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Abstract: Numerical methods for the solution of ordinary differential equations are based on
polynomial interpolation. In 1952, Brock and Murray have suggested exponentials for the case
that the solution is known to be of exponential type. In 1961, Gautschi came up with the idea of
using information on the frequency of a solution to modify linear multistep methods by allowing the
coefficients to depend on the frequency. Thus the methods integrate exactly appropriate trigonometric
polynomials. This was done for both first order systems and second order initial value problems.
Gautschi concluded that “the error reduction is not very substantial unless” the frequency estimate is
close enough. As a result, no other work was done in this direction until 1984 when Neta and Ford
showed that “Nyström’s and Milne-Simpson’s type methods for systems of first order initial value
problems are not sensitive to changes in frequency”. This opened the flood gates and since then there
have been many papers on the subject.

Keywords: second order initial value problems; linear multistep methods; Obrechkoff schemes;
trigonometrically fitted

1. Introduction

In this article, we discuss various methods for the numerical solution of the second order initial
value problem

y′′ = f (x, y),
y(x0) = y0,
y′(x0) = y′0.

(1)

If the initial value problem contains y′(x) then it is usually converted to a system of first order

y′1(x) = y2,
y1(x0) = y0,
y′2(x) = f (x, y1, y2),
y2(x0) = y′0,

(2)

by defining new variables y1 = y, y2 = y′. In vector notation the system (2) can be written as

y′ = f(x, y), y(x0) = y0, (3)

where y = [y1, y2]
T , f = [y2, f (x, y1, y2)]

T , and y0 = [y0, y′0]
T .

Here we are concerned with trigonometrically-fitted methods for (1) and (3).
There are several classes of methods, such as linear multistep methods (including Obrechkoff

methods) and Runge-Kutta methods. Here we will introduce each class and then review the extension
of those to solution of problems for which the frequency is approximately known in advance.
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Linear multistep methods for the solution of (3) are given by

k

∑
j=0

αjyn+j = h
k′

∑
j=0

β j fn+j, (4)

and of (1) are given by
k

∑
j=0

αjyn+j = h2
k′

∑
j=0

β j fn+j, (5)

where yn+j is the approximate value at xn+j and similarly for fn+j. In here k is called the step-number
and k′ is either k− 1 or k. In the former case the method is called explicit and in the latter it is called
implicit. The coefficients αj and β j are chosen to satisfy stability and convergence, as we describe in
the sequel.

We now introduce the first and second characteristic polynomials,

ρ(ζ) =
k

∑
j=0

αjζ
j, (6)

σ(ζ) =
k′

∑
j=0

β jζ
j. (7)

For (3) explicit methods for which ρ(ζ) = ζk − ζk−1 are called Adams-Bashforth and the implicit
ones are called Adams-Moulton. Explicit methods for which ρ(ζ) = ζk − ζk−2 are called Nyström
methods and the implicit ones are called Generalized Milne-Simpson methods. Gautschi [1] has developed
Adams-type methods for first order equation as well as Nyström methods for the second order
equation. Neta and Ford [2] only developed Nyström and Generalized Milne-Simpson methods for
first order equation.

Definition 1. If, for an arbitrary smooth enough test function z(x), we have

k

∑
j=0

αjz(x + jh)− h
k′

∑
j=0

β jz′′(x + jh) = Cp+1hp+1z(p+1)(x) + O(hp+2), (8)

then, p is called the order of the linear multistep method (4) and Cp+1 is its error constant.
The expression given by (8) is called the local truncation error at xn+k of the method (4), when z(x) is the

theoretical solution of the initial value problem (1).

In a similar fashion we have for (5)

k

∑
j=0

αjz(x + jh)− h2
k′

∑
j=0

β jz′′(x + jh) = Cp+2hp+2z(p+2)(x) + O(hp+3). (9)

Throughout, we shall assume that the linear multistep method (4) satisfies the following
hypotheses (see [3]):

• αk = 1, |α0|+ |β0| 6= 0,
k′

∑
j=0
|β j| 6= 0.

• No common factors for the characteristic polynomials ρ and σ.
• ρ(1) = 0, ρ′(1) = σ(1); this is a necessary and sufficient condition for the method to be consistent.
• The method is zero-stable; that is, all the roots ζ` of ρ satisfy |ζ`| < 1 for ` > 1 and ζ1 = 1.
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For the method (5) for second order initial value problems we have

• αk = 1, |α0|+ |β0| 6= 0,
k′

∑
j=0
|β j| 6= 0.

• No common factors for the characteristic polynomials ρ and σ.
• ρ(1) = ρ′(1) = 0, ρ′′(1) = 2σ(1); which is a necessary and sufficient condition for the method to

be consistent.
• The method is zero-stable.

We now consider the test equation (see, e.g., Chawla and Neta [4])

y′′(x) = −λ2y(x). (10)

Let ζs, s = 1, 2, . . . , k denote the zeros of the polynomial

Ω(ζ, H2) = ρ(ζ) + H2σ(ζ), (11)

for H = λh and let ζ1, ζ2 correspond to perturbations of the principal roots of ρ(ζ). We define interval
of periodicity (0, H2) if, for all H2 in the interval, the roots ζs of (11) satisfy ζ1 = eiθ(H), ζ2 = e−iθ(H),
|ζs| ≤ 1, s ≥ 3 and θ(H) is real.

If the interval of periodicity is (0, ∞), then the method is called P-stable. Lambert and Watson [5]
had shown that P-stable linear multistep methods are implicit of order at most 2.

Remark 1. If the problem (1) has periodic solutions and the period is not known, then the P-stability is desirable.
If the period is known approximately, then one can use the ideas in Gautschi [1], Neta and Ford [2], and others
to be reviewed here.

Another important property when solving (1) is the phase lag which was introduced by Brusa and
Nigro [6]. Upon applying a linear two-step method to the test Equation (10), we obtain a difference
equation of the form

A(H)yn+2 + B(H)yn+1 + C(H)yn = 0, (12)

whose solution is
yn = B1λn

1 + B2λn
2 , (13)

where B1 and B2 are constants depending on the initial conditions. The quadratic polynomial

A(H)λ2 + B(H)λ + C(H) = 0, (14)

is called the stability polynomial. The solutions to (14) are given by

λ1 = e(−a(H)+ib(H))H ,
λ2 = e(−a(H)−ib(H))H .

(15)

If a(H) ≡ 0 and b(H) ≡ 1, then we get the exact solution to the test Equation (10). The difference
between the amplitudes of the exact solution of (10) and numerical solution is called dissipation error,
see [7]. The expansion b(H) − 1 in powers of H is called phase lag expansion. The modulus of the
leading terms is the phase lag of the method. See also Thomas [8] and Twizell [9].

Remark 2. Raptis and Simos have developed methods with minimal phase-lag and also P-stable methods
in [10–14].

We now introduce an extension to the linear multistep methods. These are called multiderivative
or Obrechkoff methods, see Obrechkoff [15] or [16].
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For the first order equation we have

k

∑
j=0

αjyn−j+1 =
`

∑
i=1

k

∑
j=0

βi jhiy(i)n−j+1, (16)

and for the second order equation

k

∑
j=0

αjyn−j+1 =
`

∑
i=1

k

∑
j=0

βi jh2iy(2i)
n−j+1. (17)

According to Lambert and Mitchell [17], the error constant decreases more rapidly with increasing
` rather than the step k. Thus, one can get one-step high order methods. A list of Obrechkoff methods
for various k and ` is given in [17] for first order equations and in [18] for second order equations.

Several P-stable Obrechkoff methods for second-order initial-value problems (for ` ≤ 3) were
derived by Van Daele and Vanden Berghe [19]. Ananthakrishnaiah [18] has also included the case
` = 4.

Lastly, we introduce Runge-Kutta-Nyström (RKN) methods.
The general form of an explicit k-stage two-step Runge-Kutta-Nyström method (RKN) for the

solution of (1) is given by, see Franco and Rández [20]

Yi = (1 + ci)yn − ciyn−1 + h2
k

∑
j=1

ai j f
(
xn + cjh, Yj

)
, (18)

yn+1 = 2yn − yn−1 + h2
k

∑
i=1

bi f (xn + cih, Yi) . (19)

Vigo-Aguiar and Ramos [21] introduced methods based on Runge-Kutta collocation.

Definition 2. Trigonometrically-fitted RKN method (18)–(19) integrates exactly the functions sin(λx) and
cos(λx) with λ > 0 the principal frequency of the problem when applied to the test Equation (10).

In general, a method integrates exactly the set of functions {u1(x), u2(x), . . . , ur(x)}, r ≤ k if the
following conditions are satisfied

u`(xn + h) = 2u`(xn)− u`(xn − h) + h2
k

∑
i=1

biu′′` (xn + cih), ` = 1, . . . , r

u`(xn + cih) = (1 + ci)u`(xn)− ciu`(xn − h) + h2
k

∑
j=1

ai ju′′` (xn + cjh),

i = 1, . . . , k, ` = 1, . . . , r

(20)

2. Methods Based on Linear Multistep Methods

The idea of fitting functions other than monomials goes back to Greenwood [22], Brock and
Murray [23], Dennis [24], Gautschi [1] and Salzer [25].

The first paper suggesting the use of the frequency of the solution is due to Gautschi [1]. He
considered Störmer type methods for the solution of (1). The idea is to allow the coefficients to depend
on the frequency ω. Let L be a functional defined by

Ly =
k

∑
j=0

[
αjy(x0 + (n + 1− j)h)− hβ j f (x0 + (n + 1− j)h)

]
, (21)
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where α0 = 1. Since we are introducing trigonometric functions, we refer to order as algebraic order and
define trigonometric order as follows:

Definition 3. A linear functional L ∈ Cs[a, b] is said to be of algebraic order p, if

Lxr ≡ 0, r = 0, 1, . . . , p,

and Lxp+1 does not vanish. Therefore we have p + 1 conditions for methods of algebraic order p.
The method

k

∑
j=0

αjyn+j = h
k′

∑
j=0

β j(v) fn+j, (22)

where v = ωh and αk = 1 is said to be of trigonometric order q relative to the frequency ω if the associated
linear functional

Ly(x) =
k

∑
j=0

αjyn+j − h
k′

∑
j=0

β j(v)y′n+j

satisfies
L1 ≡ 0,

and
L cos(rωx) ≡ L sin(rωx) ≡ 0, r = 1, 2, . . . , q,

and L cos((q + 1)ωx) and L sin((q + 1)ωx) are not both identically zero.

Therefore, methods of trigonometric order q satisfy 2q + 1 conditions.
Linear multistep or trigonometrically fitted method for second order ordinary differential

equations (ODEs) (1) satisfy an additional condition

Lx ≡ 0

for the same order, see Lambert [3].

Remark 3. The trigonometric order is lower than the algebraic order, since the trigonometric polynomials
requires two conditions for each degree, see Lambert [3].

Gautschi [1] allowed the coefficients αj to depend on v and listed several explicit and implicit
methods of trigonometric orders q ≤ 3. The form of the explicit methods is:

yn+1 + αq 1(v)yn + αq 2(v)yn−1 = h2
2q−1

∑
j=1

βq j(v) fn+1−j. (23)

We only list the methods of trigonometric orders 1 and 2 using powers of cos(v) instead of the
Taylor series expansions shown in [1]. Those Taylor series expansions should be used when h→ 0.

For q = 1, the coefficients are:

α1 1 = −2, α1 2 = 1, β1 1 =

(
2 sin(v/2)

v

)2

. (24)
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For q = 2, the coefficients are:

α2 1 =
2
3
(cos(2v)− 4 cos(v)) ,

α2 2 = −α2 1 − 1,

β2 1 =
1
6
−16 cos(v)3 + 9 cos(v) + 7

v2(2 cos(v) + 1)
,

β2 2 =
1
3

8 cos(v)3 − 9 cos(v)2 − 3 cos(v) + 4
v2(2 cos(v) + 1)

,

β2 3 =
1
2

1− cos(v)
v2(2 cos(v) + 1)

.

(25)

The form of the implicit methods is:

yn+1 + αq 1(v)yn + αq 2(v)yn−1 = h2
2q−2

∑
j=0

βq j(v) fn+1−j. (26)

For q = 1, the coefficients are:

α1 1 =
2 cos(v)

1− 2 cos(v)
,

α1 2 = −α1 1 − 1,

β1 0 =
2(1− cos(v))

v2(2 cos(v)− 1)
.

(27)

For q = 2, the coefficients are:

α2 1 = −2,

α2 2 = 1,

β2 0 =
1
2

1− cos(v)
v2(2 cos(v) + 1)

,

β2 1 =
2 + cos(v)− 3 cos(v)2

v2(2 cos(v) + 1)
,

β2 2 = β2 0.

(28)

Neta and Ford [2] have constructed the Nyström and Generalized Milne-Simpson methods for a first
order (3) where the coefficients β j are functions of the frequency. Here we list a few of those.

For q = 1, the explicit method is

yn+2 − yn =
2 sin(v)

v
h fn+1. (29)
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For q = 2, the explicit method is

yn+4 − yn+2 = −h
sin(v)

v(1 + 2 cos(v))
[ fn + 2(1− 2 cos(v))(1 + cos(v)) fn+1

+(4 cos(v) cos(2v) + 1) fn+2 − 4 cos(v)(1 + cos(v)) fn+3] .

(30)

For q = 1, the implicit method is a one-parameter family

yn+2 − yn = h
[

β0 fn +

(
2 sin(v)

v
− 2β0 cos(v)

)
fn+1 + β0 fn+2

]
. (31)

Note that the choice β0 = 0 leads to the explicit method (29).
For q = 2, the implicit method is

yn+3 − yn+1 = h
sin(v)

v(1 + 2 cos(v))
[ fn+1 + 2(1 + cos(v)) fn+2 + fn+3] . (32)

Vigo-Aguiar and Ramos [26] show how to choose the frequency for nonlinear ODEs.
Van der Houwen and Sommeijer [27] have developed predictor-corrector methods. Neta [28]
has developed exponentially fitted methods for problems whose oscillatory solution is damped.
Raptis and Allison [29] have used the idea for the solution of Schrödinger equation. Stiefel and
Bettis [30] have stabilized Cowell’s method [31] by fitting trigonometric polynomials. Lambert and
Watson [5] introduced symmetric multistep methods which have non-vanishing interval of periodicity.
Quinlan and Termaine [32] have developed high order symmetric multistep methods. Simos and
Vigo-Aguiar [33] have developed exponentially-fitted symmetric methods of algebraic order eight
based on the work of [32]. They demonstrated the superiority of their method on two orbital examples
integrated on a long time interval t ∈ [0, 105]. Another idea developed by Neta and Lipowski [34] is to
use the energy of the system instead of integrating the angular velocity. They have demonstrated the
benefit of their method using several examples for perturbation-free flight and a more general case on
long time flight. Vigo-Aguiar and Ferrándiz [35] have developed a general procedure for the adaptation
of multistep methods to numerically solve problems having periodic solutions. Vigo-Aguiar et al. [36]
and Martín-Vaquero and Vigo-Aguiar [37] have developed methods for stiff problems by using
Backward Differentiation Formulae (BDF) methods. See also Neta [38].

Sommeijer et al. [39] have suggested a different idea for trigonometrically-fitted methods. Instead
of requiring fitting cosine and sine functions of multiple of the frequency, they suggest taking several
frequencies in some interval around the known frequency. The frequencies are chosen to be the roots
of a Chebyshev polynomial, so that we minimize the maximum error. Such methods were called
minimax methods. See also Neta [40].

We now give more details. Suppose we have an interval [ω, ω̄] of frequencies and we pick
q frequencies

ωj =
1
2

(
(ω̄)2 + (ω)2

)
+

1
2

(
(ω̄)2 − (ω)2

)
cos(

2j− 1
2q

π)]1/2.

The idea is to interpolate the sine and cosine functions of those frequencies

L1 ≡ 0,

and
L cos(ωrx) ≡ L sin(ωrx) ≡ 0, r = 1, 2, . . . , q.
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Thus for the second order initial value problem, we have the system

(hωj)
2

{
k/2−1

∑
`=0

2b` cos((k/2− `)hωj) + bk/2

}
= −

k

∑
`=0

a` cos((k/2− `)hωj),

for j = 1, . . . , q. Unfortunately, this yields very messy coefficients and we will not list any of them here.

3. Methods Based on Obrechkoff Methods

Simos [41] has developed a P-stable trigonometrically-fitted Obrechkoff method of algebraic order
10 for (1).

yn+1 − 2yn + yn−1 =
3

∑
j=1

h2j
[
bj 0y(2j)

n+1 + 2bj 1y(2j)
n + bj 0y(2j)

n−1

]
, (33)

where
b1 0 =

89
1878

− 15120
313

b3 1,

b1 1 =
425
939

+
15120

313
b3 1,

b2 0 = − 1907
1577520

+
660
313

b3 1,

b2 1 =
30257

1577520
+

690
313

b3 1,

b3 0 =
59

3155040
− 13

313
b3 1.

(34)

In order to ensure P-stability, the coefficient b3 1 must be

b3 1 =
(

190816819200[1− cos(H)]− 95408409600H2 + 7950700800H4

−265023360H6 + 4732560H8 − 52584H10 + 1727H12
)

/(3568320H12).

(35)

The method requires an approximation of the first derivative which is given by

y′n+1 =
1

2h
(yn−1 − 4yn + 3yn+1)−

h
12
(
y′′n−1 + 2y′′n + 3y′′n+1

)
. (36)

He showed that the local truncation error is

LTE =

(
− 2923

209898501120
+

59
1577520

b3 1

)
h12y(12)

n .

Wang et al. [42] have suggested a slight modification to the coefficient b3 1 as follows

b3 1 =
3155040− 1428000H2 + 60514H4 − a1 cos(H)

5040H2(−15120 + 6900H2 − 313H4 + a2 cos(H))
, (37)

where a1 = 3155040 + 149520H2 + 3814H4 + 59H6 and a2 = 15120 + 660H2 + 13H4.
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Wang et al. [42] have developed a method of algebraic order 12 as follows

yn+1 − 2yn + yn−1 = h2 (α1
(
y′′n+1 + y′′n−1

)
+ α2y′′n

)
+ h4 (β1

(
y′′n+1 + y′′n−1

)
+ β2y′′n

)
+ h6 (γ1

(
y′′n+1 + y′′n−1

)
+ γ2y′′n

)
,

(38)

where
α1 =

229
7788

, β1 = − 1
2360

, β2 =
711

12980
,

γ1 =
127

39251520
, γ2 =

2923
3925152

,

and α2 is chosen so the method is P-stable,

α2 = −2H−2 + H2β2 − H4γ2 + 2 cos(H)
(

H−2 − α1 + H2β1 − H4γ1

)
.

The method is of algebraic order 12 and the local truncation error is now

LTE =
45469

1697361329664000
h14
(

ω12y′′n − y(14)
n

)
.

The first order derivative is obtained by

y′n+1 =
1

66h
(305yn+1 − 544yn + 239yn−1) +

h
1980

(
−5728y′′n − 571y′′n−1 + 119y′′n+1

)
+

h2

2970
(
128y′′′n − 173y′′′n−1

)
+

h3

2970

(
−346y(4)n − 13y(4)n−1

)
+

h5

62370

(
−71y(6)n + y(6)n−1

)
.

Remark 4. Neta [43] has developed a P-stable method of algebraic order 18.

Vanden Berghe and Van Daele [44] have suggested fitting a combination of monomials and
exponentials, i.e., the set {1, x, . . . , xK, e±µx, xe±µx, . . . , xPe±µx}. Clearly when µ is purely imaginary,
we get the cosine and sine functions. When K = −1, we get only the exponential functions and when
P = −1 we get only monomials (which is the well known Obrechkoff method). Even when K = −1,
we are not getting the cosine and sine functions of multiples of the frequency as in the previously
discussed methods. They developed methods of algebraic order 8. Here we list only two of those, one
with K = 5, P = 1 (39) and the other with K = 7, P = 0 (40).

The first method is given by

b1 0 =
1

12
− 2b2 0 − 2b2 1,

b1 1 =
5

12
+ 2b2 0 + 2b2 1,

b2 0 =
v5 sin(v) + 2(cos(v) + 5)v4 + 48(cos(v)− 1)A

12v4(v3 sin(v)− 4(1− cos(v))2)
,

b2 1 =
5v5 sin(v)− 2 cos(v)(cos(v) + 5)v4 − 48(cos(v)− 1)B

12v4(v3 sin(v)− 4(1− cos(v))2)
,

(39)
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where A = (v2 + cos(v)− 1) and B = (v2 cos(v) + cos(v)− 1).
The second method is

b1 0 =
1

30
− 12b2 0,

b1 1 =
7

15
+ 12b2 0,

b2 0 =
4 cos(v)v2 + 56v2 − 3v4 + 120 cos(v)− 120

120v2(12 cos(v)− 12 + cos(v)v2 + 5v2)
,

b2 1 =
1

40
+ 5b2 0.

(40)

4. Methods Based on Runge-Kutta

For a trigonometrically-fitted method, we have (see Franco and Rández [20])

k

∑
i=1

bi cos(civ) =
2(cos(v)− 1

v2 ,

k

∑
i=1

bi sin(civ) = 0,

k

∑
j=1

ai j cos(civ) =
cos(civ) + ci cos(v)− (1 + ci)

v2 , i = 1, . . . , k,

k

∑
j=1

ai j sin(civ) =
sin(civ)− ci sin(v)

v2 , i = 1, . . . , k.

(41)

The solution for k = 3 is given in Franco [45]

c1 = −1,
c2 = 0,
c3 = 1,

b1 =
2 cos(v)− 2− v2

2v2(cos(v)− 1)
,

b2 =
(2− v2) cos(v)− 2

v2(cos(v)− 1)
,

b3 = b1,
a3 1 = 0,

a3 2 =
2(cos(v)− 1)

v2 ,

a3 3 = 0.

(42)

This method has an algebraic order 2 and reduces to the two-stage explicit Numerov method of
Chawla [46]. The method integrates exactly the set of functions {1, x, x2, cos(ωx), sin(ωx)}, similar to
the idea of Vanden Berghe and Van Daele [44].

Franco and Rández [20] have developed a 7-stage method of algebraic order 7 which integrates
exacly the monomials up to x6 and sin(ωx) and cos(ωx). A 5-stage family of methods of algebraic
order 6 listed here and in Tsitouras [47] has been developed by Fang et al. [48]. Here we list just one
member of the family.

c1 = −1, c2 = 0, c3 =
1
2

, c4 = −1
2

, c5 = 1, (43)
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a3 1 = − sin2(v/4)
v2 cos(v/2)

,

a3 2 =
2 cos(v/2) + 2 cot(v) sin(v/2)− 3

2v2 ,

a4 1 =
36 + v2 − 36 cos(v/2)

72v2 cos(v/2)
,

a4 2 =
36 sin(v/2)− v2 sin(3v/2)− 18 sin(v)

36v2 sin(v)
,

a4 3 =
1
36

,

a5 1 = − 2
9 cos(v/2)

,

a5 2 =
2 cos(v)− 2

v2 − 1
3 cos(v/2)

− 2 sin(3v/2)
9 sin(v)

,

a5 3 =
2
9

,

a5 4 =
2
3

,

(44)

b1 = b5 =
6 cos(v)− 6− v2 − 2v2 cos(v/2)

48v2 sin4(v/4)
,

b2 =
(18 + v2) cos(v)− 18− 10v2 cos(v/2)

24v2 sin4(v/4)
,

b3 = b4 =
12 + 5v2 + (v2 − 12) cos(v)

24v2 sin4(v/4)
.

(45)

Demba et al. [49] have developed fourth and fifth order Runge-Kutta-Nyström
trigonometrically-fitted methods for (1). The idea is based on using 3-stage method to get a 4-stage
trigonometrically-fitted method. Here we list the coefficients

yn+1 = yn + hy′n + h2
s

∑
i=1

bi f (xn + hci, Yi) (46)

y′n+1 = y′n + h
s

∑
i=1

di f (xn + hci, Yi) (47)

where Yi are given by (18) and

c1 = 0,

c2 =
3

16
v3 cos(v)− 5v2 sin(v) + 4v3 − 32v cos(v) + 160 sin(v)− 128v

v(6v sin(v) + v2 + 30 cos(v)− 30)
,

c3 = − 3
500
−11v6(4 + cos(v)) + 55v5 sin(v) + v4(38 cos(v) + 1536) + T1 + T2

v2(6v sin(v) + v2 + 30 cos(v)− 30)
,

a2,1 =
1

32,

a3,1 = − 1
1000

−11v5 + 384v3 + 2112 sin(v)− 2112v
v3 ,

a3,2 =
44

125
,

(48)

where

T1 = −1920v3 sin(v) + 2112v cos(v) sin(v)− v2(672 cos(v) + 4448) + 10560 cos(v)2,
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and
T2 = +3008v sin(v)− 21120 cos(v) + 10560,

b1 =
1
24

,

b2 =
16

165
v4 + 66v sin(v)− 21v2 + 330 cos(v)− 330

v2(v2 − 32)
,

b3 =
25
264

,

d1 =
1

24
,

d2 =
16
33

,

d3 =
125
264

.

(49)

The Taylor series expansion of the coefficients is given by

a3,1 = −4/125− (33/5000)v2 + (11/26250)v4 − (11/1890000)v6,
b2 = 4/11− (1/3600)v4 + (1/161280)v6,
c2 = 1/4− (1/26880)v4 + (19/7741440)v6,
c3 = 4/5 + (13/4375)v4 − (257/3780000)v6.

(50)

5. Comments on Order

Definition 1 of order (see (8) and (9)) can be extended to trigonometrically fitted methods. Note
that a method is of order p for first (second) order ODEs if it fits monomomials up to degree p + 1
(p + 2), respectively. Therefore, methods of trigonometric order q are methods of order 2q. Method,
such as (39) for second order ODEs is of eighth order, since it fits monomial up to degree 5, and
xn cos(ωx), xn sin(ωx), n = 0, 1. In Table 1, we will list all methods used in the examples with
their order.

Table 1. The order of methods used in the examples for first and second order ODEs.

Method First Order Second Order
ODEs ODEs

(25) 4
(30) 4
(51) 4
AI2 4
AI3 6
(32) 4
(66) 6
(46) 4

6. Numerical Examples

The methods developed originally by Gautschi [1] and those that follow by Neta and Ford [2] fit
low order monomials and the sine and cosine functions of multiples of the frequency. On the other
hand, the methods developed later by Vanden Berghe and Van Daele [44] use monomials and product
of monomials and sine and cosine functions of the frequency. We will demonstrate via the first three
examples the difference between the two strategies. Vanden Berghe and Van Daele [50] compared the
two approaches in some cases but not used schemes developed by Neta and Ford [2]. In the latter
examples we also compare the results to Runge-Kutta-Nyström based method (46)–(49), see [49].
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First, we list a method of trigonometric order 2 based on the idea of Vanden Berghe and
Van Daele [44], which we obtained using Maple software, see Chun and Neta [51].

yn+1 + a1yn + a2yn−1 = h2(b1 fn + b2 fn−1 + b3 fn−2), (51)

where
a1 = − sin(v)v− 2 cos(v),
a2 = −1− a1,

b1 =
v(v sin(v)− 1)(cos(v) + 1) + 2 sin(v)

v3(1 + cos(v))
,

b2 =
v(2− v sin(v))(cos(v) + 1)− 4 sin(v) cos(v)

v3(1 + cos(v))
,

b3 =
2− v sin(v)− 2 cos(v)

v3 sin(v)
.

(52)

The Taylor series expansion of the coefficients are

a1 = −2 +
1

12
v4 − 1

180
v6,

a2 = −1− a1,

b1 =
13
12
− 19

120
v2 +

37
4032

v4 − 41
362880

v6,

b2 = −1
6
+

3
20

v2 − 59
10080

v4 +
13

36288
v6,

b3 =
1

12
+

1
120

v2 +
17

20160
v4 +

31
362880

v6.

(53)

Example 1. The first example is chosen so that the exact solution in a combination of sine and cosine of multiples
of the frequency, i.e.,

y′′(x) + 9y(x) = 3 sin(6x), 0 ≤ x ≤ 40π (54)

subject to the initial conditions
y(0) = 1, y′(0) = 3. (55)

The exact solution is

yexact(x) =
11
9

sin(3x) + cos(3x)− 1
9

sin(6x). (56)

The results using h = π/500 are given in Table 2. We expect the methods that fit sine and cosine
of multiples of the frequency will do better.

Table 2. The L2 norm of the error for the first example using three methods for three different values
around the exact frequency.

Method ω L2 Error

(25) 2.95 0.984529(-5)
(25) 3. 0.215491(-43)
(25) 3.05 0.109415(-4)

(30) 2.95 0.155534(-6)
(30) 3 0.974885(-16)
(30) 3.05 0.168859(-6)

(51) 2.95 0.113080(-6)
(51) 3. 0.396444(-9)
(51) 3.05 0.116944(-6)
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Based on the results we see that (25) is best when the frequency is known exactly. If it is not
known exactly, the method prefers underestimation of the frequency. The second best is (30). This
method will have no preference to underestimation.

Example 2. The second example is very similar

y′′(x) + 9y(x) = 3 sin(3x), 0 ≤ x ≤ 40π (57)

subject to the initial conditions
y(0) = 1, y′(0) = 3. (58)

The exact solution is

yexact(x) =
7
6

sin(3x) + cos(3x)− 1
2

x cos(3x). (59)

The results are given in Table 3. Now we expect that the method (51) due to Chun and Neta [51] will
perform better, since the exact solution has a product of monomial and cosine. In fact this is the case followed
by (25). The method (30) requires smaller step size to converge and the results are not as good as those of the
other two methods. Note that for this example all methods have no preference to underestimation of the frequency.

Table 3. The L2 norm of the error for the second example using three methods for three different values
around the exact frequency.

Method ω L2 Error

(25) 2.95 0.302359(-3)
(25) 3. 0.109032(-5)
(25) 3.05 0.338322(-3)

(30) 2.95 0.448371(-2)
(30) 3 0.447345(-2)
(30) 3.05 0.446280(-2)

(51) 2.95 0.347311(-5)
(51) 3. 0.134979(-40)
(51) 3.05 0.364011(-5)

Example 3. What if the frequency of the forcing term is not an integer multiple of the frequency of the
homogeneous solution? We now consider the following example

y′′(x) + 9y(x) = 3 sin(4x), 0 ≤ x ≤ 40π (60)

subject to the initial conditions
y(0) = 1, y′(0) = 3. (61)

The exact solution is

yexact(x) =
11
7

sin(3x) + cos(3x)− 3
7

sin(4x). (62)

The results are given in Table 4. Now (51) is best followed by (30).
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Table 4. The L2 norm of the error for the third example using three methods for three different values
around the exact frequency.

Method ω L2 Error

(25) 2.95 0.980898(-5)
(25) 3. 0.195799(-9)
(25) 3.05 0.109015(-4)

(30) 2.95 0.286524(-6)
(30) 3 0.412154(-6)
(30) 3.05 0.557602(-6)

(51) 2.95 0.112995(-6)
(51) 3. 0.685320(-10)
(51) 3.05 0.116839(-6)

Based on the three examples, we find that (51) is best in the last two examples, but not in the first
case where the frequency of the forcing term is a multiple of the frequency of the homogeneous solution.

Before moving to the rest of the experiments, we have decided to rerun the first example on a
much longer interval. This will test the quality of those methods in long-term integration. We have
taken the same step size h = π/500 and integrated for 0 ≤ x ≤ 4000π. The results are given in Table 5.
It is clear that the method due to Neta and Ford is no longer viable. The method (51) gave same errors
when ω = 3 but all other cases show lower accuracy at the end of the longer interval

Table 5. The L2 norm of the error for the first example using three methods for three different values
around the exact frequency.

Method ω L2 Error

(25) 2.95 0.985005(-3)
(25) 3. 0.102448(-41)
(25) 3.05 0.109355(-2)

(30) 2.95 Div.
(30) 3 Div.
(30) 3.05 Div.

(51) 2.95 0.113480(-4)
(51) 3. 0.396444(-9)
(51) 3.05 0.117327(-4)

Example 4. The fourth example is a system of two second order initial value problems

u′′(x) = − u(x)
(u2(x) + v2(x))3/2 , 0 ≤ x ≤ 12π

v′′(x) = − v(x)
(u2(x) + v2(x))3/2 , 0 ≤ x ≤ 12π

(63)

subject to the initial conditions
u(0) = 0, u′(0) = 1,
v(0) = 1, v′(0) = 0.

(64)

The exact solution is given by

uexact(x) = sin(x), vexact(x) = cos(x). (65)

We have converted this to a system of first order equations and solved it numerically using implicit Adams
methods of trigonometric orders 2 and 3 (denoted AI2 and AI3, respectively) and generalized Milne-Simpson
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methods (GMS) of the same order, which are (32) and (66), respectively. We also included results from [51] and
Runge-Kutta-Nyström method [49]. The results are given in Table 6. For Adams implicit, we have used the
Taylor series coefficients as given in [1]. For GMS with q = 2, we used the coefficients as given in [2]. They did
not give the coefficients for q = 3 but suggested to numerically solve the system for the coefficients. We were able
now to get the coefficients

yn+5 = yn+3 + h (b0 fn + b1 fn+1 + b2 fn+2 + b3 fn+3 + b4 fn+4 + b5 fn+5) , (66)

where

b0 =
1
6

sin(v)
d1

,

b1 = −1
3

sin(v)(2 cos2(v)− 1)
d2

,

b2 =
1
3

sin(v)
(
16 cos5(v) + 8 cos4(v)− 16 cos3(v)− 6 cos2(v) + 4 cos(v) + 1

)
d1

,

b3 = −1
3

sin(v)
(
8 cos3(v)− 2 cos(v) + 1

) (
4 cos3(v)− 4 cos(v)− 1

)
d1

,

b4 =
1
6

sin(v)
(
16 cos4(v) + 24 cos3(v) + 4 cos2(v)− 2 cos(v) + 1

)
d2

,

b5 =
2
3

sin(v) cos2(v)(4 cos(v) + 3)
d1

,

(67)

where

d1 = v cos(v)
(

8 cos3(v) + 8 cos2(v)− 1
)

,

and
d2 = v cos(v)

(
4 cos2(v) + 2 cos(v)− 1

)
.

Table 6. The L2 norm of the error for the fourth example using two implicit methods of trigonometric
orders 2 and 3 and one explicit from [51] and one based on Runge-Kutta-Nyström.

Method L2 Error

AI2 0.312117(-14)
AI3 0.407362(-14)
(32) 0.470327(-18)
(66) 0.177952(-17)
(51) 0.218575(-37)
(46) 0.207559(-10)

Remark 5.

1. Adams implicit using the Taylor series for the coefficients did not improve the accuracy by using a
higher order.

2. GMS of second trigonometric order gave better results than the Adams implicit. There is no improvement
by using q = 3.

3. The method (51) is superior followed by GMS with q = 2 given by (32).
4. The method based on Runge-Kutta-Nyström could not compete with the others.

Example 5. The fifth example is the “almost periodic" problem studied by Stiefel and Bettis [30]

z′′ + z = 0.001eit, 0 ≤ t ≤ 12π (68)
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subject to the initial conditions
z(0) = 1,
z′(0) = 0.9995i.

(69)

The exact solution is

zexact(t) = cos t + 0.0005t sin t + i(sin t− 0.0005t cos t). (70)

The solution represents motion on a perturbation of a circular orbit in the complex plane; the point z(t)
spirals slowly outwards.

The first order system equivalent was solved numerically using the above six methods. The results
for h = π/60 and the exact value of ω = 1 are given in Table 7.

Table 7. The L2 norm of the error for the fifth example using the six methods of the previous example
for the exact frequency.

Method L2 Error

AI2 0.446246(-9)
AI3 0.755130(-13)
(32) 0.777595(-12)
(66) 0.610169(-14)
(51) 0.693938(-38)
(46) 0.991561(-14)

It is clear that the methods of trigonometric order 3 are better than the lower order ones. Also the
GMS is better than Adams implicit due to Gautschi [1]. Again, the method (51) is superior.

The next two examples demonstrate the quality of method for long-term integration.

Example 6. The sixth example is the cubic oscillator as given in [52]

y′′(x) + y(x) = εy(x)3, ε = 10−3, (71)

with the initial conditions
y(0) = 1,
y′(0) = 0,

(72)

and the frequency ω =
√

1− 0.75ε. The exact solution to cubic order in ε is given in [52]

y(x) = cos(ωx) +
ε

128
(cos(3ωx) + cos(ωx)) + O

(
ε3
)

.

The results are given in Table 8. It is clear that the methods that converged gave similar results.
The methods (32) and (66) did not converge. The error is computed at x = 2000π.

Table 8. The L2 norm of the error for the sixth example using the six methods of the previous example
for the exact frequency.

Method L2 Error

AI2 0.209074(-3)
AI3 0.195944(-3)
(32) Div
(66) Div
(51) 0.150279(-3)
(46) 0.148082(-3)
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Example 7. The last example is a system of two second order ODEs describing two coupled oscillators with
different frequencies, see [52].

x′′(t) + x(t) = 2εx(t)y(t),
y′′(t) + 2y(t) = εx(t)2 + 4εy(t)3,

(73)

with initial conditions
x(0) = 1,
x′(0) = 0,
y(0) = 1,
y′(0) = 0,

(74)

where ε = 10−3. The frequencies ωx = 1 and ωy =
√

2− 3ε

2
√

2
can be found in [52]. We have compared the

solution using the same methods to RKF45 of Maple. The L2 norm of the difference between the solution of
RKF45 and the six methods is given in Table 9. Now Adams implicit based method of trigonometric order 3 and
our method (51) performed better than the others. Again, the methods due to Neta and Ford diverged.

Table 9. The L2 norm of the error for the seventh example using the six methods of the previous
example for the exact frequency.

Method L2 Error

AI2 0.401275
AI3 0.748492(-2)
(32) Div
(66) Div
(51) 0.552675(-2)
(46) 0.545854(-1)

7. Conclusions

We reviewed various trigonometrically-fitted methods and implemented representatives on
several examples of second order initial value problems. In most examples our method from [51]
was superior to others except for the first example for which Gautschi’s method performed better.
The methods (32) and (66) due to Neta and Ford failed to converge for the last two examples and
in the long-term integration of example 1. The method based on Runge-Kutta-Nyström due to
Demba et al. [49] could not compete with our method based on Obrechkoff.
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