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Abstract

Here we report on development of a high order ��
nite element code for the solution of the shallow water
equations on the massively parallel computer MP�
����� We have compared the parallel code to the
one available on the Amdahl serial computer� It is
suggested that one uses a low order �nite element to
reap the bene�t of the massive number of processors
available�

�� Introduction

The shallow water equations are �rst order non�
linear hyperbolic partial di�erential equations hav�
ing many applications in Meteorology and oceanog�
raphy� These equations can be used in studies of tides
and surface water run�o�� They may also be used to
study large�scale waves in the atmosphere and ocean
if terms representing the e�ects of the Earth	s rota�
tion are included� See review article by Neta 
����
�

Indeed� it had become customary� in developing
new numerical methods for weather prediction or
oceanography� to study �rst the simpler nonlinear
shallow water equations� which possess the same mix�
ture of slow and fast waves as the more complex baro�
clinic three�dimensional primitive equations� One of
the issues associated with the numerical solution of
the shallow water equations is how to treat the non�
linear advective terms 
Cullen and Morton� �����
Navon� ����
� In this paper the two�stage Galerkin
method combined with a high accuracy compact ap�
proximation to the �rst derivative is used� The
method was developed by Navon 
����
� See also
Navon 
����a� ����b� ����
� Our work here is to dis�
cuss porting issues of �nite element onto a massively
parallel machine� Section � discusses the algorithm�
section � discusses the MasPar hardware and soft�
ware� In section � we detail our numerical experi�
ments and compare the results to the code running
on the Amdahl serial computer�

�� Finite Element Solution

The barotropic nonlinear shallow�water equations
on a limited�area domain of a rotating earth 
using
the ��plane assumption
 have the following form�

ut � uux � vuy � �x � fv � �

vt � uvx � vvy � �y � fu � �

�t � 
�u
x � 
�v
y � �

� � x � L� � � y � D� t � � �

Here u and v are the velocity components in the x and
y directions respectively� f is the Coriolis parameter
approximated by the � plane as

f � f� � �

�
y �

D

�

�
�

where �� f�� are constants and � � gh is the geopo�
tential height� Periodic boundary conditions are as�
sumed in the x direction and rigid boundary condi�
tions 
v � �
 are imposed in the y�direction� The
domain is a cylindrical channel simulating a lati�
tude belt around the earth 
see e�g� Hinsman� ����
�
The �nite element approximation leads to systems of
ODES which can be �nite di�erenced in time 
see
e�g� Douglas and Dupont� ����
� In the two stage
Galerkin 
originally proposed by Cullen� ����
� we
let any of the � derivatives in the nonlinear terms
be approximated by the compact Numerov scheme�
i�e� for

zxu �
�u

�x

we have

�

��
�zi�� � ��zi�� � ��zi � ��zi�� � zi��� �

�

��h
���ui��� ��ui�� � ��ui�� � �ui���

Similarly for zxv� zyu and zyv�The approximation of
�v
�x

requires an interpolation of the boundary values
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v�� vN���

v� � �v� � �v� � �v� � v�

vN�� � �vN � �vN�� � �vN�� � vN��

�v

�y

����
�

�
���v� � ��v� � ��v� � ��v� � �v�

��h

�v

�y

����
N

�
�vN�� � ��vN�� � ��vN�� � ��vN�� � ��vN

��h

This stage will require a solution of a pentadiagonal
system� For the second stage� we let w be any of
the four nonlinear terms and we solve a tridiagonal
system� For

w � vz

we have

�

�

wj�� � �wj �wj��
 �

�

��

vj��zj�� � vjzj�� � vj��zj�

vj��zj � vjzj�� � vj��zj�� � �vjzj


This two stage approximation yields O
�
h�
�
approxi�

mation to the derivatives ux�uy�vx and vy�
Now the approximation of the shallow water equa�

tions becomes

M 
un��j �unj 
��t�
uzxu

�

j�
vzyu

�

j�fjv
�

j � � �tK��

M 
vn��j �vnj 
��t�
vzyv

�

j�u
n��
j 
zxv
j�fju

n��
j � � �tK��

M 
�n��j � �nj 
 �
�

�
�tK�
�

n��
j � �nj 
 � �

where

K�� �
�

�

Kn��

�� �Kn
��


K�� �
�

�

Kn��

�� �Kn
��


Mij �

Z Z
A

Vj Vi dA
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k

Z Z
A

Vi Vku
�
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�x
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�

k

�Vj
�y

dA

Kn��
�� �

X
k

Z Z
A

�n��k
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and where Vi are the �nite element shape functions�

u� � un���� �
�

�
un �

�

�
un�� �O

�
�t
�

�

and similarly for v��
Schuman 
����
 �lter was applied every �� time

steps to the v component of velocity in order to re�
cover the higher accuracy of the method�
Since the two�stage Galerkin method does not con�

serve integral invariants 
Cullen ������
 we apply an
aposteriori technique using an augmented Lagrangian
nonlinearly constrained optimization approach for en�
forcing the conservation of integral invariants of the
shallow water equations 
see Navon and deVilliers

����
 and Navon 
����

�

�� System Overview

The MasPar family of massively parallel processing
systems consists of arrays of �K to ��K processing ele�
ments 
PE
� a scalar control unit 
ACU
 and a UNIX
subsystem� Architecturally� each PE is a custom ���
bit RISC processor with �� ���bit registers and ��
KB of data memory� All PEs execute instructions
which are broadcast from the ACU on data stored
in their local memory� Although there is only a sin�
gle instruction stream� the processors have a number
of autonomies� including the ability to generate in�
dependent addresses for indirect loads and stores to
memory�
The PEs share data using two communication

mechanisms� the xnet and the router� The xnet
is an eight�way nearest neighbor mesh that is used
for structured communications such as stencil opera�
tions in �nite di�erence codes� The router is a multi�
stage circuit�switched network for global or random
communication patterns� I�O to and from the PEs
is transferred via the router to an external memory
bu�er called I�O RAM� From I�O RAM� data can
asynchronously be transferred to a wide variety of
devices such as disk arrays� frame bu�ers� or other
machines� The MasPar Disk Array 
MPDA
 provides
up to �� GB of formatted capacity as a true UNIX
�le system� The UNIX subsystem provides the pro�
gramming and run�time environment to users�

��� MasPar Software

The MasPar system is programmed in either MPL�
a parallel extension to ANSI C� or MasPar Fortran�
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an implementation of Fortran ��� In MasPar Fortran

MPF
 parallel operations are expressed with the For�
tran �� 
F��
 array extensions which treat entire ar�
rays as manipulatable objects� rather than requiring
them to be iterated through one element at a time�
F�� has also added a signi�cant number of intrinsic li�
braries� operations such as matrix multiplication and
dot product are part of the language� Since Fortran
�� is a standard de�ned by the ANSI�ISO commit�
tees� programs are architecture independent and can
be transparently moved to other platforms�

Fortran �� Fortran ��

do i � �� ��� a � b� c
do j � �� ���
a
i� j
 � b
i� j
 � c
i� j


enddo
enddo

The Fortran �� code can be run on any computer
with a F�� compiler� On a scalar machine such as a
workstation� the arrays will be added one element at a
time� just as if it had been written in Fortran ��� On
a vector machine� the number of elements added at a
time is based on the vector length� a machine with a
vector length of �� will add �� array elements at once�
The MasPar machine acts like a vector machine with
a very long vector� On a ��K MasPar machine� �����
arrays elements are added simultaneously�

MasPar provides key routines in math� signal�
image� and data display libraries� The Math Li�
brary 
MPML
 contains a number of high�level lin�
ear algebra solvers� including a general dense solver
with partial pivoting� a Cholesky solver� a conjugate
solver with preconditioning� and an out�of�core solver�
MPML also includes a set of highly�tuned linear al�
gebra building blocks� analogous to BLAS on vector
machines� from which the user can develop additional
solvers� The Data Display Library provides a conve�
nient interface to graphically display data fromwithin
a program as it is executing�

The MasPar Programming Environment 
MPPE

is an integrated� graphical environment for develop�
ing� debugging� and tuning applications� MPPE pro�
vides a rich set of graphical tools that allow the user
to interactively control and visualize a program	s be�
havior� The statement level pro�ler allows the user to
quickly identify the compute�intensive sections of the
program while the machine visualizer details the use
of hardware resources� Each of these tools are con�
tinuously available without having to recompile� even
if a program has been compiled with optimizations�

�� Program

The program is modular and is complemented with
easily reachable switches controlling print and plot
options� The Input to the program consists of a single
line containing the following six parameters�

DT � the time step in seconds 
F���


NLIMIT � total number of time steps 
I�


MF � number of time steps between printing solu�
tion 
I�


NOUTU � to print 
�
 or not to print 
�
 the u�
component

NOUTV � to print 
�
 or not to print 
�
 the v�
component

NPRINT � to print 
�
 or not to print 
�
 the global
nodal numbers of each triangular elements and the
indices and node coordinates of the nonzero entries
of the global matrix�

The main program initializes all variables and then
reads the only data card of the program� It then pro�
ceeds to index and label the nodes and the elements�
thus setting up the integration domain� This is done
by subroutine NUMBER�

Subroutine CORRES determine the nonzero loca�
tions in the global matrix and stores them in array
LOCAT� The initial �elds of height and velocity are
set up by subroutine INCOND� The derivatives of
the shape functions 
Vj
 are calculated in AREAA�
A compact storage scheme for the banded and sparse
global matrices is implemented in subroutine AS�
SEM� The method is based on the fact that the max�
imum number of triangles supporting any node is six�
Three di�erent types of element matrices 
� x �
 will
be required for assembly in the global matrices�

A switch� denoted NSWITCH is set for selecting
between the di�erent types of element matrices� Af�
ter setting up the time independent global matrices
the program proceeds to the main do�loop which per�
forms the time�integration and which is executed once
for every new time�step�

As the solution of the nonlinear constrained op�
timization problem of enforcing conservation of the
nonlinear integral invariants requires scaling of the
variables� the scaling is performed in the main pro�
gram as well as in subroutine INCOND�

In the main integration loop the simulation time
is set up and adjusted and then the subroutines AS�
SEM and MAMULT set up and assemble the global
matrices which then are added up in a matrix equa�
tion� �rst for the continuity equation and in a similar
manner for the u and v�momentum equations�

Subroutine SOLVER then is called to solve the re�
sulting system of linear equations 
of block tridiago�
nal form
 by the conjugate gradient square�
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The new �eld values for the geopotential and veloc�
ities� �n��ij � un��ij � vn��ij respectively� are used immedi�
ately as obtained in solving the coupled shallow�water
equations system� For the u and v�momentum equa�
tions� the new two�stage Numerov�Galerkin scheme
is implemented� Separate routines are set up for the
x and y�derivatives advection terms� DX and DY re�
spectively� Subroutine DX implements the two�stage
Numerov�Galerkin algorithm described previously for
the advective terms in the u and v�momentum equa�
tions involving the x�derivative�

In the �rst stage it calculates the O
h�
 accu�
rate generalized�spline approximation to the 
�u��x

�rst derivative by calling upon subroutine CYCPNT
which solves a periodic pentadiagonal system of linear
equations generated by the spline approximation�

In the second stage it implements the second part
of the Numerov�Galerkin algorithm for the nonlinear
advective term u
�u��x
 and solves a cyclic tridiag�
onal system by calling upon subroutine CYCTRD�
Subroutine DY implements the two�stage Numerov�
Galerkin algorithm described previously for the ad�
vective terms in the u and v�momentum equations
involving the y� derivative� In its �rst stage it cal�
culates the O
h�
 accurate generalized�spline approx�
imation to the 
�u��y
 �rst derivative by calling upon
subroutine PENTDG which solves the usual pentadi�
agonal system of linear equations generated by the
generalized�spline approximation�

In the second stage subroutine DY implements the
second part of the Numerov�Galerkin algorithm for
the nonlinear advective term u
�u��y
 and solves the
Galerkin product by calling upon subroutine NCTRD
to solve a special tridiagonal system�

The boundary conditions are implemented by sub�
routine BOUND� Periodically� a Schuman �ltering
procedure is implemented for the v�component of ve�
locity only� by calling subroutine SMOOTH� The in�
tegral invariants are calculated at each time�step by
calling subroutine LOOK� If the variations in the in�
tegral invariants exceed the allowable limits 	E � 	H �
or 	Z � the Augmented�Lagrangian nonlinear con�
strained optimization procedure is activated� The un�
constrained optimization uses the conjugate�gradient
subroutine E��DBF of the NAG
����
 scienti�c li�
brary� Subroutine E��DBF calls a user�supplied sub�
routine FUNCT which evaluates the function value
and its gradient vector as well as subroutine MONIT
whose purpose is merely to print out di�erent mini�
mization parameters�

After a predetermined number of steps� subroutine
OUT is called� which in turn calls upon the sub�
routines LOOK to calculate the integral invariants�
Practically ��� augmented�Lagrangian minimization

cycles were determined to be su�cient�
We ran the program under MPPE and the following

table shows the CPU time used by some of the rou�
tines� All others require less than �� each� Therefore
we have decided to parallelize ASSEM� MAMULT�

Routines CPU

SOLVER ���

ASSEM ���

MAMULT ���

CORRES ��

BOUND ��

Table �� CPU time used by some routines

SOLVER 
switching from Gauss Seidel to Conjugate
Gradient Square
� Other subroutines we parallelized
are�

CORRES� INCOND� LOOK� MONIT� NUMBER
and AREAA�

After this� the most time consuming routines become
E��DBF and FUNCT� These are required only if the
integral constraints are not conserved� Therefore if
the mesh is �ne� these routines will not be called�
Our numerical experiments con�rmed that these two
routines were called only in the coarsest grid case�
The next set include� DX� DY� CYCTRD� CY�

CPNT� NCTRD� PENTDG� TRIDG� and SMOOTH�
We have decided not to try at this point to paral�
lelize these or BOUND� We have ran this program
on the MP����� 
���� processors
 on a variety of
grid sizes� The original program was also ran on the
Amdahl �������� serial computer� All computations
were performed in double precision� The domain is a
rectangle ���� km by ���� km� The coarsest mesh�
�x � �y � ���km� This means that the number
of grid points in the x�direction� NC� is �� and the
number of grid points in the y�direction� NROW is
��� 
�t will be adjusted for stability�
 The number
of time steps� NLIMIT� is ���
The initial condition for the height �eld is given by

h
x� y
 � H� � H� tanh
�
D��� y


�D

�
H�

cosh� 	
D���y�
�D

sin
�
x

L
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DIM �x �t Amdahl MP�����

�� � �� ��� ��� ���� ��

�� � �� ����
�

���� ����� ����

�� � �� ����� ���� ���� ����

�� � �� ����� ���� ����� ��

��� � ��� ����� ���� � ���

Table �� Total CPU time in sec for several grids

where

H� � ����m� H� � ����m� H� � ���m�

and

f� � ����sec��� � � ���� �����sec��m���

This initial condition is given in Grammeltveldt

����
 and tested by several researchers 
Cullen and
Morton 
����
� Gustafsson 
����
� Navon 
����
 etc�

The initial velocity �elds were derived from the initial
height �eld via the geostrophic relationships

u � �
g

f

�h

�y

v �
g

f

�h

�x
�

Table � gives the CPU time for each grid�
If we compare the CPU time for three of the sub�

routines we parallelized 
to avoid the di�culty that
some parts are still running on the front end
 we �nd
that in MAMULT and SOLVER we were able to cut
the CPU time� The results are summarized in Table
��

The code was ran under pro�ler and we found that
now the CPU usage 
in percent of total CPU
 is as
given in table ��

It is clear that one should par�
allelize DX�DY�PENTDG�TRIDG and LOOK� The
�rst four require that one parallelizes the subroutines
NCTRD�CYCTRD and CYCPNT� This is not done
since the tridiagonal and pentadiagonal systems to
be solved are of order NC� We feel that one should
approach this problem slightly di�erently� Instead of
trying to parallelize this code which is of high order�
we should parallelize a low order �nite element code
for the shallow water equations� The accuracy of the

Subroutine Problem size Amdahl MP�����
ASSEM �� by �� ���� ����

�� by �� ���� ����
�� by �� ����� ����

��� by ��� � ����
MAMULT �� by �� ��� ���

�� by �� ��� ���
�� by �� ���� ���

��� by ��� � ����
SOLVER �� by �� ���� ����

�� by �� ����� ����
�� by �� ����� ����

��� by ��� � ����

Table �� CPU time 
sec
 before and after paralleliza�
tion

solution will be obtained by using an even �ner mesh
than �� km 
NC����
 we used above� It will be in�
teresting to compare the accuracy and e�ciency of
the two codes on MP����� machine�
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Subroutine �� � �� �� � �� �� � �� ��� � ���
FUNCT ���� � � �
DX ��� ���� ���� ����
DY ��� ���� ���� ����
ASSEM ���� ���� ���� ����
PENTDG ��� ���� ���� ����
MAMULT ���� ���� ��� ���
TRIDG ��� ��� ��� ���
LOOK ��� ��� ��� ���
NCTRD �� ��� ��� ���
CYCPNT �� ��� ��� ���
CYCTRD �� ��� ��� ���
SOLVER ��� ��� ��� ���
SET STI ��� ��� ��� ���
BOUND ��� ��� ��� ���
VFEUDX ��� ��� �� ��
rest ��� ��� ��� ���

Table �� CPU time by subroutine after parallelization

Conclusion
We have developed a high order �nite element code

to solve the shallow water equations on the MasPar
massively parallel computer MP������ It is believed
that a low order �nite element code will be more ef�
�cient on the MP����� computer�
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