is an eight-way nearest neighbor mesh that is used
for structured communications such as stencil opera-
tions in finite difference codes. The router is a multi-
stage circuit-switched network for global or random
communication patterns. I/O to and from the PEs
is transferred via the router to an external memory
buffer called /O RAM. From I/O RAM, data can
asynchronously be transferred to a wide variety of
devices such as disk arrays, frame buffers, or other
machines. The MasPar Disk Array (MPDA) provides
up to 22 GB of formatted capacity as a true UNIX
file system. The UNIX subsystem provides the pro-
gramming and run-time environment to users.

3.1 MasPar Software

The MasPar system is programmed in either MPL,
a parallel extension to ANSI C, or MasPar Fortran,
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an implementation of Fortran 90. In MasPar Fortran
(MPF) parallel operations are expressed with the For-
tran 90 (F90) array extensions which treat entire ar-
rays as manipulatable objects, rather than requiring
them to be iterated through one element at a time.
F90 has also added a significant number of intrinsic li-
braries; operations such as matrix multiplication and
dot product are part of the language. Since Fortran
90 is a standard defined by the ANSI/ISO commit-
tees, programs are architecture independent and can
be transparently moved to other platforms.

Fortran 77 Fortran 90

doi=1,256 a=b+c
doj =1,256
ali, ) = b(i, ) + (i, )
enddo
enddo

The Fortran 90 code can be run on any computer
with a F90 compiler. On a scalar machine such as a
workstation, the arrays will be added one element at a
time; just as if it had been written in Fortran 77. On
a vector machine, the number of elements added at a
time is based on the vector length; a machine with a
vector length of 64 will add 64 array elements at once.
The MasPar machine acts like a vector machine with
a very long vector. On a 16K MasPar machine, 16384
arrays elements are added simultaneously.

MasPar provides key routines in math, signal,
image, and data display libraries. The Math Li-
brary (MPML) contains a number of high-level lin-
ear algebra solvers, including a general dense solver
with partial pivoting, a Cholesky solver, a conjugate
solver with preconditioning, and an out-of-core solver.
MPML also includes a set of highly-tuned linear al-
gebra building blocks, analogous to BLAS on vector
machines, from which the user can develop additional
solvers. The Data Display Library provides a conve-
nient interface to graphically display data from within
a program as it is executing.

The MasPar Programming Environment (MPPE)
i1s an integrated, graphical environment for develop-
ing, debugging, and tuning applications. MPPE pro-
vides a rich set of graphical tools that allow the user
to interactively control and visualize a program’s be-
havior. The statement level profiler allows the user to
quickly identify the compute-intensive sections of the
program while the machine visualizer details the use
of hardware resources. Each of these tools are con-
tinuously available without having to recompile, even
if a program has been compiled with optimizations.

4. Program

The program is modular and is complemented with
easily reachable switches controlling print and plot
options. The Input to the program consists of a single
line containing the following six parameters:

DT - the time step in seconds (F5.2)

NLIMIT - total number of time steps (I5)

MF - number of time steps between printing solu-
tion (I5)

NOUTU - to print (1) or not to print (0) the u-
component

NOUTYV - to print (1) or not to print (0) the v-
component

NPRINT - to print (1) or not to print (0) the global
nodal numbers of each triangular elements and the
indices and node coordinates of the nonzero entries
of the global matrix.

The main program initializes all variables and then
reads the only data card of the program. It then pro-
ceeds to index and label the nodes and the elements,
thus setting up the integration domain. This is done
by subroutine NUMBER.

Subroutine CORRES determine the nonzero loca-
tions in the global matrix and stores them in array
LOCAT. The initial fields of height and velocity are
set up by subroutine INCOND. The derivatives of
the shape functions (V) are calculated in AREAA.
A compact storage scheme for the banded and sparse
global matrices is implemented in subroutine AS-
SEM. The method is based on the fact that the max-
imum number of triangles supporting any node is six.
Three different types of element matrices (3 x 3) will
be required for assembly in the global matrices.

A switch, denoted NSWITCH is set for selecting
between the different types of element matrices. Af-
ter setting up the time independent global matrices
the program proceeds to the main do-loop which per-
forms the time-integration and which is executed once
for every new time-step.

As the solution of the nonlinear constrained op-
timization problem of enforcing conservation of the
nonlinear integral invariants requires scaling of the
variables; the scaling is performed in the main pro-
gram as well as in subroutine INCOND.

In the main integration loop the simulation time
is set up and adjusted and then the subroutines AS-
SEM and MAMULT set up and assemble the global
matrices which then are added up in a matrix equa-
tion, first for the continuity equation and in a similar
manner for the v and v-momentum equations.

Subroutine SOLVER, then is called to solve the re-
sulting system of linear equations (of block tridiago-
nal form) by the conjugate gradient square.
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The new field values for the geopotential and veloc-
ities, qb%"'l, u%"’l, v%"’l
ately as obtained in solving the coupled shallow-water

equations system. For the u and v-momentum equa-

respectively, are used immedi-

tions, the new two-stage Numerov-Galerkin scheme
is implemented. Separate routines are set up for the
x and y-derivatives advection terms, DX and DY re-
spectively. Subroutine DX implements the two-stage
Numerov-Galerkin algorithm described previously for
the advective terms in the v and v-momentum equa-
tions involving the z-derivative.

In the first stage it calculates the O(h®) accu-
rate generalized-spline approximation to the (Ju/dx)
first derivative by calling upon subroutine CYCPNT
which solves a periodic pentadiagonal system of linear
equations generated by the spline approximation.

In the second stage it implements the second part
of the Numerov-Galerkin algorithm for the nonlinear
advective term u(Jdu/0x) and solves a cyclic tridiag-
onal system by calling upon subroutine CYCTRD.
Subroutine DY implements the two-stage Numerov-
Galerkin algorithm described previously for the ad-
vective terms in the u and v-momentum equations
involving the y— derivative. In its first stage it cal-
culates the O(h®) accurate generalized-spline approx-
imation to the (Ju/dy) first derivative by calling upon
subroutine PENTDG which solves the usual pentadi-
agonal system of linear equations generated by the
generalized-spline approximation.

In the second stage subroutine DY implements the
second part of the Numerov-Galerkin algorithm for
the nonlinear advective term «(Ju/dy) and solves the
Galerkin product by calling upon subroutine NCTRD
to solve a special tridiagonal system.

The boundary conditions are implemented by sub-
routine BOUND. Periodically, a Schuman filtering
procedure is implemented for the v-component of ve-
locity only, by calling subroutine SMOOTH. The in-
tegral invariants are calculated at each time-step by
calling subroutine LOOK. If the variations in the in-
tegral invariants exceed the allowable limits dg,dg,
or éz, the Augmented-Lagrangian nonlinear con-
strained optimization procedure is activated. The un-
constrained optimization uses the conjugate-gradient
subroutine E14DBF of the NAG(1982) scientific li-
brary. Subroutine E14DBF calls a user-supplied sub-
routine FUNCT which evaluates the function value
and its gradient vector as well as subroutine MONIT
whose purpose is merely to print out different mini-
mization parameters.

After a predetermined number of steps, subroutine
OUT is called, which in turn calls upon the sub-
routines LOOK to calculate the integral invariants.
Practically 4-5 augmented-Lagrangian minimization

cycles were determined to be sufficient.

We ran the program under MPPE and the following
table shows the CPU time used by some of the rou-
tines. All others require less than 5% each. Therefore
we have decided to parallelize ASSEM, MAMULT,

Routines CPU
SOLVER 32%
ASSEM 25%
MAMULT 14%
CORRES 5%
BOUND 5%

Table 1: CPU time used by some routines

SOLVER (switching from Gauss Seidel to Conjugate
Gradient Square). Other subroutines we parallelized
are:

CORRES, INCOND, LOOK, MONIT, NUMBER
and AREAA.

After this, the most time consuming routines become
E14DBF and FUNCT. These are required only if the
integral constraints are not conserved. Therefore if
the mesh is fine, these routines will not be called.
Our numerical experiments confirmed that these two
routines were called only in the coarsest grid case.

The next set include: DX, DY, CYCTRD, CY-
CPNT, NCTRD, PENTDG, TRIDG, and SMOOTH.
We have decided not to try at this point to paral-
lelize these or BOUND. We have ran this program
on the MP-1104 (4096 processors) on a variety of
grid sizes. The original program was also ran on the
Amdahl 5990/500 serial computer. All computations
were performed in double precision. The domain 1s a
rectangle 6000 km by 4400 km. The coarsest mesh,
Az = Ay = 400km. This means that the number
of grid points in the z-direction, NC, is 15 and the
number of grid points in the y-direction, NROW 1is
11. (At will be adjusted for stability.) The number
of time steps, NLIMIT, is 30.

The 1nitial condition for the height field is given by

D/2 —
h(z,y) = Hy + Hltanhw

Hy 2nxw

+ ——  _sin —
cosh? %%l L
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DIM Az At Amdahl MP-1104
15 x 11 400 18. 1.14 14

48 x 45 133% 5.51 13.52 31.3

63 x 62 93.75 422 248 44.3

88 x 85 51.76  3.03 48.32 80

128 x 125 46.87 2.10 - 164

Table 2: Total CPU time in sec for several grids

where

Hy = 2000m, Hy = —220m, Hs = 133m,
and

fo =10""%sec™!, B=15x10" sec tm™?.

This initial condition is given in Grammeltveldt
(1969) and tested by several researchers (Cullen and
Morton (1980), Gustafsson (1971), Navon (1987) etc.)
The initial velocity fields were derived from the initial
height field via the geostrophic relationships

g oh

[ oy

g oOh
v = Tor
Table 2 gives the CPU time for each grid.

If we compare the CPU time for three of the sub-
routines we parallelized (to avoid the difficulty that
some parts are still running on the front end) we find
that in MAMULT and SOLVER we were able to cut
the CPU time. The results are summarized in Table
3.

The code was ran under profiler and we found that
now the CPU usage (in percent of total CPU) is as
given in table 4.

It 18 clear that one should par-
allelize DX, DY PENTDG, TRIDG and LOOK. The
first four require that one parallelizes the subroutines
NCTRD,CYCTRD and CYCPNT. This is not done
since the tridiagonal and pentadiagonal systems to
be solved are of order NC. We feel that one should
approach this problem slightly differently. Instead of
trying to parallelize this code which is of high order,
we should parallelize a low order finite element code
for the shallow water equations. The accuracy of the

Subroutine Problem size Amdahl MP-1104

ASSEM 48 by 45 3.02 5.77
63 by 62 5.47 8.56

88 by 85 10.49 15.2

128 by 125 - 34.4

MAMULT 48 by 45 A2 A4
63 by 62 74 37

88 by 85 1.44 88

128 by 125 - 1.53

SOLVER 48 by 45 7.21 5.97
63 by 62 13.14 4.87

88 by 85 25.38 10.6

128 by 125 - 17.9

Table 3: CPU time (sec) before and after paralleliza-
tion

solution will be obtained by using an even finer mesh
than 46 km (NC=128) we used above. It will be in-
teresting to compare the accuracy and efficiency of
the two codes on MP-1104 machine.
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Subroutine 15 x 11 44 x 45 88 x 85 128 x
FUNCT 36.8 - -
DX 3.2 12.3 17.0
DY 3.2 12.8 16.6
ASSEM 10.2 17.9 16.0
PENTDG 2.5 12.0 13.7
MAMULT 16.2 13.7 9.8
TRIDG 1.2 6.5 6.9
LOOK 9.1 4.1 4.4
NCTRD 7 3.2 3.3
CYCPNT 7 3.9 3.2
CYCTRD 8 2.6 2.1
SOLVER 8.0 4.0 1.9
SET STI 1.0 1.7 1.4
BOUND 1.8 1.7 1.0
VFEUDX 1.8 1.3 .6
rest 2.8 2.1 2.1

Table 4: CPU time by subroutine after parallelization

Conclusion

We have developed a high order finite element code
to solve the shallow water equations on the MasPar
massively parallel computer MP-1104. It is believed
that a low order finite element code will be more ef-
ficient on the MP-1104 computer.
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