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Abstract: Developed here are sixteenth-order simple-root-finding optimal methods with generic
weight functions. Their numerical and dynamical aspects are investigated with the establishment of a
main theorem describing the desired optimal convergence. Special cases with polynomial and rational
weight functions have been extensively studied for applications to real-world problems. A number
of computational experiments clearly support the underlying theory on the local convergence of
the proposed methods. In addition, to investigate the relevant global convergence, we focus on the
dynamics of the developed methods, as well as other known methods through the visual description
of attraction basins. Finally, we summarized the results, discussion, conclusion, and future work.
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1. Introduction

The governing equations of real-world natural phenomena are often described by nonlinear
equations whose exact solutions are infeasible due to their inherent complexities. The attainment of
precise numerical approximations to the roots of such complicated nonlinear functions is important
for many scientific fields. The classical second-order Newton’s method is best known as the
numerical root-finder for the governing equations. For several decades, many authors [1–11] have
developed higher-order multipoint methods. If an iterative root-finding method satisfies Kung-Traub’s
conjecture [12], then it is said to be optimal. A few authors [12–14] have recently established optimal
sixteenth-order methods, despite the lack of applicability to real-life nonlinear governing equations
due to their algebraic complexities, not only to emphasize the theoretical importance of developing
extremely high-order methods, but also to apply them to root-finding of real-world nonlinear problems,
we strongly desire to establish a new optimal family of sixteenth-order simple-root finders that are
comparable to or competitive against the existing methods.

For the sake of comparison with the new optimal family of methods to be proposed in this
paper, we introduce existing three optimal sixteenth-order Equations [12–14] respectively given by
Equation (1), (2), and (4) below.
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• Kung-Traub method (KT16):

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (xn)2 f (yn)
f ′(xn)[ f (xn)− f (yn)]2

,

wn = zn − f (xn)2 f (yn)
f ′(xn)[ f (xn)− f (yn)]2

· [ f (xn)2+ f (yn)2− f (yn) f (zn)] f (zn)
[ f (xn)− f (zn)]2[ f (yn)− f (zn)]

,

xn+1 = wn − f (xn)2 f (yn)
f ′(xn)[ f (xn)− f (yn)]2

· f (wn) f (zn){h0 f (xn)2+h1 f (yn) f (zn)}
h1[ f (xn)− f (wn)]2[ f (xn)− f (zn)]2

,

(1)

where h0 = f (yn)[ f (xn)2 − f (wn) f (yn) + f (yn)2] + f (zn)[( f (wn) − f (zn))( f (wn) − 2 f (xn) +

f (zn)] and h1 = [ f (yn)− f (wn)][ f (yn)− f (zn)][ f (zn)− f (wn)].
• Maroju-Behl-Motsa method (MBM):

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (xn)+β f (yn)
f (xn)+(β−2) f (yn)

· f (yn)
f ′(xn)

, β ∈ R,

wn = zn − G(u, s) · f (zn)
f ′(xn)

, s = · f (yn)

f (xn)
, u = · f (zn)

f (yn)
,

xn+1 = xn − θ5 f (xn),

(2)

where G : C2 → C is an analytic function in a neighborhood of (0, 0) satisfying G00 = 1, G01 =

2, G10 = 1, G02 = 10− 4β, G11 = 4, G03 = 12(β2 − 6β + 6), with Gij =
∂i+j

∂ui∂sj G(u, s)|(u=0,s=0) for
i, j = 0, 1, 2, 3, and θ5 is given by the following:

θ5 =
anbn[u1 f (xn)2 f (yn) + u2 f ′(xn) f (wn) f (zn)]

v1 f (xn)3 + v2 f ′(xn) f (wn) f (zn)
, (3)

with
u1 = f (wn)[b2

n f ′(xn) + bn f (xn)− cn f (zn)] + an[ f (xn)− an f ′(xn)] f (zn),
u2 = anbncn f ′(xn)[ f (yn)− f (xn)] + cn f (yn) f (xn)(an − bn),
v1 = f (yn)[bn f (wn){b2

n f ′(xn) + bn f (xn)− cn f (zn)}+ {a3
n f ′(xn) + cnan f (wn)− a2

n f (xn)} f (zn)],
v2 = a2

nb2
ncn f ′(xn)2{2 f (yn)− f (xn)}+ anbncn(2an − cn) f ′(xn) f (yn) f (xn)

+ cn{anbn − ancn − b2
n} f (yn) f (xn)2, an = xn − zn, bn = wn − xn, cn = wn − zn.

• Sharma-Argyros-Kumar method (SAK):
yn = xn − f (xn)

f ′(xn)
,

zn = xn − f (yn)− f (xn)
f ′(xn) f (yn)− f [xn ,yn ] f (xn)

· f (xn),

wn = xn − D3
∆3
· f (xn)

xn+1 = xn − D4
∆4
· f (xn)

(4)

where f [r, t] ≡ f (r)− f (t)
r−t , D3 =

∣∣∣∣∣∣∣
1 f (xn) xn f (xn)

1 f (yn) yn f (yn)

1 f (zn) zn f (zn)

∣∣∣∣∣∣∣, ∆3 =

∣∣∣∣∣∣∣
f ′(xn) f (xn) xn f (xn)

f [xn, yn] f (yn) yn f (yn)

f [xn, zn] f (zn) zn f (zn)

∣∣∣∣∣∣∣,

D4 =

∣∣∣∣∣∣∣∣∣
1 f (xn) xn f (xn) x2

n f (xn)

1 f (yn) yn f (yn) y2
n f (yn)

1 f (zn) zn f (zn) z2
n f (zn)

1 f (wn) wn f (wn) w2
n f (wn)

∣∣∣∣∣∣∣∣∣, ∆4 =

∣∣∣∣∣∣∣∣∣
f ′(xn) f (xn) xn f (xn) x2

n f (xn)

f [xn, yn] f (yn) yn f (yn) y2
n f (yn)

f [xn, zn] f (zn) zn f (zn) z2
n f (zn)

f [xn, wn] f (wn) wn f (wn) w2
n f (wn)

∣∣∣∣∣∣∣∣∣,
with | • | denoting the determinant of •.

In order to develop the desired competitive optimal sixteenth-order simple-root finders, we seek
a class of iterative methods with generic weight functions:
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

yn = xn − f (xn)
f ′(xn)

,

zn = yn −Q f (s)
f (yn)
f ′(xn)

,

wn = zn − K f (s, u) f (zn)
f ′(xn)

= xn −
[
1 + sQ f (s) + suK f (s, u)

] f (xn)
f ′(xn)

,

xn+1 = wn − J f (s, u, v) f (wn)
f ′(xn)

= xn −
[
1 + sQ f (s) + suK f (s, u) + suvJ f (s, u, v)

] f (xn)
f ′(xn)

,

(5)

where s = f (yn)
f (xn)

, u = f (zn)
f (yn)

, v = f (wn)
f (zn)

; Q f : C→ C is analytic [15] in a neighborhood of 0, K f : C2 → C
holomorphic [16,17] in a neighborhood of (0, 0), and J f : C3 → C holomorphic in a neighborhood
of (0, 0, 0).

One should observe that Systems (1), (2) and (4) are special cases of (5) with appropriate forms of
weight functions Q f , K f , and J f , as respectively shown by Systems (6), (7), and (10):

yn = xn − f (xn)
f ′(xn)

,

zn = yn − 1
(1−s)2 ·

f (yn)
f ′(xn)

,

wn = zn − 1+(1−u)s2

(1−s)2(1−u)(1−su)2 ·
f (zn)
f ′(xn)

,

xn+1 = wn − −1+2su2(v−1)+s4(u−1)u2(v−1)(uv−1)+s2[uv−1−u3(v2−1)]
(1−s)2(u−1)(su−1)2(v−1)(uv−1)(suv−1)2 · f (wn)

f ′(xn)
.

(6)



yn = xn − f (xn)
f ′(xn)

,

zn = yn −Q f (s) ·
f (yn)
f ′(xn)

,

wn = zn − K f (s, u) · f (zn)
f ′(xn)

,

xn+1 = wn − J f (s, u, v) · f (wn)
f ′(xn)

,

(7)

where Q f (s) =
1+βs

1+(β−2)s , K f (s, u) = G(u, s) and

J f (s, u, v) = −
K f (s, u)[Q f (s) + uK f (s, u)][suK f (s, u) + 1 + sQ f (s)]2λ0

Q f (s)(v− 1)(1 + sQ f (s))2 + uvK f (s, u)[ψ0 + (1 + sQ f (s))λ1 + suK f (s, u)λ2]
, (8)

where ψ0 = s2u2K f (s, u)2λ0, λ0 = 1 − u[1 + (2 − 3s)sQ f (s) + γs2Q f (s)2], λ1 = 1 + 3sQ f (s) −
u[1 + 3sQ f (s) + (3 − 4s)s2Q f (s)2 + γs3Q f (s)3], λ2 = 2 + 3sQ f (s) − u[2 + (6 − 4s)sQ f (s) + (6 −
9s)s2Q f (s)2 + 2γs3Q f (s)3], and

γ = 1− 2s. (9)

yn = xn − f (xn)
f ′(xn)

,

zn = yn − 1
γ

f (yn)
f ′(xn)

,

wn = zn − (s−1)2

γδ
f (zn)
f ′(xn)

,

xn+1 = wn +
(s−1)2(δ+(s−1)2u)((s2+s−1)u+γ)2

γδ·[v{ψ1u3−γ3+u2γ(γ2+2s2(2γ+s2))+uγ2(1−3s2)}+γδ2]
· f (wn)

f ′(xn)
,

(10)

where ψ1 = (s− 1)(1− 3s + 4s2 − 4s3 − 2s4 + 6s5), γ is given by (9) and δ = 1− 2s− u + 2s2u.
Besides the above-mentioned recent sixteenth-order methods, we found a classical work

developed by Neta [18] in 1981, which is a one-parameter family of optimal sixteenth-order methods:
yn = xn − f (xn)

f ′(xn)
,

zn = yn − f (xn)+A f (yn)
f (xn)+(A−2) f (yn)

f (yn)
f ′(xn)

, A ∈ R,

sn = yn + δ1 f 2(xn) + δ2 f 3(xn),
xn+1 = yn + θ1 f 2(xn) + θ2 f 3(xn) + θ3 f 4(xn),

(11)
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where δ2 = − φy−φz
Fy−Fz

, δ1 = φy + δ2Fy, θ3 = ∆1−∆2
Fs−Fy

, θ2 = −∆1 + θ3(Fs + Fz), θ1 = φs + θ2Fs − θ3F2
s

with ∆1 = φs−φz
Fs−Fz

, ∆2 =
φy−φz
Fy−Fz

, φs = 1
Fs
( sn−xn

Fs
− 1

f ′(xn)
), φy = 1

Fy
( yn−xn

Fy
− 1

f ′(xn)
), φz = 1

Fz
( zn−xn

Fz
−

1
f ′(xn)

), Fs = f (sn)− f (xn), Fy = f (yn)− f (xn) and Fz = f (zn)− f (xn).
Evidently, the form of Equation (11) shows an example that is not a member of (1.5).
Our main aim is to devise an optimal class of sixteenth-order methods by characterizing the

algebraic structure of weight functions Q f (s), K f (s, u), and J f (s, u, v), as well as to explore their
dynamics through basins of attractions [19] behind the extraneous fixed points [20] with applications
to f (z) = (z− a)m(z− b)m. The right side of final substep of (5) conveniently locates extraneous fixed
points from the roots of the combined weight function 1 + sQ f (s) + suK f (s, u) + suvJ f (s, u, v).

It is important that we seek appropriate parameters for which the attractor basin contains larger
regions of convergence. A motivation undertaking this research was to extensively study the dynamics
behind the extraneous fixed points, which would impact on the relevant dynamics of the iterative
methods by producing attractive, indifferent, repulsive, and other chaotic orbits. The entire complex
plane is composed of two symmetrical half-planes whose boundary is the imaginary axis. We display
the convergence behavior in the dynamical planes through the attractor basins within a square region
centered at the origin. We also want to make the dynamics behind the extraneous fixed points on the
imaginary axis less influenced by the possible periodic or chaotic attractors. Therefore, in addition to
general cases with free parameters leading us to simple weight functions, we preferably include some
interesting cases with free parameters, chosen for the purely imaginary extraneous fixed points.

In Section 2, the main theorem is presented with three weight functions, Q f , K f , and J f , containing
free parameters. Section 3 considers special cases of weight functions. Section 4 discusses the
extraneous fixed points, including purely imaginary ones and investigates their stabilities. Section 5
presents numerical experiments as well as illustrates the relevant dynamics and summarizes the overall
work together with future work.

2. Methods and Materials

The main theorem is established by describing the error equation and the asymptotic error
constant with relationships among generic weight functions Q f (s), K f (s, u), and J f (s, u, v):

Theorem 1. Suppose that f : C→ C has simple root α and is analytic in a neighborhood of α. Let cj =
f (j)(α)
j! f ′(α)

for j = 2, 3, · · · . Let x0 be an initial guess selected in a sufficiently small region containing α. Assume
L f : C→ C is analytic in a neighborhood of 0. Let Qi =

1
i!

di

dsi Q f (s)
∣∣
(s=0) for 0 ≤ i ≤ 6. Let K f : C2 → C be

holomorphic in a neighborhood of (0, 0). Let J f : C3 → C be holomorphic in a neighborhood of (0, 0, 0). Let Kij =
1

i!j!
∂i+j

∂si∂uj K f (s, u)
∣∣
(s=0,u=0) for 0 ≤ i ≤ 12 and 0 ≤ j ≤ 6. Let Jijk = 1

i!j!k!
∂i+j+k

∂si∂uj∂vj J f (s, u, v)
∣∣
(s=0,u=0,v=0)

for 0 ≤ i ≤ 8, 0 ≤ j ≤ 4 and 0 ≤ k ≤ 2. If Q0 = 1, Q1 = 2, K00 = 1, K10 = 2, K01 = 1, K20 =

1 + Q2, K11 = 4, K30 = −4 + 2Q2 + Q3, J000 = 1, J100 = 2, J200 = 1 + Q2, J010 = 1, J110 = 4, J300 = −4 +
2Q2 + Q3, J001 = 1, J020 = K02, J210 = 1 + K21, J400 = K40, J101 = 2, J120 = 2 + K12, J310 = −4 + K31 +

2Q2, J500 = K50, J011 = 2, J201 = 1 + Q2, J030 = −1 + K02 + K03, J220 = 1 + K21 + K22 −Q2, J410 = −3 +
K40 + K41 + Q2 −Q4, J600 = K60, J111 = 8, J301 = −4 + 2Q2 + Q3, J130 = −4 + 2K02 + K12 + K13, J320 =

−6 + 2K21 + K31 + K32 − 2Q2 − Q3, J510 = 6 + 2K40 + K50 + K51 − 3Q3 − 2Q4 − Q5, J700 = K70 are
fulfilled, then scheme (5) leads to an optimal class of sixteenth-order root-finders possessing the following error
equation: with en = xn − α for n = 0, 1, 2, · · · ,

en+1 = −c2(τc2
2 + c3)

[
η0c4

2 + η1c2
2c3 + (K02 − 1)c2

3 − c2c4
]
Ψ e16

n + O(e17
n ), (12)

where τ = Q2 − 5, ν = K40 − 2Q3 − Q4, µ = K21 − 9, η0 = ν − µτ + τ2K02, η1 = 2τK02 − τ − µ + 5, Ψ =

∆1c8
2 + ∆2c6

2c3 + ∆3c5
2c4 + (J040 + J021(1− K02) + J002(1− K02)

2 + 2K02 − K03 − K04 − 1)c4
3 + ∆4c3

2c3c4 + (J021 − 3 + 2J002(1−
K02) + K02)c2c2

3c4 + ∆5c4
2 + ∆6c2

2, ∆1 = J800 − K80 + ν(2Q3 + Q4 − J401 + J002ν) + (21 − J610 − 19K40 + 2K50 + K60 + K61 +

16Q4 − 2Q5 −Q6 − 2Q3(µ− 19) + J401µ + J211ν− µ(Q4 + 2J002ν))τ + (18+ J420 − 2K31 − K41 − K42 + 2Q3 + Q4 + µ(19− J211 +
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J002µ)− J021ν + K02(2Q3 + Q4 − J401 + 2νJ002))τ
2 + (2K12 + K22 + K23 − 9− J230 + J021µ + K02(J211 − 19− 2J002µ))τ3 + (J040 −

J021K02 + J002K2
02−K03−K04)τ

4, ∆2 = 21− J610− 34K40 + 2K50 +K60 +K61 + Q3
2− 2Q5−Q6− 265µ− 2Q2

2(13+ µ) + Q2(105+

2K40 + 63µ) + 2(J420 − 2K31 − K41 − K42)τ− 3(J230 − 2K12 − K22 − K23)τ
2 + 4(J040 − K03 − K04)τ

3 − 2Q3(µ + τ− 29)−Q4(µ +

τ − 26) + J401(µ + τ − 5− 2K02τ) + 2K02τ(2Q3 + Q4 − 31τ + τ2) + 2J002(µ + τ − 5− 2K02τ)(µτ − ν− K02τ2) + J021τ(−2ν +

τ(−5+ 3µ+ τ− 4K02τ)) + J211(ν+ τ(5− 2µ− τ + 3K02τ)), ∆3 = J401 +K40− 4Q3− 2Q4 + (25− J211− µ)τ + (J021 +K02)τ
2−

2J002(ν − µτ + K02τ2), ∆4 = 35 − J211 − µ + (2J021 + 2K02 − 3)τ + 2J002(µ + τ − 5 − 2K02τ), ∆5 = −c5τ + c2
3(J420 − 123 +

J401(1− K02)− 2K31 − K41 − K42 + K02(2Q3 + Q4) + 24µ + 2ν + (23− 3J230 − 67K02 + 6K12 + 3K22 + 3K23 − 4µ)τ + (1 + 6J040 +

6K02 − 6K03 − 6K04)τ
2 + J211(5− µ + (3K02 − 2)τ) + J021(−ν + (3µ − 10)τ + 3(1− 2K02)τ

2) + J002((µ − 5)2 − 2ν + 2K02ν +

2τ(K02(10− 3µ) + 2µ− 5) + (1− 6K02 + 6K2
02)τ

2)), ∆6 = (J002 − 1)c2
4 − c3c5 + c3

3(25− J230 + J211(K02 − 1)− 24K02 + 2K12 +

K22 + K23 − 2µ + (4J040 − 1 + 6K02 − 4K03 − 4K04)τ + J021(µ + 3τ − 5− 4K02τ) + 2J002(K02 − 1)(5− µ− τ + 2K02τ)).

Proof. Since Scheme (5) employs five functional evaluations, namely,
f ′(xn), f (xn), f (yn), f (zn), and f (wn), optimality can be achieved if the corresponding convergence
order is 16. In order to induce the desired order of convergence, we begin by the 16th-order Taylor
series expansion of f (xn) about α:

f (xn) = f ′(α){en +
16

∑
i=2

ci ei
n + O(e17

n )}. (13)

It follows that

f ′(xn) = f ′(α){1 +
16

∑
i=2

i ci ei−1
n + O(e16

n )}. (14)

For brevity of notation, we abbreviate en with e. Using Mathematica [21], we find:

yn = xn −
f (xn)

f ′(xn)
= α + c2e2 − 2(c2

2 − c3)e3 + Y4e4 + Y5e5 + Y6e6
n + Y7e7

n +
16

∑
i=8

Yi ei
n + O(e17), (15)

where Y4 = 4c3
2− 7c2c3 + 3c4, Y5 = −2(4c4

2− 10c2
2c3 + 3c2

3 + 5c2c4− 2c5), Y6 = 16c5
2− 52c3

2c3 + 33c2c2
3 +

28c2
2c4 − 17c3c4 − 13c2c5 + 5c6, Y7 = −2

[
16c6

2 − 64c4
2c3 − 9c3

3 + 36c3
2c4 + 6c2

4 + 9c2
2(7c2

3 − 2c5) + 11c3c5

+ c2(−46c3c4 + 8c6)− 3c7
]

and Yi = Yi(c2, c3, · · · , c16) for 8 ≤ i ≤ 16.
Since f (yn) = f (xn)|en→(yn−α), we are led to an expression:

f (yn) = f ′(α)[c2e2 − 2(c2
2 − c3)e3 + (5c3

2 − 7c2c3 + 3c4)e4 +
16

∑
i=5

Di ei + O(e17)], (16)

where Di = Di(c2, c3, · · · , c16) for 5 ≤ i ≤ 16. Hence, we have:

s =
f (yn)

f (xn)
= c2e + (−3c2

2 + 2c3)e2 + (8c3
2 − 10c2c3 + 3c4)e3 +

15

∑
i=4

Ei ei + O(e16), (17)

where Ei = Ei(c2, c3, · · · , c16) for 4 ≤ i ≤ 15.
In the third substep of Scheme (5), wn = O(e8) can be achieved based on Kung-Traub’s conjecture.

To reflect the effect on wn from zn in the second substep, we need to expand zn up to eighth-order
terms; hence, we carry out a sixth-order Taylor expansion of Q f (s) about 0 by noting that s = O(e)

and f (yn)
f ′(xn)

= O(e2):

Q f (s) = Q0 + Q1s + Q2s2 + Q3s3 + Q4s4 + Q5s5 + Q6s6 + O(e7), (18)
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where Qj =
1
j!

dj

dsj Q f (s) for 0 ≤ j ≤ 6. As a result, we come up with:

zn = xn −Q f (s)
f (yn)

f ′(xn)
= α + (1−Q0)e2 + [c2

2(4Q0 −Q1 − 2)− 2c3(Q0 − 1)]e3 +
16

∑
i=4

Wi ei + O(e17),

where Wi = Wi(c2, c3, · · · , c16, Q0, · · · , Q6) for 4 ≤ i ≤ 16. Selecting Q0 = 1 and Q1 = 2 leads us to
an expression:

zn = α− c2[c2
2(Q2 − 5) + c3]e4 + Σ16

i=5 Wi ei + O(e17). (19)

On account of the fact that f (zn) = f (xn)|en→(zn−α), we deduce:

f (zn) = f ′(α)[−c2[c2
2(Q2 − 5) + c3]e4 + Σ16

i=5 Fi ei + O(e17)], (20)

where Fi = Fi(c2, c3, · · · , c16, Q2, · · · , Q6) for 5 ≤ i ≤ 16. Consequently, we find:

u =
f (zn)

f (yn)
= [−c3 − c2

2(Q2 − 5)]e2 + [−2c4 − 4c2c3(Q2 − 5) + β0c3
2]e

3 + Σ16
i=4 Gi ei + O(e17), (21)

where β0 = 8Q2 −Q3 − 26 and Gi = Gi(c2, c3, · · · , c16, Q2, · · · , Q6) for 4 ≤ i ≤ 16.
In the last substep of Scheme (5), xn+1 = O(e16) can be achieved based on Kung-Traub’s conjecture.

To reflect the effect on xn+1 from wn in the third substep, we need to expand wn up to sixteenth-order
terms; hence, we carry out a 12th-order Taylor expansion of K f (s, u) about (0, 0) by noting that:

s = O(e), u = O(e2) and f (zn)
f ′(xn)

= O(e4) with Kij = 0 satisfying i + 2j > 12 for all 0 ≤ i ≤ 12, 0 ≤ j ≤ 6:

K f (s, u) = K00 + K10s + K20s2 + K30s3 + K40s4 + K50s5 + K60s6 + K70s7 + K80s8 + K90s9 + K100s10 + K110s11+

K120s12 + (K01 + K11s + K21s2 + K31s3 + K41s4 + K51s5 + K61s6 + K71s7 + K81s8 + K91s9 + K101s10)u+

(K02 + K12s + K22s2 + K32s3 + K42s4 + K52s5 + K62s6 + K72s7 + K82s8)u2+

(K03 + K13s + K23s2 + K33s3 + K43s4 + K53s5 + K63s6)u3+

(K04 + K14s + K24s2 + K34s3 + K44s4)u4 + (K05 + K15s + K25s2)u5 + K06u6 + O(e13).

(22)

Substituting zn, f (xn), f (yn), f (zn), f ′(xn), and K f (s, u) into the third substep of (5) leads us to:

wn = zn − K f (s, u) · f (zn)

f ′(xn)
= α + (K00 − 1)c2[(Q2 − 5)c2

2 + c3]e4 +
16

∑
i=5

Γi ei + O(e17), (23)

where Γi = Γi(c2, c3, · · · , c16, Q2, · · · , Q6, Kj`), for 5 ≤ i ≤ 16, 0 ≤ j ≤ 12 and 0 ≤ ` ≤ 6. Thus K00 = 1
immediately annihilates the fourth-order term. Substituting K00 = 1 into Γ5 = 0 and solving for K10,
we find:

K10 = 2. (24)

Continuing the algebraic operations in this manner at the i-th (6 ≤ i ≤ 7) stage with known
values of Kj`, we solve Γi = 0 for remaining Kj` to find:

K20 = 1 + Q2, K01 = 1. (25)

Using K00 = 1, K10 = 2, K20 = 1 + Q2, K01 = 1 yields

wn = −c2(τc2
2 + c3)

[
(ν− µτ + τ2K02)c4

2 + (2τK02 − τ − µ + 5)c2
2c3 + (K02 − 1)c2

3 − c2c4
]
, (26)

where τ, µ, ν are described in (12). Consequently, we obtain:

v =
f (wn)

f (zn)
= −

[
η0c4

2 + η1c2
2c3 + (K02 − 1)c2

3 − c2c4
]
e4 +

16

∑
i=5

Ti ei + O(e17), (27)
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where η0 and η1 are described in (12) and Ti = Ti(c2, c3, · · · , c16, Q2, · · · , Q6) for 5 ≤ i ≤ 16.
To compute the last substep of Scheme (5), it is necessary to have an eighth-order Taylor expansion

of J f (s, u, v) about (0, 0, 0) due to the fact that f (wn)
f ′(xn)

= O(e8). It suffices to expand J f up to eighth-,

fourth-, and second-order terms in s, u, v in order, by noting that s = O(e), u = O(e2), v = O(e4) with
Jijk = 0 satisfying i + 2j + 4k > 8 for all 0 ≤ i ≤ 8, 0 ≤ j ≤ 4, 0 ≤ k ≤ 2:

J f (s, u, v) = J000 + J100s + J200s2 + J300s3 + J400s4 + J500s5 + J600s6 + J700s7 + J800s8 + (J010 + J110s + J210s2+

J310s3 + J410s4 + J510s5 + J610s6)u + (J020 + J120s + J220s2 + J320s3 + J420s4)u2 + (J030 + J130s + J230s2)u3+

J040u4 + (J001 + J101s + J201s2 + J301s3 + J401s4 + (J011 + J111s + J211s2)u + J021u2)v + J002v2.

(28)

Substituting wn, f (xn), f (yn), f (zn), f (wn), f ′(xn) and J f (s, u, v) in System (5), we arrive at:

xn+1 = wn − J f (s, u, v) · f (wn)

f ′(xn)
= α + φe8 +

16

∑
i=9

Ωi ei + O(e17), (29)

where φ = (1 − J000)c2(τc2
2 + c3)

[
η0c4

2 + η1c2
2c3 + (K02 − 1)c2

3 − c2c4
]
, Ωi =Ωi(c2, c3, · · · , c16,

Q2, · · · , Q6, Kργ, Jjk`), for 9 ≤ i ≤ 16, 0 ≤ ρ ≤ 12, 0 ≤ γ ≤ 6, 0 ≤ j ≤ 8, 0 ≤ k ≤ 4, 0 ≤ ` ≤ 2.
Substituting J000 = 1 into Ω9 = 0 and solving for J100, we find:

J100 = 2. (30)

Continuing the algebraic operations in the same manner at the i-th (10 ≤ i ≤ 15) stage with
known values of Jjk`, we solve Ωi = 0 for remaining Jjk` to find:

J200 = 1 + Q2, J010 = 1, J110 = 4, J300 = −4 + 2Q2 + Q3, J001 = 1, J020 = K02, J210 = 1 + K21,

J400 = K40, J101 = 2, J120 = 2 + K12, J310 = −4 + K31 + 2Q2, J500 = K50, J011 = 2, J201 = 1 + Q2,

J111 = 8, J030 = −1 + K02 + K03, J220 = 1 + K21 + K22 −Q2, J410 = −3 + K40 + K41 + Q2 −Q4,

J301 = −4 + 2Q2 + Q3, J130 = −4 + 2K02 + K12 + K13, J320 = −6 + 2K21 + K31 + K32 − 2Q2 −Q3,

J600 = K60, J510 = 6 + 2K40 + K50 + K51 − 3Q3 − 2Q4 −Q5, J700 = K70.

(31)

Upon substituting Relation (31) into Ω16, we finally obtain:

Ω16 = −c2(τc2
2 + c3)

[
(ν− µτ + τ2K02)c4

2 + (2τK02 − τ − µ + 5)c2
2c3 + (K02 − 1)c2

3 − c2c4
]
Ψ (32)

where τ, ν, µ, and Ψ as described in (12). This completes the proof.

Special Cases of Weight Functions

Theorem 1 enables us to obtain Q f (s), K f (s, u), and J f (s, u, v) by means of Taylor polynomials:



Q f (s) = 1 + 2s + Q2s2 + Q3s3 + Q4s4 + Q5s5 + Q6s6 + O(e7),

K f (s, u) = 1 + 2s + (1 + Q2)s2 + (2Q2 + Q3 − 4)s3 + K40s4 + K50s5 + K60s6 + K70s7 + K80s8

+K90s9 + K100s10 + K110s11 + K120s12 + (1 + 4s + K21s2 + K31s3 + K41s4 + K51s5 + K61s6

+K71s7 + K81s8 + K91s9 + K101s10)u + (K02 + K12s + K22s2 + K32s3 + K42s4 + K52s5

+K6s6 + K72s7 + K82s8)u2 + (K03 + K13s + K23s2 + K33s3 + K43s4 + K53s5 + K63s6)u3

+(K04 + K14s + K24s2 + K34s3 + K44s4)u4 + (K05 + K15s + K25s2)u5 + K06u6 + O(e13),

J f (s, u, v) = 1 + 2s + (1 + Q2)s2 + (2Q2 + Q3 − 4)s3 + K40s4 + K50s5 + K60s6 + K70s7 + J800s8

+(1 + 4s + (1 + K21)s2 + (K31 + 2Q2 − 4)s3 + (K40 + K41 − 3 + Q2 −Q4)s4 + (2K40 + K50 + K51 + 6

−3Q3 − 2Q4 −Q5)s5 + J610s6)u + (K02 + (2 + K12)s + (K21 + K22 −Q2 + 1)s2 + (2K21 + K31 + K32 − 6

−2Q2 −Q3)s3 + J420s4)u2 + (K02 + K03 − 1 + (2K02 + K12 + K13 − 4)s + J230s2)u3 + J040u4

+(1 + 2s + (1 + Q2)s2 + (2Q2 + Q3 − 4)s3 + J401s4 + (2 + 8s + J211s2)u + J021u2)v + J002v2 + O(e9),

(33)
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where parameters Q2–Q6, K40, K50, K60, K70, K80, K90, K100, K110, K120, K21, K31, K41, K51, K61, K71, K81,
K91, K101, K02, K12, K22, K32, K42, K52, K62, K72, K82, K03, K13, K23, K33, K43, K53, K63, K04, K14, K24, K34, K44,
K05, K15, K25, K06 and J040, J002, J021, J211, J230, J401, J420, J610, J800 may be free.

Among various possible weight functions Q f (s), K f (s, u), and J f (s, u, v), we restrict the current
study to simple ones employing polynomials, as well as low-order rational functions. We consider
the first case with simple polynomial weight functions by setting all available free parameters to the
desired values, as follows:

Case 1: Polynomial weight functions

After setting all free parameters to zero, we obtain:

Case 1A :


Q f (s) = 1 + 2s,

K f (s, u) = 1 + s2 − 4s3 + u + 2s(1 + 2u),

J f (s, u, v) = 1 + 2s + s2 − 4s3 + (1 + 4s + s2 − 4s3 − 3s4 + 6s5)u
+(2s + s2 − 6s3)u2 − (1 + 4s)u3 + [1 + 2s + s2 − 4s3 + 2(1 + 4s)u]v.

(34)

After setting K21 = −1, K12 = −2, K03 = 1, K31 = 4, K13 = 6, K32 = 4, K41 = 3, K51 = −6, and all
other free parameters to zero, we obtain:

Case 1B :


Q f (s) = 1 + 2s,

K f (s, u) = 1 + 2s + s2 − 4s3 + (1 + 4s− s2 + 4s3 + 3s4 − 6s5)u
+2s(2s2 − 1)u2 + (1 + 6s)u3,

J f (s, u, v) = (1− s)(1 + 3s + 4s2)(1 + v) + (1 + 4s)u(1 + 2v).

(35)

After setting Q2 = −1 and all other free parameters to zero, we obtain:

Case 1C :


Q f (s) = 1 + 2s− s2,

K f (s, u) = 1− 6s3 + u + 2s(1 + 2u),

J f (s, u, v) = (1 + 2s− 6s3)(1 + v) + (1 + 4s + s2 − 6s3 − 4s4 + 6s5)u
+2(1− s)s(1 + 2s)u2 + (1 + 4s)u(2v− u2).

(36)

After setting Q2 = −1, Q3 = 6 and all other free parameters to zero, we obtain:

Case 1D :


Q f (s) = 1 + 2s− s2 + 6s3,

K f (s, u) = 1 + 2s + (1 + 4s)u,

J f (s, u, v) = (1 + 2s)(1 + v) + (1 + 4s + s2 − 6s3 − 4s4 − 12s5)u
+(2s + 2s2 − 10s3)u2 + (1 + 4s)u(2v− u2).

(37)

As a second case, we restrict ourselves to considering all three rational-type weight functions
with real coefficients:

Case 2: Rational weight functions of Type 1
Q f (s) = 1

1−2s ,

K f (s, u) =
1+(2+b1)s+a2s2+(2+2a2+b1+b3)s3+ 1

2 (a5−2−b1−b5+2a5s)u
1+b1s+(a2−5−2b1)s2+b3s3+ 1

2 (a5−4−b1−b5+2b5s)u
,

J f (s, u, v) =
1+∑8

i=1 qisi+u ∑15
i=9 qisi−9+u2 ∑19

i=16 qisi−16+u3(q20+q21s)+v[∑26
i=22 qisi−22+(q27+q28s)u]

1+∑8
i=1 risi+u ∑15

i=9 risi−9+u2 ∑19
i=16 risi−16+u3(r20+r21s)+v[∑26

i=22 risi−22+(r27+r28s)u]
,

(38)

where ai, bi, ri, qi ∈ R are to be determined for optimal sixteenth-order convergence; the coefficients of
Q f and K f are already selected to satisfy the constraints stated in Theorem 1, while the coefficients
of J f should satisfy the constraints J100 = 2 and affine relations described by Relation (31). These 25
constraints determine 25 relations among the 56 coefficients ri, qi, (1 ≤ i ≤ 28), from which 25 out of
56 coefficients may be solved as an appropriate affine combination of the remaining 31 coefficients.



Mathematics 2019, 7, 8 9 of 31

For ease of analysis, we employ some simple forms of K f by appropriate choices of the free
parameters as follows:

K f (s, u) =



1
1−2s−s2−u , if a2 = a5 = b3 = b5 = 0, b1 = −2, — (A)

1+s2

1−2s−2s3−u , if a5 = b5 = 0, a2 = 1, b1 = −2, b3 = −2, — (B)
1+2s−s2

1−6s2−(1+2s)u , if a5 = b1 = b3 = 0, a2 = −1, b5 = −2, — (C)
(s−1)2

(1−2s)(1−2s−u) , if a5 = b3 = 0, b1 = −4, b5 = 2, a2 = 1, — (D)
(1+s)(1−s+2s2)

1−2s−u , if a5 = b5 = b3 = 0, b1 = −2, a2 = 1, — (E)
(1−s)(2+s+s2)
2−5s+(s−2)u , if a5 = a2 = b3 = 0, b1 = − 5

2 , b5 = 1
2 , — (F)

5−2s+s2

5−12s+(2s−5)u , if a5 = b3 = 0, b1 = − 12
5 , a2 = 1

5 , b5 = 2
5 . — (G)

(39)

To consider simple forms of J f connected with K f via Relation (31), we first conveniently set all
31 free parameters q8, q12–q15, q17–q21, q24–q28, r6–r8, r11, r13–r15, r17, r19–r21, r23–r26, r28 to zero. Then,
we get seven forms of J f matching with seven forms, (A)–(G), of (39) in order as follows:

J f (s, u, v) =



−2−2s+5s2+12s3−16s4−8s5−32s6−72s7+(4s+11s2)u−(3+4s)v
−2+2s+11s2+4s3−45s4+12s5+(2+6s−36s3)u−5s2u2+(3u−1)v , — (A),
−5−6s+10s2+24s3−30s4+10s5−25s6−70s7+(10s+30s2)u−(7+10s)v
−5+4s+27s2+10s3−93s4+40s5+(5+16s−94s3)u−18s2u2+(7u−2)v , — (B),

7+8s−15s2−36s3+33s4+78s5+193s6+414s7−(14s+29s2)u+(10+14s)v
7−6s−38s2−14s3+113s4+54s5+(−7−22s+106s3)u−s2u2+(3−10u)v , — (C),
−5−8s+5s2+12s3−61s4−42s5−119s6−258s7+(10s+25s2)u−(6+10s)v
−5+2s+26s2+10s3−95s4+50s5+(5+18s−82s3)u−9s2u2+(6u−1)v , — (D),
−5−8s+5s2+12s3−61s4−2s5−99s6−370s7+(10s+25s2)u−(6+10s)v
−5+2s+26s2+10s3−115s4+58s5+(5+18s−82s3)u−9s2u2+(6u−1)v , — (E),
−24−22s+65s2+156s3−161s4−86s5−302s6−498s7+(48s+137s2)u−(37+48s)v
−24+26s+133s2+48s3−514s4+126s5+(24+70s−444s3)u−69s2u2+(37u−13)v , — (F),

A0+(1450s+4045s2)u−(1070+1450s)v
B0+(725+2210s−13130s3)u−1945s2u2+(1070u−345)v , — (G),

(40)

where A0 = −725 − 760s + 1725s2 + 4140s3 − 5625s4 − 1914s5 − 9743s6 − 22,386s7 and B0 = −725 + 690s + 3970s2 +

1450s3 − 15,775s4 + 4986s5.
We denote these seven subcases described by weight functions Q f (s) = 1

1−2s , K f (s, u) in (39) and
J f (s, u, v) in (40) by Cases 2A–2G in order. For example, Case 2A takes the form of:

Case 2A :


Q f (s) = 1

1−2s ,
K f (s, u) = 1

1−2s−s2−u ,

J f (s, u, v) = −2−2s+5s2+12s3−16s4−8s5−32s6−72s7+(4s+11s2)u−(3+4s)v
−2+2s+11s2+4s3−45s4+12s5+(2+6s−36s3)u−5s2u2+(3u−1)v .

(41)

As the final case, with four second-order rational weight functions K f in (39), i.e., with K f given
by (39)-(A), (39)-(C), (39)-(D), (39)-(G), we will pursue possible forms of J f (s, u, v) whose all extraneous
fixed points are purely imaginary, when prototype polynomial f (z) = z2 − 1 is applied. According to
our previous studies [22,23] on the dynamics of root finders for nonlinear equations behind the purely
imaginary extraneous fixed points, the relevant convergence behavior is improved compared to the
usual root finders. This convergence advantage inspires us to investigate Case 3 below underlying the
presence of purely imaginary extraneous fixed points.

Case 3: Rational weight functions of Type 2
Q f (s) = 1

1−2s ,

K f (s, u) = Q f (s) ·
(s−1)2

1−2s−u+βs2u , β ∈ R,

J f (s, u, v) = K f (s, u) · 1+∑3
i=1 qisi+u ∑8

i=4 qisi−4+u2 ∑14
i=9 qisi−9+u3 ∑21

i=15 qisi−15

J (s,u)+v·(∑25
i=22 risi−22+u ∑30

i=26 risi−26+u2 ∑36
i=31 risi−31+u3 ∑43

i=37 qisi−37)
,

(42)
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where J (s, u) = 1 + ∑3
i=1 risi + u ∑8

i=4 risi−4 + u2 ∑14
i=9 risi−9 + u3 ∑21

i=15 risi−15 and the specific choice of parameter β

for K f and determination of the 64 coefficients qi, ri of J f are described below. Relationships were
sought among all free parameters of J f (s, u, v), giving us a simple governing equation for extraneous
fixed points of the proposed Family of Methods (5).

To this end, we first express s and u for f (z) = z2 − 1 as follows:

s =
1
4
(1− 1

t
), u =

1
4
· (t− 1)2

(t + 1)2 , with t = z2. (43)

In order to obtain a simple form of J f (s, u, v), we needed to closely inspect how it is connected
with K f (s, u). In view of Relation (31), it is appropriate to select a form of K f (s, u) that reduces to
a lower-order rational function in t. Such a lower-order rational weight function K f (s, u) would
eventually lead us to obtaining a simplified J f (s, u, v). When applying to f (z) = z2 − 1, we find
K f (s, u) with t = z2 as shown below:

K f (s, u) = (t−1)4[t4(β+7)2−4t3(β2−34β+37)+2t2(3β2+34β−53)−4t(β2−10β+13)+(β−1)2]
[t4(β+16)−4t3(β−32)+t2(6β+80)−4t(β−8)+β]2

, (44)

where β should be selected in such a way that the order of rational function K f (s, u) is minimized. For
such minimization, we first conveniently let

K1(t) = t4(β + 7)2 − 4t3(β2 − 34β + 37) + 2t2(3β2 + 34β− 53)− 4t(β2 − 10β + 13) + (β− 1)2,

K2(t) = t4(β + 16)− 4t3(β− 32) + t2(6β + 80)− 4t(β− 8) + β.

Since K2(1) = 256 guarantees that K2 does not have a factor (t− 1)4 for any value of β, we need
to check if K1 and K2 have common factors for some values of β reducing the order of rational function
K f . By eliminating β between K1 and K2, we find (1 + 3t)4 = 0, from which (1 + 3t)j = 0 with
some j ∈ {1, 2, 3, 4} is found to be a common factor yielding a unique β = 2 in view of the fact that

K1(− 1
3 ) =

256(β−2)2

81 , K2(− 1
3 ) =

256(β−2)
81 . Hence, with this β = 2 employed, (44) reduces to a desired

simple rational weight function:

K f (s, u) =
4t(1 + t)

t2 + 6t + 1
. (45)

Using the two selected weight functions Q f , K f ( with β = 2), we continue to determine
coefficients qi, ri of J f yielding a simple governing equation for extraneous fixed points of the proposed
methods when f (z) = z2 − 1 is applied. As a result of tedious algebraic operations reflecting the
25 constraints (with possible rank deficiency) given by (30) and (31), we find only 21 effective relations,
as follows:

q1 = 1
2 (−4− q12 + q16 + r12 − r16 + r25 − r27), q2 = q12 − q16 − r12 + r16 − r25

2 + r27,
q3 = −r25, q4 = 1

2 (−2 + q16 − r16), q5 = −2− q1 − r27, q10 = 2 + r10, q15 = r15,
r1 = q1, r2 = q2, r3 = q3, r4 = q4, r5 = q5, r6 = q6 − 1, r7 = q7 − q1 − 2, r8 = q8 − r25

2 ,
r9 = q9, r11 = 2 + q11 + q12 − r12 +

3
2 (r16 − q16)− r25 + r27, r22 = −1,

r23 = −q1, r24 = −q2, r26 = −1− q4.

(46)

The two relations J300 = −4+ 2Q2 +Q3 and J400 = K40 equivalently represent r3 = q3, while three
relations, J500 = K50, J600 = K60, andJ700 = K70 are identically satisfied and give us no valuable
information at all.

In what follows, we classify various subcases based on interesting selections of the 43 remaining
free parameters. For each subcase, the concrete forms of J f are shown without displaying weight
functions Q f and K f since they remain the same as in (42) with β = 2.
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Case 3A: All 43 free parameters set to zero:
q6 = q7 = q8 = q9 = q11 = q12 = q13 = q14 = q16 = q17 = q18 = q19 = q20 = q21 = r10 =

r12 = r13 = r14 = r15 = r16 = r17 = r18 = r19 = r20 = r21 = r25 = r27 = r28 = r29 = r30 =

r31 = r32 = r33 = r34 = r35 = r36 = r37 = r38 = r39 = r40 = r41 = r42 = r43 = 0.

J f (s, u, v) = K f (s, u) · (1− 2s− u + 2su2)

1− 2s + (−1− s2)u + 2s2u2 + (−1 + 2s)v
(47)

Case 3B: One free parameter set to nonzero, while 42 remaining ones set to zero:
q6 = 1, q7 = 0, r25 = 0, q8 = q9 = q11 = q12 = q13 = q14 = q16 = q17 = q18 = q19 = q20 =

q21 = r10 = r12 = r13 = r14 = r15 = r16 = r17 = r18 = r19 = r20 = r21 = r27 = r28 = r29 =

r30 = r31 = r32 = r33 = r34 = r35 = r36 = r37 = r38 = r39 = r40 = r41 = r42 = r43 = 0.

J f (s, u, v) = K f (s, u) · 1− 2s + (−1 + s2)u + 2su2

1− 2s− u + 2s2u2 + (−1 + 2s)v
(48)

Case 3C: Two free parameters set to nonzero, while 41 remaining ones set to zero:
q6 = 1, q7 = 0, r25 = 2, q8 = q9 = q11 = q12 = q13 = q14 = q16 = q17 = q18 = q19 = q20 =

q21 = r10 = r12 = r13 = r14 = r15 = r16 = r17 = r18 = r19 = r20 = r21 = r27 = r28 = r29 =

r30 = r31 = r32 = r33 = r34 = r35 = r36 = r37 = r38 = r39 = r40 = r41 = r42 = r43 = 0.

J f (s, u, v) = K f (s, u) · 1− s− s2 − 2s3 + (−1− s + s2)u + 2su2

1− s− s2 − 2s3 + (−1− s− s3 − s4)u + (−1 + s + s2 + 2s3)v
(49)

Case 3D: Two free parameters set to nonzero, while 41 remaining ones set to zero:
q6 = 1, q7 = 0, r25 = 4, q8 = q9 = q11 = q12 = q13 = q14 = q16 = q17 = q18 = q19 = q20 =

q21 = r10 = r12 = r13 = r14 = r15 = r16 = r17 = r18 = r19 = r20 = r21 = r27 = r28 = r29 =

r30 = r31 = r32 = r33 = r34 = r35 = r36 = r37 = r38 = r39 = r40 = r41 = r42 = r43 = 0.

J f (s, u, v) = K f (s, u) · 1− 2s2 − 4s3 + (−1− 2s + s2)u + 2su2

1− 2s2 − 4s3 + (−1− 2s− 2s3 − 2s4)u− 2s2u2 + (−1 + 2s2 + 4s3)v
(50)

Case 3E: Seven free parameters set to zero, while 36 remaining ones set to nonzero:

r15 = 0, r16 = 0, r17 = 0, r18 = 0, r19 = 0, r20 = 0, r21 = 0, q6 = −3, q7 = −20, q8 = 20,
q9 = 1, q11 = −15, q12 = 26, q13 = −1, q14 = −14, q16 = −2, q17 = 7, q18 = −4, q19 = −7,
q20 = 4, q21 = 3, r10 = −2, r12 = 8, r13 = 4, r14 = −8, r25 = 8, r27 = −4, r28 = 1, r29 = 12,
r30 = −12, r31 = 1, r32 = −6, r33 = 16, r34 = −24, r35 = 18, r36 = −4, r37 = −1, r38 = 4,
r39 = −7, r40 = 8, r41 = −2, r42 = −8, r43 = 6.

J f (s, u, v) = K f (s, u) · 1−6s+12s2−8s3+(−2+8s−3s2−20s3+20s4)u+A0(s,u)
1−6s+12s2−8s3+(−2+8s−4s2−16s3+16s4)u+(1−2s−4s2+8s3+4s4−8s5)u2+A1(s,u)v , (51)

where A0(s, u) = (1 − 15s2 + 26s3 − s4 − 14s5)u2 + (−2s + 7s2 − 4s3 − 7s4 + 4s5 + 3s6)u3 and
A1(s, u) = −1+ 6s− 12s2 + 8s3 +(1− 4s+ s2 + 12s3− 12s4)u+(1− 6s+ 16s2− 24s3 + 18s4− 4s5)u2 +

(−1 + 4s− 7s2 + 8s3 − 2s4 − 8s5 + 6s6)u3.

Remark 1. The above Case 3E represents a method obtained with a different approach by Sharma et. al [14].

For ease of analysis for interesting subcases of Case 3F, we first impose further constraints:
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r32 = r33 = r34 = r35 = r36 = r37 = r38 = r39 = r40 = r41 = r42 = r43 = 0. (52)

and then we seek parameter relationships yielding purely imaginary extraneous fixed points of the
proposed family of methods when f (z) = z2 − 1 is applied.

To this end, after substituting the 21 effective relations given by (46) into J f in (42) and by applying
to f (z) = z2 − 1, we first find v:

v = (t−1)4

4(t2+6t+1)2 , with t = z2, (53)

and construct governing equation H(z) = 1 + sQ f (s) + suK f (s, u) + suvJ f (s, u, v) = 0 for extraneous
fixed points:

H(z) = A·G(t)
(1+t)(1+6t+t2)·W(t) , with t = z2, (54)

where A is a constant factor, G(t) = ∑19
i=0 giti, with g0 = −q21 + 4r21 + r43, g1 = (16q14 +

4q20 + 19q21 − 64r14 − 16r20 + 84r21 − 16r36 − 4r42 + 5r43), gi = gi(q1, q6, · · · r43), for 2 ≤ i ≤ 19
and W(t) = ∑16

i=0 witi, with w0 = 4r21 + r43, w1 = −4(16r14 + 4r20 + 4r36 + r42 + 4r43), wi =

wi(q1, q6, · · · r43), for 2 ≤ i ≤ 16. The coefficients of both polynomials, G(t) and W(t), contain at
most 43 free parameters.

We first observe that two partial expressions of H(z), namely, 1 + sQ f (s) = 1+3t
2(1+t) , 1 + sQ f (s) +

suK f (s, u) = 1+21t+35t2+7t3

4(1+t)(1+6t+t2)
hold with t = z2 when f (z) = z2 − 1 is applied. With such an observation

of presence of factors (1 + 3t), (1 + t), (1 + 6t + t2), (1 + 21t + 35t2 + 7t3), we seek a special subcase in
which G(t) contains all the interested factors as follows:{

G(t) = (1 + 3t)(1 + t)(1 + 6t + t2)(1 + 21t + 35t2 + 7t3) ·Φ(t),
where Φ(t) is a twelfth-degree polynomial.

(55)

The degree of Φ(t) is decreased from 12 to 3 by gradually annihilating the relevant coefficients
containing free parameters. Similarly, by doing so, the degree of W(t) is decreased from 16 to 12.
This lengthy algebraic process of factorization and annihilation eventually leads us to Case 3F whose
coefficients are given below with 10 additional free parameters set to zero:

Case 3F: 

q11 = q12 = q13 = q17 = q18 = q19 = q20 = r19 = r20 = r29 = 0,
q1 = −614,733,185+60,736λ

22,680,993 , q2 = 100,706,911,309−994,851,864λ
1,209,652,96 , q3 = −283,900,855,559+2,982,612,040λ

181,447,944 ,

q4 = 11(−17,383,391,837+269,152,984λ)
362,895,888 , q5 = 111,931,468,151−2,928,482,376λ

60,482,648 ,

q6 = 4,933,965,273,065+1,837,8410,208λ
241,930,592 , q7 = − 4(29,481,072,883+418,276,453λ)

22,680,993 ,
q8 = 2,489,044,195,457−2,289,580,384λ

22,680,993 , q9 = −3,757,975,357,457+4,002,738,016λ
241,930,592 ,

q10 = 6,010,745,286,103−6,261,215,648λ
181,447,944 , q14 = 32(−177,550,689,713+203,887,264λ)

22,680,993 ,
q15 = 549,794,099,671−669,060,000λ

60,482,648 , q16 = −989,650,155,895+1,204,838,624λ
45,361,986 ,

q21 = − 128(−20,581,176,851+25,197,088λ)
22,680,993 , r1 = q1, r2 = q2, r3 = q3, r4 = q4, r5 = q5, r6 = q6 − 1,

r7 = q7 − q1 − 2, r8 = q8 +
q3
2 , r9 = q9, r10 = q10 − 2, r11 = 209,800,084,463−296,2626,376λ

362,895,888 ,
r12 = −43,339,5815,285+880,7862,232λ

181,447,944 , r13 = 102,682,7316,571−6,282,476,696λ
90,723,972 ,

r14 = 8(−55,140,7240,435+666,226,016λ)
22,680,993 , r15 = q15, r16 = −125,591,5403,087+619,557,224λ

60,482,648 ,
r17 = −4,288,671,068,273+17,244,727,552λ

181,447,944 , r18 = 2,539,703,624,807−6,562,173,832λ
45,361,986 ,

r21 = 32(9,162,991,123+11,896,288λ)
22,680,993 , r22 = −1, r23 = −q1, r24 = −q2, r25 = −q3, r26 = −1− q4,

r27 = −2− q1 − q5, r28 = −94,292,600,453−15,125,589,368λ
181,447,944 , r30 = 4(26,628,387,546+11,700,527λ)

7,560,331 ,

(56)

where λ = r31 is a free parameter to be determined for the purely imaginary extraneous fixed points.
In addition, the corresponding J f is given by:

J f (s, u, v) = K f (s, u) · 1+∑3
i=1 qisi+u ∑8

i=4 qisi−4+u2 ∑14
i=9 qisi−9+u3 ∑21

i=15 qisi−15

J (s,u)+v·(∑25
i=22 risi−22+u ∑30

i=26 risi−26+λu2)
, (57)
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where J (s, u) is given by (42).
With the coefficients given by (56), we also find H(z), Φ(t), and W(t) as follows:


H(z) = − 64(1+3t)(1+21t+35t2+7t3)Φ(t)

W(t) , with t = z2,

Φ(t) = 9056λ− 2,787,643 + t(593,958,773− 788,128λ) + t2(1,798,696,455− 394,464λ) + a0t3,
W(t) = 9,162,991,123 + 11,896,288λ + t(2,205,628,961,740− 2,664,904,064λ) + · · ·+ a1t12,
a0 = 31(16,558,049 + 37,856λ), a1 = (−46,242,701 + 120,544λ).

(58)

It still remains for us to select values of λ for the desired purely imaginary extraneous fixed points.
To this end, we need to determine the conditions for negative roots of the cubic equation Φ(t) = 0
whose discriminant should be nonnegative and coefficients should have the same sign. (See Lemma
4.1 in Reference [23]). As a result, the values of λ should satisfy the following constraints:

307.823 · · · < λ ≤ 594.545 · · · . (59)

Three values of λ ∈ {310, 46,242,701
120,544 ' 383.617, 594} are selected for sub-cases Cases 3F1, 3F2,

3F3 in order.
As a final case, we consider subcase Case 3G, leading us to purely imaginary extraneous fixed

points. To easily proceed with our investigation, we initially impose three more constraints than Case
3F as follows:

r29 = r30 = r31 = r32 = r33 = r34 = r35 = r36 = r37 = r38 = r39 = r40 = r41 = r42 = r43 = 0. (60)

We simply let G(t) have a factor (1 + 3t) by taking the effect of 1 + sQ f (s) = 1+3t
2(1+t) into account,

when f (z) = z2 − 1 is applied. This case will give us the governing equation H(z) on the extraneous
fixed points as follows:

H(z) = A(1+3t)·G(t)
(1+t)(1+6t+t2)·W(t) , with t = z2, (61)

where A is a constant factor; G(t) andW(t) are 18-degree and 16-degree polynomials respectively
with their coefficients containing free parameters. The two polynomials G(t) andW(t) shall reduce to
9-degree polynomial G9(t) and 7-degree polynomialW7(t), respectively, after lowering their degrees
by annihilating their relevant coefficients gradually. As a result of this process of factorization
and annihilation, we obtain a set of relations among the desired coefficients with 9 additional free
parameters set to zero as follows:

Case 3G:

q12 = q13 = q17 = q18 = q19 = q20 = r10 = r19 = r20 = 0,
q1 = −3,055,820,263,252−76,497,245λ

142,682,111,242 , q2 = 56,884,034,112,404+44,614,515,451λ
285,364,222,484 ,

q3 = −45,802,209,949,332−44,308,526,471λ
142,682,111,242 , q4 = − 3(17,778,426,888,128+67,929,066,997λ)

1426821112420 ,

q5 = 2(21,034,820,227,211+132,665,343,294λ)
356,705,278,105 , q6 = −1,589,080,655,012,451+134,087,681,464λ

142,682,111,242 ,

q7 = 2(−780,300,304,419,180+71,852,971,399λ)
71341055621 , q8 = 12,288(−727,219,117,761+128,167,952λ)

71341055621 ,
q9 = 1,353,974,063,793,787−212,746,858,830λ

142,682,111,242 , q10 = 2, q11 = 2(−741,727,036,224,277+126,275,739,062λ)
71,341,055,621 ,

q14 = − 8192(−3,964,538,065,856+615,849,113λ)
71,341,055,621 , q15 = 8(−226,231,159,891,830+34,083,208,621λ)

71341055621 ,

q16 = − 24(−908,116,719,056,544+136,634,733,499λ)
356705278105 , q21 = 131,072(−918,470,889,768+13,6352,293λ)

356,705,278,105 ,
r1 = q1, r2 = q2, r3 = q3, r4 = q4, r5 = q5, r6 = q6 − 1, r7 = q7 − q1 − 2, r8 = q8 +

q3
2 ,

r9 = q9, r11 = −29,558,910,226,378,916+5,256,346,708,371λ
1,426,821,112,420 , r12 = −55,018,830,261,476−109,759,858,153λ

142,682,111,242 ,

r13 = 25(−75,694,849,962,572+11,301,475,999λ)
71,341,055,621 , r14 = − 4096(−1,500,792,372,416+228,734,011λ)

15,508,925,135 ,

r15 = q15, r16 = 43,641,510,974,266,076−6,354,680,006,961λ
713,410,556,210 , r17 = − 2(−1,060,205,894,022,116+202,907,726,307λ)

71,341,055,621 ,

r18 = 2(−2,870,055,173,156,756+475,573,395,275λ)
71,341,055,621 , r21 = q21

2 , r22 = −1, r23 = −q1, r24 = −q2,
r25 = −q3, r26 = −1− q4, r27 = −2− q1 − q5,

(62)
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where λ = r28. In addition, the corresponding J f is given by:

J f (s, u, v) = K f (s, u) · 1+∑3
i=1 qisi+u ∑8

i=4 qisi−4+u2 ∑14
i=9 qisi−9+u3 ∑21

i=15 qisi−15

J (s,u)+v·[∑25
i=22 risi−22+u(r26+r27s+λs2)]

, (63)

where J (s, u) is given by (42).
With the coefficients given by (62), we also find H(z), G9(t),W7(t) as follows:

H(z) = 1
8

(1+3t)·G9(t)
(1+t)(1+6t+t2)·W7(t)

, with t = z2,

G9(t) = (1 + 10t + 5t2)(1 + 92t + 134t2 + 28t3 + t4) · γ(t; λ),
W7(t) = (1 + 28t + 70t2 + 28t3 + t4) · γ(t; λ).

(64)

where γ(t; λ) = 918,470,889,768 − 136,352,293λ + t(8,801,039,652,064 − 1,443,018,049λ) +

t2(9,126,540,551,048− 2,824,686,623λ)

+ 55t3(−1,172,805,939,824 + 80,073,763λ).
In Proposition 1 of Section 4, it is shown that G9(t) andW7(t) have such factorizations as well as

a common factor γ(t; λ). Consequently, after cancelling out the common factor, H(z) reduces to:

H(z) = 1
8
(1+3t)(1+10t+5t2)(1+92t+134t2+28t3+t4)
(1+t)(1+6t+t2)(1+28t+70t2+28t3+t4)

, with t = z2, (65)

Holding true regardless of λ. Hence, it is regretfully infeasible to directly use γ(t; λ) for
obtaining the desired purely imaginary extraneous fixed points with a possible λ. Nevertheless,
it is interesting to observe that the roots of the right-hand side of (65) are all negative, namely,
{− 1

3 ,−1.89443,−0.105573,−22.1335,−5.04468,−0.810727, and − 0.0110469}, which leads us to all
the desired purely imaginary extraneous fixed points. It is also surprising to note that this H(z) is
identical with that of (4), being derived from different forms of weight function J f .

Nine values of λ ∈ {0,− 3,055,820,263,252
76,497,245 ,− 56,884,034,112,404

44,614,515,451 ,− 45,802,209,949,332
44,308,526,471 ,− 17,778,426,888,128

67,929,066,997 ,
− 21,034,820,227,211

132,665,343,294 , 1,353,974,063,793,787
212,746,858,830 , 226,231,159,891,830

34,083,208,621 , 918,470,889,768
136,352,293 } are selected for subcases 3G1, 3G2,

3G3, 3G4, 3G5, 3G6, 3G7, 3G8, 3G9 in order. These subcases further simplify J f with integer coefficients
qi, ri of J f with r28 = 0, (q1 = r1 = r23 = 0), (q2 = r2 = r24 = 0), (q3 = r3 = r25 = 0), (q4 = r4 =

0, r26 = −1), (q5 = r5 = 0), (q9 = r9 = 0), (q15 = r15 = 0), (q21 = r21 = 0) in order.
In the next section, we investigate how to select appropriate free parameters giving purely

imaginary extraneous fixed points.

3. Extraneous Fixed Points and Their Dynamics

The dynamics behind the extraneous fixed points [20] of iterative map (5) have been investigated
by many authors with the aid of the relevant basins of attraction. Such dynamics were studied
by Stewart [24], Amat et al., e.g., References [25,26], Andreu et al. [27], Argyros-Magreñan [28],
Chun et al. [29], Chicharro et al. [30], Chun-Neta [31], Cordero et al. [32], Geum et al. [22,33–35],
Rhee at al. [23], Magreñan [36,37], Neta et al. [38–40], and Scott et al. [41].

To find a root α of f (x) under consideration, we usually locate a fixed point ξ of the iterative map:

xn+1 = R f (xn), n = 0, 1, · · · , (66)

where R f is the iteration function associated with f . Usually, R f is expressed with weight function

H f in the form: R f (xn) = xn − f (xn)
f ′(xn)

H f (xn). Thus the zeros of H f are other fixed points ξ 6= α

called extraneous fixed points of R f . The presence of extraneous fixed points may induce attractive,
indifferent, or repulsive, and other periodic or chaotic orbits influencing the underlying dynamics of
R f . The dynamics behind the extraneous fixed points motivates the current analysis. To make our
analysis more feasible, we rewrite Iterative Map (66) in a more specific form:
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xn+1 = R f (xn) = xn −
f (xn)

f ′(xn)
H f (xn), (67)

where H f (xn) = 1 + sQ f (s) + suK f (s, u) + suvJ f (s, u, v) plays a role of a weight function in the
classical Newton’s method. It is clear that α is a fixed point of R f . Points ξ 6= α for which H f (ξ) = 0
are extraneous fixed points of R f .

The influence of extraneous fixed points on the convergence behavior of the iterative dynamical
system was extensively demonstrated for simple zeros via König functions and Schröder functions [20]
with applications to a family of functions { fk(x) = xk − 1, k ≥ 2}.

For ease of dynamics behind the extraneous fixed points of Iterative Maps (67), we select a simple
member f (z) = (z2 − 1). By a similar approach made by Chun et al. [42,43] and Neta et al. [38,40,44],
we are able to construct H f (xn) = s · Q f (s) + s · u · K f (s, u) + s · u · v · J f (s, u, v) in (67). Applying
f (z) = (z2 − 1) to H f , we construct a rational function H(z) with t = z2 in the form:

H(z) =
N (t)
D(t) , (68)

where both D(t) and N (t) are coprime polynomial functions of t. The underlying dynamics of
Iterative Map (67) can be favorably investigated on the Riemann sphere [45] with possible fixed points
“0(zero)” and “∞”. As can be seen in Section 5, the relevant dynamics will be illustrated in a 6× 6
square region centered at the origin.

Indeed, the roots t ofN (t) provide the extraneous fixed points ξ of R f in Map (67) by the relation:

ξ =

{
t

1
2 , if t 6= 0,

0(double root), if t = 0.
(69)

Extraneous Fixed Points and their Stability

Among a number of case studies with f (z) = z2 − 1 in the preceding section, we list in Table 1
the resulting extraneous fixed points for selected ones. The dynamics of the methods highlighted in
yellow in this table is investigated in more detail in Section 5. In Proposition 1, regarding Case 3G,
we first show that the relevant governing equation H(z) in (64) has a common factor γ(t; λ) in G9(t)
andW7(t).

Proposition 1. By the same technique of lowering the degrees as used in Case 3G, we let G(t) andW(t) in (64)
reduce to, respectively, 11- and 7-degree polynomials:

G11(t) = −30,232,602,7148,844− 2,645,460,523,447λ− 3,549,604,642,962ω+

t(−19,045,217,693,092,380− 184,372,611,780,771λ− 246,980,050,245,050ω)+

t2(−229,583,218,935,759,412− 2,478,905,521,740,161λ− 3,314,558,301,486,462ω)+

t3(−1,057,943,643,253,576,164− 12,706,921,698,909,725λ− 16,952,179,986,855,494ω)+

t4(−572,802,383,853,145016− 12,399,265,091,556,262λ− 16, 312, 777, 192, 063, 668ω)+

t5(4,980,100,685,582,204,520 + 54,259,611,564,699,906λ + 73,129,514,966,886,908ω)+

t6(2,227,938,789,630,354,968 + 59,080,193,903,387,422λ + 79,126,227,393,874,628ω)+

t7(−8,090,329,150,129,283,784− 37,514,311,315,868,154λ− 50,730,685,869,384,460ω)+

t8(−5,993,458,057,271,207,260− 41,435,500,104,681,395λ− 55,790,114,824,122,010ω)+

t9(−89,1021,737,210,685,324− 6,595,611,949,775,471λ− 8, 874, 933, 288, 600, 610ω)−
43t10(70,287,000705,004 + 530,278,886,951λ + 713,410,556,210ω)+

t11(70,287,000,705,004 + 530,278,886,951λ + 713,410,556,210ω),
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W̄7(t) = 14, 502, 439, 152, 740 + 132, 198, 852, 281λ + 177, 262, 130, 422ω+

t(306, 041, 922, 910, 212 + 3, 165, 697, 676, 185λ + 4, 236, 146, 358, 902ω)+

t2(1, 965, 140, 873, 452, 948 + 22, 777, 852, 783, 125λ + 30, 415, 220, 584, 670ω)+

t3(2, 689, 571, 152, 941, 748 + 41, 132, 482, 603, 381λ + 54, 558, 749, 294, 302ω)+

t4(−9, 677, 123, 180, 363, 412− 95, 019, 090, 176, 101λ− 128, 332, 636, 641, 790ω)+

t5(−10, 883, 768, 984, 025, 268− 186, 269, 794, 428, 805λ− 249, 609, 933, 175, 038ω)+

t6(22, 205, 775, 217, 829, 788 + 123, 422, 809, 056, 087λ + 166, 569, 579, 351, 722ω)+

t7(12, 226, 341, 638, 552, 316 + 9, 065, 7843, 633, 847λ + 121, 985, 612, 096, 810ω),

with ω = r27 and λ = r28. Then the following will hold:

(a) G11(t) and W̄7(t) have a common factor γ(t; λ), if relation ω = −702,87,000,705,004−530,278,886,951λ
713,410,556,210 holds.

(b) With the use of the above ω, the two polynomials G11(t) and W̄7(t) respectively reduce to G9(t)
andW7(t).

Proof. (a) Let G11(t) = 0 and W̄7(t) = 0 for some extraneous fixed points t with some values of ω.
Solving for ω from W̄7(t) = 0 in terms of t and substituting into G11(t) = 0, we find the relation
after simplification:

918,470,889,768− 136,352,293λ + t(8,801,039,652,064− 1,443,018,049λ)+

t2(912,654,0551,048− 2,824,686,623λ) + 55t3(−1,172,805,939,824 + 80,073,763λ) = 0,

whose left-hand side represents γ(t; λ). Since γ(t; λ) divides G11(t) and W̄7(t) simultaneously, we must
have ω = −70,287,000,705,004−530,278,886,951λ

713,410,556,210 . This value of ω indeed annihilates the coefficients of tenth-
and eleventh-degree terms of G11(t) reducing to G9(t) and makes W̄7(t) become W7(t). Note also
that the resulting G9(t) andW7(t) have more factors (1 + 10t + 5t2)(1 + 92t + 134t2 + 28t3 + t4) and
(1 + 28t + 70t2 + 28t3 + t4), respectively.

Proposition 2. Let f (z) = z2 − 1. Then the extraneous fixed points ξ for Cases 1–3 discussed in Section 3 are
all found to be indifferent.

Proof. All subcases of Cases 1 and 2 have the same procedure for their stability proofs. Hence,
it suffices to show the relevant proof for typical Subcases 1A and 2A.

(a) Case 1A: H f (z) =
N1

144115188075855872 t42 ,

where N1 = 1 − 79t + 3138t2 − 83,096t3 + 1,643,075t4 − 25,782,937t5 + 333,401,042t6 −
3,644,000,008t7 + 34,277,812,964t8 − 281,244,319,820t9 + 2,033,394,013,704t10 −
13,058,032,832,736t11 + 74,952,295,448,348t12− 386,486,800,674,676t13 + 1,797,643,814,328,584t14−
7,567,394,816,098,464t15 + 28,911,173,797,459,454t16 − 100,477,288,658,961,282t17 +

318,278,083,152,645,340t18 − 920,489,401,136,647,760t19 + 2,434,168,954,635,747,562t20 −
5,893,562,472,356,381,374t21 + 13,080,156,529,292,380,700t22 − 26,638,016,093,569,726,832t23 +

4,982,024,5302,963,260,564t24 − 85,618,609,075,224,925,164t25 + 135,228,559,944,098,725,576t26 −
196,231,613,423,323,919,456t27 + 261,372,115,317,868,080,012t28 − 319,007,941,784,285,577,732t29 +

355,856,755,223,008,219,368t30− 36,150,275,3628,693,456,160t31 + 332,819,155,551,846,207,241t32−
275,945,259,967,246,039,591t33 + 204,389,167,991,420,430,066t34 − 133,893,883,120,492,105,688t35 +

76,642,870,050,787,847,979t36 − 37,798,416,021,193,245,233t37 + 15,817,272,569,020,366,882t38 −
5,542,723,320,845,857,224t39 + 163,232,333,182,7226,240t40 − 446,689,637,549,264,080t41 +

25,066,2959,380,507,424t42, with t = z2.

By direct computation of R′f (z) with f (z) = z2 − 1, we write it as with t = z2:

R′f (z) = 1− (1 + t)N1

288,230,376,151,711,744t43 ,

from which we find R′f (ξ) = 1 due to the fact that N1 = 0 at an extraneous fixed point ξ.
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(b) Case 2A: H f (z) =
N2

128t3(1+t)(−1+8t+22t2+32t3+3t4)2·D2
,

where N2 = 9 − 331t + 4574t2 − 28,818t3 + 79,831t4 − 132,541t5 + 642,364t6 + 2,086,716t7 −
28,562,743t8 − 124,659,835t9 + 327,234,066t10 + 3,643,707,810t11 + 10,401,729,279t12 +

5,434,132,091t13 − 46,499,708,408t14 − 124,126,445,432t15 + 27,709,201,187t16 +

960,201,127,911t17 + 3,094,219,885,346t18 + 5,954,358,575,826t19 + 8,009,701,202,029t20 +

7,837,767,988,593t21 + 5,561,044,852,220t22 + 2,771,393,311,100t23 + 911,814,978,699t24 +

183,378,733,407t25 + 22,088,672,174t26 + 1,598,681,822t27 + 63,656,509t28 + 1,143,377t29, and
D2 = 3 − 6t − 644t2 + 2001t3 + 17,642t4 + 37,027t5 − 45,424t6 − 308,455t7 − 287,756t8 +

1,273,543t9 + 5,022,636t10 + 9,037,291t11 + 9,769,070t12 + 6,466,449t13 + 2,240,392t14 +

309,803t15 + 20,337t16 + 523t17.

By direct computation of R′f (z) with f (z) = z2 − 1, we write it as:

R′f (z) = 1− N2

256t4(−1 + 8t + 22t2 + 32t3 + 3t4)2 · D2
,

where D2 = 3− 6t− 644t2 + 2001t3 + 17,642t4 + 37,027t5 − 45,424t6 − 308,455t7 − 287,756t8 +

1,273,543t9 + 5,022,636t10 + 9,037,291t11 + 9,769,070t12 + 6,466,449t13 + 2,240,392t14 +

309,803t15 + 20,337t16 + 523t17. Consequently, we find R′f (ξ) = 1 due to the fact that
N2 = 0 at an extraneous fixed point ξ.

(c) Case 3: H f (z) =
A·G(t)

(1+t)(1+6t+t2)·W(t) , with t = z2,

In this case, H f (z) is given by (54). By direct computation of R′f (z) with f (z) = z2 − 1, we write
it as:

R′f (z) =
(z2−1)·Ψn(z)

8z2(z4+6z2+1)·Ψd(z)
, (70)

where Ψn(z) and Ψd(z) are, respectively, 36- and 32-degree polynomials (being too lengthy to
be listed here) with their coefficients containing at most 44 free parameters. With the help of
Mathematica, we find the concise relation, with t = z2, below:

(z2 − 1) ·Ψn(z)− 8z2(z4 + 6z2 + 1) ·Ψd(z) = −G(t),

where G(t) is stated in Case 3, investigated in Section 3. Consequently, G(t) = 0 holds at an
extraneous fixed point ξ. Hence, the right side of the above equation vanishes, which yields
R′f (ξ) = 1 for any extraneous fixed point ξ.

Remark 2. Although not described here in detail due to limited space, by means of a similar proof
as shown in Proposition 2, extraneous fixed points ξ for methods KT16, MBM (with G(u, s) =
2β+u(2β+2(β2−2β−4)s−5)−(4β+1)S2+2(β2−4β+1)s−5

2β+2(β2−6β+6)s−5 ) and SAK (Case 3E) were also all found to be indifferent.

If f (z) = p(z) is a generic polynomial other than z2 − 1, then required dynamical analysis may
not be feasible due to the increased algebraic complexity. Despite that, we explore such dynamics by
means of Iterative Map (67) applied to f (z) = p(z), which is denoted by Rp as follows:

zn+1 = Rp(zn) = zn −
p(zn)

p′(zn)
Hp(zn). (71)

Basins of attraction for various polynomials are illustrated in Section 5 to observe the complicated
dynamics behind the fixed points or the extraneous fixed points. In order to better describe the
numerical and dynamical aspects of Iterative Maps (67), the letter W was conveniently prefixed to
each case number to designate the relevant map in Table 1.
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Table 1. Indifferent extraneous fixed points ξ for selected cases.

Case ξ No. of ξ

1A


±0.716774± 1.463148i,±0.704031± 0.887970i,±0.509303± 0.680849i,±0.552293± 0.680029i,±0.644300± 0.566138i,
±0.397046± 0.197178i,±0.397224± 0.197072i,±0.400017± 0.199994i,±0.413388± 0.196956i,±0.505408± 0.345309i,
±0.426144± 0.191947i,±0.428139± 0.194873i,±0.445334± 0.199428i,±0.457883± 0.195982i,±0.535617± 0.336251i,
±0.617710± 0.411357i,±0.512710± 0.079271i,±0.578694± 0.261228i,±0.538024± 0.076528i,±0.573985± 0.147071i,

±0.576737± 0.039167i

 84

1B



±0.646260± 1.558534i,±0.573863± 1.105870i,±0.471892± 0.956889i,±0.463707± 0.936790i,±0.623620± 0.933466i,
±0.728444± 0.733722i,±0.596963± 0.602781i,±0.610195± 0.612559i,±0.367176± 0.200525i,±0.367171± 0.200504i,
±0.367206± 0.200525i,±0.367203± 0.200503i,±0.403542± 0.210550i,±0.404007± 0.210413i,±0.398037± 0.197796i,
±0.398110± 0.197758i,±0.400017± 0.199994i,±0.404260± 0.205204i,±0.404714± 0.206052i,±0.415410± 0.198555i,
±0.422913± 0.197803i,±0.424091± 0.196011i,±0.424365± 0.192891i,±0.425095± 0.193221i,±0.572137± 0.360397i,
±0.580912± 0.361119i,±0.709477± 0.522949i,±0.532515± 0.178828i,±0.538313± 0.180727i,±0.677061± 0.398466i,
±0.553714± 0.055820i,±0.558693± 0.057370i,±0.638428± 0.291676i,±0.610031± 0.211182i,±0.595402± 0.144287i,

±0.598418± 0.089490i,±0.604384± 0.028030i


148

1C



±0.713491± 1.415954i,±0.707173± 0.851056i,±0.519235± 0.642663i,±0.364297i,±0.000022± 0.363832i,±0.363375i,
±0.352066i,±0.005456± 0.331225i,±0.005445± 0.331187i,±0.315964i,±0.310239i,±1.315080× 10−6 ± 0.310157i,
±0.310076i,±0.562171± 0.636866i,±0.652814± 0.539061i,±0.429965± 0.182919i,±0.430103± 0.182740i,

±0.433599± 0.185209i,±0.443643± 0.185271i,±0.443643± 0.185271i,±0.453605± 0.182740i,±0.455896± 0.185816i,
±0.526768± 0.321862i,±0.471346± 0.191479i,±0.484057± 0.190171i,±0.559869± 0.307515i,±0.632768± 0.389804i,
±0.539733± 0.074353i,±0.595236± 0.244838i,±0.568623± 0.069543i,±0.595878± 0.138896i,±0.596352± 0.035885i

 116

1D



±0.693506± 1.481750i,±0.646018± 0.909001i,±0.432738± 0.750275i,±0.466393± 0.746826i,±0.490498± 0.620922i,
±0.401531± 0.531569i,±0.396684± 0.527092i,±0.449030± 0.560230i,±0.354408± 0.437112i,±0.354619± 0.436426i,
±0.350402± 0.431032i,±0.348367± 0.427902i,±0.343316± 0.421996i,±0.344575± 0.422127i,±0.347625± 0.424013i,
±0.348758± 0.424037i,±0.447477± 0.506034i,±0.476627± 0.483846i,±0.490204± 0.414270i,±0.487326± 0.409475i,
±0.596892± 0.434853i,±0.486449± 0.143965i,±0.486601± 0.143625i,±0.490877± 0.143958i,±0.492128± 0.147922i,
±0.493560± 0.142372i,±0.495266± 0.146616i,±0.504122± 0.149725i,±0.506887± 0.149278i,±0.562405± 0.247162i,
±0.581085± 0.236682i,±0.635515± 0.314572i,±0.582651± 0.064339i,±0.632191± 0.202663i,±0.612019± 0.051508i,

±0.635905± 0.119464i,±0.628650± 0.033021i


148

2A

 ±1.215819± 4.035890i,±1.102438± 2.967150i,±2.241089i,±1.220542i,±0.261095± 0.917722i,±0.697374i,
±0.331560± 0.730142i,±0.319535± 0.723699i,±0.229878± 0.683312i,±0.451009± 0.727253i,±0.383724± 0.589629i,
±0.298813± 0.344439i,±0.309931± 0.000351i,±0.315612,±0.346876± 0.141468i,±0.373582,±0.589697± 0.120450i

 58

2B


±0.703647± 3.885385i,±0.989685± 2.635847i,±2.164505i,±1.286567i,±0.260580± 0.911410i,±0.309220± 0.741605i,

±0.291998± 0.732634i,±0.185014± 0.663522i,±0.629854i,±0.413668± 0.719695i,±0.384645± 0.575356i,
±0.287111± 0.344554i,±0.307800± 0.085927i, 0.392478± 0.257430i,±0.393477± 0.257656i,±0.397932± 0.259322i,

±0.396745± 0.249085i,±0.586328± 0.114556i

 66

2C


±1.139431± 4.494531i,±1.213401± 3.046207i,±2.334024i,±0.982423i,±0.253445± 0.977548i,±0.770039i,

±0.249856± 0.694092i,±0.344109± 0.724114i,±0.334043± 0.718452i,±0.450458± 0.731506i,±0.378413± 0.587508i,
±0.312875± 0.311712i,±0.117795,±0.331434,±0.359204± 0.094005i,±0.548263± 0.118782i,±0.617066,±0.617191,

±0.617195,±0.618643

 62

2D

±4.174483i,±3.351009i,±0.831592± 2.322153i,±0.831592± 2.322153i,±2.051498i,±1.196162i,±0.222824± 0.907174i,
±0.739639i,±0.321367± 0.670016i,±0.319479± 0.661126i,±0.285673± 0.638307i,±0.403431± 0.668736i,

±0.409548± 0.568880i,±0.301333± 0.374698i,±0.136063,±0.323016± 0.165062i,±0.333373,±0.595240± 0.110274i

 54

2E


±4.028172i,±3.333460i,±0.791332± 2.329323i,±2.078603i,±1.179385i,±0.238209± 0.943463i,±0.769852i,

±0.323937± 0.711924i,±0.315584± 0.686046i,±0.440797± 0.718355i,±0.260437± 0.588361i,±0.444869± 0.581503i,
0.222659± 0.404903i,±0.394114± 0.414184i,±0.306062± 0.105541i,±0.407419± 0.225151i,±0.419289± 0.070455i,

±0.604410± 0.114408i

 62

2F


±1.557947± 4.115911i,±1.109587± 3.132135i,±2.265833i,±1.241460i,±0.267741± 0.910860i,±0.211278± 0.708600i,

±0.309188± 0.733453i,±0.323000± 0.736854i,±0.661079i,±0.446348± 0.723011i,±0.360912± 0.583603i,
±0.135267± 0.429714i,±0.208763± 0.210558i,±0.313956± 0.303659i,±0.269639,±0.360586± 0.139483i,±0.369640,

±0.585139± 0.120025i

 62

2G

 ±1.071407± 4.005965i,±1.081529± 2.877503i,±2.224120i,±1.232495i,±0.260348± 0.916945i,±0.689223i,
±0.325053± 0.731468i,±0.311919± 0.723932i,±0.220708± 0.675887i,±0.441978± 0.723369i,±0.384371± 0.587584i,
±0.048717± 0.211128i,±0.297157± 0.352937i,±0.194713,±0.335696± 0.156300i,±0.346829,±0.589764± 0.119214i,

 58

3A
(
±5.563983i,±2.072687i,±0.467473± 1.943965i,±1.246626i,±0.890987i,
±0.400706± 0.686399I,±0.508469i,±0.387955i,±0.176043i,±0.144413

)
24

3B
(

±5.236295i,±2.126880i,±0.467075± 1.895012i,±1.263571i,±0.889748i,
±0.372130± 0.702582i,±0.107022± 0.541652i,±0.294306i,±0.212418i,±0.108571i

)
26

3C
(

±5.256567i,±2.085555i,±0.437080± 1.929301i,±0.162679± 1.027673i,±0.732921i,
±0.332147± 0.671778i,±0.462118i,±0.398698i,±0.187754i,±0.178917,±0.434668± 0.202087i

)
30

3D
(

±5.268735i,±2.060259i,±0.425108± 1.951005i,±0.253847± 1.016418i,±0.771471i,
±0.319566± 0.657762i,±0.441401i,±0.412724i,±0.187723i,±0.179750,±0.511371± 0.158351i

)
30

3E ±i/
√

3,±4.70463i,±2.24604i,±1.37638i,±0.900404i,±0.32492i,±0.105104i 14
3F1 ±i/

√
3,±2.07652i,±0.797473i,±0.228243i,±1.29347i,±0.488058i,±0.00751051i 14

3F2 ±i/
√

3,±2.07652i,±0.797473i,±0.228243i,±1.22867i,±0.444743i,±0.0488449i 14
3F3 ±i/

√
3,±2.07652i,±0.797473i,±0.228243i,±1.09904i,±0.215173i,±0.19567i 14

3G ±i/
√

3,±4.70463i,±2.24604i,±1.37638i,±0.900404i,±0.32492i,±0.105104i 14

KT16



±0.476916± 2.650557i,±0.051459± 2.050952i,±0.400896± 1.369080i,±0.280274± 1.208123i,±0.284743± 1.142729i,
±0.014198± 1.079244i,±0.014345± 1.058107i,±0.247407± 1.068248i,±1.010977i,±0.393030± 0.996591i,

±0.325607± 0.569521i,±0.166390± 0.432774i,±0.204517± 0.433095i,±0.155288± 0.407042i,±0.206799± 0.426139i,
±0.285928± 0.468747i,±0.207797± 0.414946i,±0.200778± 0.407067i,±0.295255± 0.456380i,
±0.196392± 0.392413i,±0.196007± 0.384202i,±0.177968± 0.371249i,±0.185475± 0.371981i,
±0.309647± 0.437999i,±0.366211± 0.424552i,±0.250036± 0.263593i,±0.240486± 0.249258i,

±.263038± 0.268698i,±0.323134± 0.267378i,±0.264732± 0.147746i


118

MBM
(
±4.2114i,±1.87158i,±0.494294± 1.19157i,±0.800597i,±0.316819± 0.781436i,

±0.364426i,±0.0786966± 0.191185i,±0.187217

)
22

SAK ±i/
√

3,±4.70463i,±2.24604i,±1.37638i,±0.900404i,±0.32492i,±0.105104i 14

The highlighted methods are investigated for their dynamics in Section 5.
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4. Results and Discussion on Numerical and Dynamical Aspects

For various test functions, we begin by numerical aspects of (5), as well as three existing methods,

KT16, MBM (with G(u, s) = 2β+u(2β+2(β2−2β−4)s−5)−(4β+1)S2+2(β2−4β+1)s−5
2β+2(β2−6β+6)s−5 , β = 0), and SAK; then we

explore the dynamics underlying extraneous fixed points based on Iterative Maps (71) from the
illustrated relevant attractor basins. Numerical experiments have been implemented for all listed
methods in Table 1. Computational experiments on dynamical aspects have carried out with only
17 members of (5) and three methods KT16, MBM, and SAK. For each map, numerical experiments
have strongly confirmed the desired convergence properties.

Throughout the computational experiments with the aid of Mathematica, $MinPrecision = 400
has been assigned to maintain 400 digits of minimum number of precision. If α is not exact, then it
should be given by an approximate value with more precision digits than $MinPrecision.

The value of α is approximately given with 450 precision digits unless exact. Limited paper space
allows us to list xn and α with up to 15 significant digits. We set error bound ε = 1

2 × 10−360 to meet
|xn − α| < ε.

Methods W3G1, W2D, and W1C successfully located desired zeros of test functions F1 − F3:
W3G1 : F1(x) = sin( π

x7+1 ) + x15e−5x − 2x3 log(1 + 1
x ) + 4, α ≈ 1.7284526755304,

W2D : F2(x) = 2x− π − cos x log(x2 + 1), α = π
2 ,

W1C : F3(x) = cos [(x− 3)2 + 3]− log [(x− 3)2 + 4]− 1, α = 3 + i
√

3,
where log z(z ∈ C) is a principal analytic branch with − π < Im(log z) ≤ π.

(72)

Ensured in Table 2 is sixteenth-order convergence. The computational asymptotic error
constant |en|/|en−1|16 is in agreement with η = limn→∞ |en|/|en−1|16 up to 10 significant digits.
The computational convergence order pn = log |en/η|/log |en−1| well approaches 16.

Additional test functions in Table 3 confirm the convergence of scheme (5). The nth iterate
errors |xn − α| are listed in Table 4 for comparison among methods W1A–W3G9 and three methods
KT16, MBM, SAK. Bold-face numbers indicate the least errors for the selected test functions. In the
current experiments, MBM has slightly better convergence for f4, f6, W3E or SAK for f2, f3, W1D
for f5 as well as W1C for f1 and f7. According to the definition of the asymptotic error constant
η(ci, Q f , K f , J f ) = limn→∞ |R f (xn)− α|/ |xn − α|16, the convergence is dependent on iterative map
R f (xn), f (x), x0, α and the weight functions Q f , K f and J f . Consequently, it is hard to believe that one
method always achieves better convergence than the others for any test functions.

Table 2. Convergence of methods W3G1, W2D, W1C for test functions F1(x)− F3(x) shown in (72).

MT F n xn |F(xn)| |xn− α| |en/e16
n−1| η pn

0 1.8 0.270467 0.0715473
W3G1 F1 1 1.72845267553040 1.431× 10−18 3.695× 10−19 0.7836895849 1.895228371 16.3348

2 1.72845267553040 8.871× 10−295 2.290× 10−295 1.895228371 16.00000

0 1.3 0.806294 0.270796
W2D F2 1 1.57079632679455 1.120× 10−12 3.454× 10−13 0.0004131418075 5.084558258× 10−6 12.6338

2 1.57079632679490 6.782× 10−205 2.091× 10−205 5.084558258× 10−6 16.00000

0 (
2.95
1.76 )∗ 0.198116 0.0572814

W1C F3 1 (
3.00000000000000
1.73205080756888 ) 4.820× 10−15 1.391× 10−15 103591.4791 3210.28764 14.7852

2 (
3.00000000000000
1.73205080756888 ) 2.201× 10−234 6.356× 10−235 3210.287640 16.00000

MT = method, (
2.95
1.76 )∗ = 2.95 + 1.76i, i =

√
−1, η = limn→∞

|en |
|en−1 |16 , pn =

log |en/η|
log |en−1 |

.
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Table 3. Additional test functions fi(x) with zeros α and initial values x0.

i fi(x) α x0

1 e−x3
sin(x)− (x2 + 3) log(x− π + 1) π 3.5

2 cos(x2 + 1)− log(2x2 + e + 2− π) + 1
√
−1 + π

2 0.9

3 1−
√

cos(x2 − 4x + 6) + x log( 3
2 + 1

(x−2)2 ) 2 + i
√

2 1.95 + 1.28i
4 x5 − 2 +

√
x + 4 · log(e− x

1−x2 ) 0 0.08
5 x2ex + x cos( 1

x3 ) + 1 −1.56506028675084 −1.3
6 x3 + sin( π

x2 ) log(x2 − 2)− 3
√

3
√

3 2.0
7 x2 sin( π

2x+1 )− 3x + 2 0.917990036268013 1.25

Here, log z (z ∈ C) represents a principal analytic branch with − π ≤ Im(log z) < π.

The proposed Family of Methods (5) has efficiency index EI [11], which is 161/5 ≈ 1.741101 and
larger than that of Newton’s method. In general, the local convergence of iterative methods (71) is
guaranteed with good initial values x0 that are close to α. Selection of good initial values is a difficult
task, depending on precision digits, error bound, and the given function f (x).

The influence of initial values x0 on the global convergence is effectively described by means
of a basin of attraction that is the set of initial values leading to long-time behavior approaching the
attractors under the iterative action of R f . Basins of attraction contain information about the region of
convergence. A method occupying a larger region of convergence is likely to be a more robust method.
A quantitative analysis undoubtedly measures the size of region of convergence.

The basins of attraction, as well as the relevant statistical data, are constructed in a similar manner
shown in the work of Geum-Kim-Neta [22].

Owing to the limited space, in Table 1, we explore the dynamics of 17 maps, W1A, W1C,
W2A, W2D, W3A, W3C, W3F2, W3F3, W3G1, W3G2, W3G3, W3G4, W3G5, W3G6, W3G7, W3G8,
W3G9, and three existing methods KT16, MBM, SAK, with applications to pk(z), (1 ≤ k ≤ 6) and one
nonpolynomial equation through the following seven examples. In each example, we have shown
dynamical planes for the convergence behavior of iterative maps xn+1 = R f (xn) (67) with f (z) = pk(z)
by illustrating the relevant basins of attraction through Figures 1–6.

Example 1. We have taken p1(z) as a quadratic polynomial with all real roots:

p1(z) = z2 − 1. (73)

The roots are obviously ±1. Note that the extraneous fixed points are computed based on this example.
Clearly the best methods have basins separated by the imaginary axis. Basins of attraction for W1A–W3G9,
KT16, MBM with β = 0 and SAK are given in Figure 1. Methods W3A, W3G1–W3G8 show basins separated
by the imaginary axis. Consulting Tables 5–7, we find that the methods W3G7–W3G9 use the least number of
iterations per point on average (ANIP), followed closely by W3C, W3G1, W3G3–W3G6. The fastest method is
W3A. The methods KT16, MBM, and SAK have the least number of black points. Methods W1A and W1C have
the highest number of black points. Notice that these methods use polynomial weight functions.
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(1) W1A (2) W1C (3) W2A (4) W2D

(5) W3A (6) W3C (7) W3F2 (8) W3F3

(9) W3G1 (10) W3G2 (11) W3G3 (12) W3G4

(13) W3G5 (14) W3G6 (15) W3G7 (16) W3G8

(17) W3G9 (18) KT16 (19) MBM (20) SAK

Figure 1. The top row for W1A (left), W1C (center left), W2A (center right) and W2D (right). The second
row for W3A (left), W3C (center left), W3F2 (center right) and W3F3 (right). The third row for W3G1
(left), W3G2 (center left), W3G3 (center right), and W3G4 (right). The fourth row for W3G5 (left),
W3G6 (center left), W3G7 (center right), and W3G8 (right). The bottom row for W3G9 (left), KT16 (center
left), MBM (center right) and SAK (right), for the roots of the polynomial equation (z2 − 1)
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Table 4. Comparison of |xn − α| for selected methods applied to various test functions.

f (x); x0

Method |xn − α| f1; 3.5 f2; 0.9 f3; 1.95 + 1.28i f4; 0.08 f5; − 1.3 f6; 2.0 f7; 1.25

W1A |x1 − α| 1.27e-17∗ 1.16e-14 1.26e-12 2.12e-19 3.06e-14 2.49e-13 3.89e-20
|x2 − α| 2.32e-278 1.74e-222 1.40e-187 2.04e-299 6.71e-221 3.55e-203 2.38e-322

W1B |x1 − α| 2.64e-17 1.75e-14 1.42e-12 5.21e-19 3.18e-14 3.62e-13 1.01e-19
|x2 − α| 5.35e-273 1.68e-219 1.34e-186 4.14e-293 2.17e-220 2.41e-200 5.02e-316

W1C |x1 − α| 1.13e-17 1.47e-14 3.25e-13 6.36e-18 5.31e-14 2.425e-13 6.72e-21
|x2 − α| 3.73e-279 1.08e-220 5.78e-197 1.79e-276 4.06e-217 2.10e-203 2.03e-336

W1D |x1 − α| 1.05e-17 1.58e-14 6.86e-14 4.28e-19 1.42e-14 1.72e-13 2.21e-19
|x2 − α| 1.24e-279 4.94e-220 9.10e-208 5.24e-296 3.17e-226 9.51e-206 1.51e-309

W2A |x1 − α| 2.24e-16 3.82e-17 1.48e-11 1.01e-17 1.78e-10 5.71e-13 3.33e-17
|x2 − α| 4.22e-261 2.86e-265 4.11e-173 4.96e-273 1.27e-161 2.58e-199 1.42e-271

W2B |x1 − α| 2.70e-16 1.739e-17 1.04e-11 4.740e-18 1.26e-10 7.65e-13 2.74e-17
|x2 − α| 8.30e-260 3.33e-271 9.27e-176 2.15e-278 4.22e-164 2.51e-197 4.84e-273

W2C |x1 − α| 1.88e-16 8.79e-17 1.79e-11 1.82e-17 1.94e-10 4.57e-13 3.57e-17
|x2 − α| 2.66e-262 6.78e-259 1.65e-171 1.09e-268 4.42e-161 8.62e-201 4.62e-271

W2D |x1 − α| 2.66e-16 1.53e-17 8.09e-12 5.94e-18 9.75e-11 7.73e-13 2.36e-17
|x2 − α| 6.67e-260 7.71e-272 1.61e-177 7.60e-277 3.22e-166 3.33e-197 4.05e-274

W2E |x1 − α| 2.58e-16 1.26e-17 1.33e-11 2.81e-17 1.49e-10 7.09e-13 2.72e-17
|x2 − α| 4.10e-260 1.28e-273 4.35e-174 1.07e-265 3.37e-163 8.28e-198 4.97e-273

W2F |x1 − α| 2.26e-16 3.98e-17 1.37e-11 5.19e-18 1.68e-10 5.83e-13 3.30e-17
|x2 − α| 4.96e-261 4.51e-265 1.26e-173 9.26e-278 5.57e-162 3.46e-199 1.20e-271

W2G |x1 − α| 2.33e-16 3.32e-17 1.37e-11 8.62e-18 1.64e-10 6.08e-13 3.19e-17
|x2 − α| 7.83e-261 2.51e-266 1.04e-173 3.71e-274 3.52e-162 6.92e-199 6.87e-272

W3A |x1 − α| 2.17e-16 2.12e-18 1.13e-13 3.62e-18 4.97e-12 6.73e-13 2.86e-18
|x2 − α| 2.68e-261 2.61e-287 1.73e-207 2.69e-280 3.36e-186 6.01e-198 5.10e-290

W3B |x1 − α| 2.25e-16 2.28e-18 1.11e-13 2.50e-18 6.75e-12 7.18e-13 3.60e-18
|x2 − α| 5.05e-261 1.10e-286 1.25e-207 6.12e-283 4.66e-184 1.71e-197 2.77e-288

W3C |x1 − α| 2.32e-16 2.19e-18 1.34e-13 2.45e-18 9.99e-12 7.52e-13 4.72e-18
|x2 − α| 8.27e-261 4.83e-287 2.53e-206 4.40e-283 2.59e-181 3.59e-197 3.15e-286

W3D |x1 − α| 2.39e-16 2.11e-18 1.54e-13 2.41e-18 1.26e-11 7.82e-13 5.91e-18
|x2 − α| 1.30e-260 2.06e-287 2.32e-205 3.25e-283 1.12e-179 6.77e-197 1.54e-284

W3E |x1 − α| 7.41e-17 1.13e-18 4.49e-14 1.90e-18 1.77e-12 3.37e-13 4.80e-18
|x2 − α| 4.02e-270 1.05e-291 2.58e-214 6.03e-285 6.04e-194 2.06e-203 3.05e-286

W3F1 |x1 − α| 7.07e-14 1.39e-15 1.28e-11 3.41e-15 2.01e-10 7.64e-11 2.15e-15
|x2 − α| 3.46e-217 5.18e-238 2.57e-170 2.01e-228 1.23e-156 3.56e-161 5.70e-240

W3F2 |x1 − α| 4.43e-14 9.32e-16 9.06e-12 2.25e-15 1.02e-10 5.04e-11 1.18-15
|x2 − α| 1.47e-220 6.99e-241 8.64e-173 2.16e-231 1.92e-161 3.48e-164 2.74e-244

W3F3 |x1 − α| 8.02e-15 3.45e-16 3.67e-12 6.84e-16 6.30e-11 1.12e-11 7.51e-17
|x2 − α| 1.94e-233 5.93e-248 2.36e-179 5.94e-240 4.88e-166 2.03e-176 3.93e-264

W3G1 |x1 − α| 8.11e-13 2.78e-14 6.06e-11 5.85e-14 2.54e-10 4.74e-10 7.06e-15
|x2 − α| 3.52e-200 4.29e-217 2.41e-159 1.64e-208 4.75e-155 1.82e-148 9.27e-233

W3G2 |x1 − α| 3.18e-13 4.15e-15 4.17e-11 1.54e-14 1.42e-10 8.29e-10 4.21e-15
|x2 − α| 8.83e-206 1.95e-229 4.46e-161 6.62e-217 3.96e-158 1.15e-143 4.83e-235

W3G3 |x1 − α| 2.88e-12 1.32e-14 5.92e-11 8.83e-13 2.35e-10 6.92e-10 2.34e-14
|x2 − α| 2.73e-191 3.53e-222 1.98e-159 1.42e-189 1.72e-155 9.65e-146 6.62e-225

W3G4 |x1 − α| 2.04e-12 1.44e-14 5.95e-11 2.68e-13 2.38e-10 6.44e-10 1.73e-14
|x2 − α| 1.06e-193 1.42e-221 2.12e-159 7.32e-198 2.10e-155 2.95e-146 7.47e-227

W3G5 |x1 − α| 9.79e-13 2.20e-14 6.04e-11 7.52e-14 2.50e-10 5.12e-10 8.57e-15
|x2 − α| 7.45e-199 1.09e-218 2.42e-159 9.37e-207 3.89e-155 6.68e-148 1.79e-231

W3G6 |x1 − α| 9.07e-13 2.39e-14 6.05e-11 6.78e-14 2.51e-10 4.97e-10 7.92e-15
|x2 − α| 2.15e-199 4.05e-218 2.43e-159 1.75e-207 4.21e-155 4.01e-148 5.44e-232

W3G7 |x1 − α| 1.27e-14 1.00e-17 2.97e-12 1.05e-16 3.57e-10 1.38e-11 9.64e-16
|x2 − α| 4.98e-230 3.62e-274 5.80e-182 2.63e-254 2.21e-153 7.26e-174 5.88e-246

W3G8 |x1 − α| 2.07e-14 1.82e-16 1.74e-12 5.40e-16 3.62e-10 2.49e-11 1.04e-15
|x2 − α| 1.77e-226 2.62e-253 3.10e-185 2.59e-242 3.46e-153 1.19e-169 2.27e-245

W3G9 |x1 − α| 2.34e-14 2.40e-16 1.80e-12 6.90e-16 3.64e-10 2.88e-11 1.07e-15
|x2 − α| 1.45e-225 2.83e-251 6.66e-185 1.64e-240 4.02e-153 1.32e-168 3.55e-245

KT16 |x1 − α| 5.62e-17 4.41e-17 1.87e-12 1.85e-19 1.47e-13 2.44e-13 6.41e-19
|x2 − α| 7.30e-273 4.73e-264 3.87e-187 1.11e-300 1.31e-211 1.42e-206 4.32e-301

MBM |x1 − α| 5.81e-17 2.81e-17 2.30e-12 8.74e-20 5.26e-12 1.12e-13 9.07e-18
|x2 − α| 1.64e-270 5.23e-268 7.95e-186 6.25e-306 7.47e-186 3.34e-210 1.47e-281

SAK |x1 − α| 7.41e-17 1.13e-18 4.49e-14 1.90e-18 1.77e-12 3.37e-13 4.80e-18
|x2 − α| 4.02e-270 1.05e-291 2.58e-214 6.03e-285 6.04e-194 2.06e-203 3.05e-286

∗ 1.27e-17 ≡ 1.27× 10−17.
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Example 2. We have taken p2(z) as a cubic polynomial:

p2(z) = z3 + 4z2 − 10. (74)

Basins of attraction are given in Figure 2. Notice that the basins for W1A and W1C have many black points
and therefore will not be considered in the rest of the examples. Besides that, in view of a close inspection that the
basins for W3G3–W3G6 have similarities to the other remaining members of the listed W3G-family, we will
omit them in the rest of the examples. Consulting Tables 5–7, we find that the method with the fewest ANIP
is MBM with 2.22 iteration. All the others require between 2.71 and 12.12. In terms of CPU timein seconds,
the fastest is W3A (472.715 s) and the slowest is W1C (2399.093 s). The methods W1C and W1A have the most
black points (59,904 and 58,910, respectively) and SAK has the least number (6 points). We will not consider
W1A and W1C any further.

Table 5. Average number of iterations per point for each example (1–7).

Example

Map 1 2 3 4 5 6 7 Average

W1A 4.00 11.90 - - - - - -
W1C 4.08 12.12 - - - - - -
W2A 2.24 3.27 3.53 25.22 - - - -
W2D 2.46 3.56 2.82 5.11 4.92 - - -
W3A 2.04 2.86 2.30 2.70 7.91 6.59 2.17 3.80
W3C 2.02 2.82 2.24 2.58 2.64 5.65 2.19 2.88
W3F2 2.07 2.89 2.47 2.80 2.91 6.47 2.38 3.14
W3F3 2.21 2.72 2.45 2.77 2.86 6.18 2.34 3.08
W3G1 2.02 2.95 2.51 2.89 3.02 6.69 2.54 3.23
W3G2 2.03 2.98 2.50 2.88 2.99 6.67 2.48 3.22
W3G3 2.02 2.94 - - - - - -
W3G4 2.02 2.94 - - - - - -
W3G5 2.02 2.94 - - - - - -
W3G6 2.02 2.93 - - - - - -
W3G7 2.01 2.82 2.37 2.78 2.82 6.06 2.27 3.02
W3G8 2.01 2.84 2.40 2.83 2.88 6.18 2.37 3.07
W3G9 2.01 2.82 2.41 2.83 2.89 6.26 2.38 3.09
KT16 2.31 3.02 2.76 3.83 3.99 3.92 2.45 3.18
MBM 2.04 2.22 2.28 2.64 2.76 2.41 2.02 2.34
SAK 2.35 2.76 3.02 3.78 5.40 4.50 3.83 3.66

Table 6. CPU time (in seconds) required for each example(1–7) using a Dell Multiplex-990.

Example
Map 1 2 3 4 5 6 7 Average
W1A 631.680 2331.092 - - - - - -
W1C 635.548 2399.093 - - - - - -
W2A 380.768 604.769 695.952 5117.503 - - - -
W2D 446.646 664.393 582.336 1123.160 1143.846 - - -
W3A 316.370 472.715 406.102 497.284 1579.775 2199.567 461.358 847.596
W3C 354.466 529.495 451.421 542.509 615.892 1869.921 507.815 695.931
W3F2 561.791 850.642 771.487 843.607 948.190 2371.028 786.229 1018.996
W3F3 628.418 795.964 798.741 849.410 933.650 2378.079 785.855 1024.302
W3G1 541.432 820.160 726.855 836.680 978.782 2557.308 806.525 1038.249
W3G2 545.754 828.677 739.960 863.824 934.306 2553.424 799.552 1037.928
W3G3 575.986 575.986 - - - - - -
W3G4 555.738 851.375 - - - - - -
W3G5 577.750 867.132 - - - - - -
W3G6 573.116 836.446 - - - - - -
W3G7 562.321 809.676 724.812 828.927 896.834 2385.099 768.789 996.637
W3G8 557.828 803.140 720.288 837.039 909.143 2552.878 772.424 1021.820
W3G9 551.416 784.529 715.530 824.590 936.240 2462.929 770.333 1006.510
KT16 386.414 679.572 529.482 783.359 888.784 2427.189 564.770 894.224
MBM 831.189 1039.919 993.804 1157.589 1205.014 2045.282 923.011 1170.830
SAK 467.785 712.831 687.824 833.653 1376.600 2947.202 849.831 1125.104
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(1) W1A (2) W1C (3) W2A (4) W2D

(5) W3A (6) W3C (7) W3F2 (8) W3F3

(9) W3G1 (10) W3G2 (11) W3G3 (12) W3G4

(13) W3G5 (14) W3G6 (15) W3G7 (16) W3G8

(17) W3G9 (18) KT16 (19) MBM (20) SAK

Figure 2. The top row for W1A (left), W1C (center left), W2A (center right) and W2D (right). The second
row for W3A (left), W3C (center left), W3F2 (center right), and W3F3 (right). The third row for W3G1 (left),
W3G2 (center left), W3G7 (center right), and W3G8 (right). The bottom row for W3G9 (left), KT16 (center
left), MBM (center right) and SAK (right), for the roots of the polynomial equation (z3 + 4z2 − 10).

Example 3. We have taken p3(z) as another cubic polynomial:

p3(z) = z3 − z. (75)

All roots were easily found to be real. The basins for this example are plotted in Figure 3. The basins for
W2A, W2D, KT16, and SAK are too chaotic. Based on Table 5 we see that W3C has the lowest ANIP followed
closely by MBM. The fastest method is again W3A (406.102 s) and the slowest is W3G8 (2041.663 seconds).
The methods KT16, MBM, and SAK have no black points, and the rest have between 58 and 204 black points.
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(1) W2A (2) W2D (3) W3A (4) W3C

(5) W3F2 (6) W3F3 (7) W3G1 (8) W3G2

(9) W3G7 (10) W3G8 (11) W3G9 (12) KT16

(13) MBM (14) SAK

Figure 3. The top row for W2A (left), W2D (center left), W3A (center right) and W3C (right). The second
row for W3F2 (left), W3F3 (center left), W3G1 (center right), and W3G2 (right). The third row for
W3G7 (left), W3G8 (center left), W3G9 (center right), and KT16 (right). The bottom row for MBM (left),
SAK (center left), for the roots of the polynomial equation (z3 − z).

Table 7. Number of points requiring 40 iterations for each example (1–7).

Example

Map 1 2 3 4 5 6 7 Average

W1A 5425 58,910 - - - - - -
W1C 6051 59,904 - - - - - -
W2A 645 5852 118 218,849 - - - -
W2D 703 7494 204 10,785 13,828 - - -
W3A 627 5948 138 1333 49,167 36,443 1765 13,632
W3C 623 5485 150 1373 46 29,107 2283 5581
W3F2 683 4476 172 1349 94 35,728 3148 6521
W3F3 791 4196 70 1257 44 33,438 3036 6119
W3G1 685 5121 88 1325 66 36,524 4313 6875
W3G2 701 5170 86 1329 65 36,697 3859 6844
W3G3 679 4973 - - - - - -
W3G4 681 5007 - - - - - -
W3G5 679 5008 - - - - - -
W3G6 687 4893 - - - - - -
W3G7 703 4548 96 1365 54 32,565 2470 5972
W3G8 665 4753 114 1341 67 33,236 3203 6197
W3G9 677 4778 122 1301 52 33,935 3290 6308
KT16 601 640 0 1241 45 1457 3725 1101
MBM 601 89 0 1889 1704 5 644 705
SAK 601 6 0 1201 18 1 13720 2221
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Example 4. We have taken p4(z) as a quartic polynomial:

p4(z) = z4 − 1. (76)

The basins are given in Figure 4. We now see that W2A is the worst, followed by W2D. The best are those
with smaller lobes along the diagonals. In terms of ANIP, W3C is the best (2.58), followed by MBM (2.64),
and the worst is W2A (25.22). The fastest is again W3A (497.284 s), followed by W3C (542.509 s), and the
slowest is W2A (5117.503 s). Most of the methods have between 1201 and 1889 black points with the worst being
W2A with 218,849 points and W2D with 10,785 black points. We remove W2A from further consideration.

(1) W2A (2) W2D (3) W3A (4) W3C

(5) W3F2 (6) W3F3 (7) W3G1 (8) W3G2

(9) W3G7 (10) W3G8 (11) W3G9 (12) KT16

(13) MBM (14) SAK

Figure 4. The top row for W2A (left), W2D (center left), W3A (center right), and W3C (right). The second
row for W3F2 (left), W3F3 (center left), W3G1 (center right), and W3G2 (right). The third row for
W3G7 (left), W3G8 (center left), W3G9 (center right), and KT16 (right). The bottom row for MBM (left),
SAK (center left), for the roots of the polynomial equation (z4 − 1).
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Example 5. We have taken p5(z) as a quintic polynomial:

p5(z) = z5 − 1. (77)

The basins for the best methods left are plotted in Figure 5. The worst are W3A, W2D, and SAK. In terms
of ANIP, the best is W3C (2.64), followed closely by MBM (2.76), and the worst are W3A (7.91) and SAK (5.40).
The fastest is W3C using 615.892 s, followed by KT16 using 888.784 s, and the slowest was W3G1 (2409.685 s).
SAK has 18 black points, but the basins are chaotic. The highest number of black points is for W3A (49,176),
preceded by W2D with 13,828 black points. We remove W2D from further consideration.

(1) W2D (2) W3A (3) W3C (4) W3F2

(5) W3F3 (6) W3G1 (7) W3G2 (8) W3G7

(9) W3G8 (10) W3G9 (11) KT16 (12) MBM

(13) SAK

Figure 5. The top row for W2D (left), W3A (center left), W3C (center right) and W3F2 (right). The second
row for W3F3 (left), W3G1 (center left), W3G2 (center right) and W3G7 (right). The third row for W3G8
(left), W3G9 (center left), KT16 (center right) and MBM (right). The bottom row for SAK (center), for
the roots of the polynomial equation (z5 − 1).
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Example 6. We have taken p6(z) as a sextic polynomial with complex coefficients:

p6(z) = z6 − 1
2

z5 +
11(i + 1)

4
z4 − 3i + 19

4
z3 +

5i + 11
4

z2 − i + 11
4

z +
3
2
− 3i. (78)

The basins for the best methods left are plotted in Figure 6. It is clear that the SAK is very chaotic. Based on
Table 5, we find that MBM has the lowest ANIP (2.41) followed by KT16 (3.92). The fastest method is W3C
(1869.921 s), followed by MBM (2045.282 s), and W3A (2199.567 s). The slowest is SAK taking 2947.202 s.
There are two methods with five black points or fewer, namely, SAK and MBM. The highest number is for W3G2
with 36,697 black points. In fact, all our new methods have over 29,000 black points.

(1) W3A (2) W3C (3) W3F2 (4) W3F3

(5) W3G1 (6) W3G2 (7) W3G7 (8) W3G8

(9) W3G9 (10) KT16 (11) MBM (12) SAK

Figure 6. The top row for W3A (left), W3C (center left), W3F2 (center right), and W3F3 (right). The second
row for W3G1 (left), W3G2 (center left), W3G7 (center right), and W3G8 (right). The bottom row for W3G9 (left),
KT16 (center left), and MBM (center right) and SAK (right), for the roots of the polynomial equation z6 − 1

2 z5 +
11(i+1)

4 z4 − 3i+19
4 z3 + 5i+11

4 z2 − i+11
4 z + 3

2 − 3i.

Example 7. We have taken p7(z) as a nonpolynomial equation:

p7(z) =
(

ez+1 − 1
)
(z− 1). (79)

The basins for this example are plotted in Figure 7. The roots are at ±1 and it is expected that the boundary
will be close to the imaginary axis as in Example 1. All methods show a larger basin for the root at −1.
The methods with the largest basin for +1 are W3A, W3C, and MBM. In terms of ANIP, MBM was best (2.02),
followed closely by W3A (2.17) and W3C (2.19). The worst is SAK with 3.83. The fastest method is W3A
(461.358 s) and the slowest is MBM (923.011 s). MBM has the least number of black points (644) and SAK has
the highest (13720) such number.
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We now average all these results across the seven examples to try and pick the best method. MBM had the
lowest ANIP (2.34), followed by W3C with 2.88. The fastest method was W3C (695.931 s), followed by W3A
(847.596 s). MBM has the lowest number of black points on average (705), followed by KT16 (1101 black points).

Based on these seven examples we see that MBM and W3C have three examples with the lowest ANIP,
W3G7, W3G8, and W3G9 each with one example. W3A is the fastest in five examples and W3C in two examples.
Thus, we recommend W3C and W3G7, since W3C is in the top four and W3G7 in the top five in all three
categories. MBM was at the top in only two categories, KT16 is in top three in two categories, and W3F3 and
W3G9 were in the top six in two categories.

(1) W3A (2) W3C (3) W3F2 (4) W3F3

(5) W3G1 (6) W3G2 (7) W3G7 (8) W3G8

(9) W3G9 (10) KT16 (11) MBM (12) SAK

Figure 7. The top row for W3A (left), W3C (center left), W3F2 (center right), and W3F3 (right).
The second row for W3G1 (left), W3G2 (center left), W3G7 (center right), and W3G8 (right). The bottom
row for W3G9 (left), KT16 (center left), and MBM (center right) and SAK (right), for the roots of
non-polynomial equation

(
ez+1 − 1

)
(z− 1).

5. Conclusions

Both numerical and dynamical aspects of Iterative Maps (5) support the main theorem well
through a number of test equations and examples. The W3F and W3G methods were observed to
occupy relatively slower CPU time due to the intensive use of rational coefficients for weight function
J f . If less number of the rational coefficients were employed, it would take less CPU time to build the
relevant basins of attraction.

The proposed Family of Methods (5) favorably cover most of optimal sixteenth-order simple-root
finders with certain weight functions developed (or to be developed), since they employ fairly generic
weight functions. The dynamics behind the purely imaginary extraneous fixed points will choose best
members of the family with improved convergence behavior. However, due to the order of convergence
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is rather high, the required algebra encounters difficulty resolving its increased complexity. The current
work is limited to univariate nonlinear equations; its extension to multivariate ones becomes another
task. In future work, as a follow-up study, we will not only extend Case 3 with other combinations
of simple coefficients qi, ri, but also investigate different types of weight functions possessing less
number of rational coefficients to obtain purely imaginary extraneous fixed points, and strengthen the
desired computational as well as dynamical behavior.
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