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This paper discusses the numerical solution of
first order initial value problems and a special
class of second order ones (those not containing
first derivative). Two classes of methods are
discussed, super-implicit and Obrechkoff. We will
show equivalence of super-implicit and Obrechkoff
schemes. The advantage of Obrechkoff methods is
that they are high order one-step methods and
thus will not require additional starting values.
On the other hand they will require higher
derivatives of the right hand side. In case the
right hand side is complex, we may prefer
super-implicit methods. The super-implicit
methods may in general have a larger error
constant, but one can get the same error constant
for the cost of an extra future value.

Introduction

In this paper* we discuss the numerical solu-
tion of first order initial value problems (IVPs)

y(x) = flzy),
y(O) = Y% (1)

and a special class (for which y’ is missing) of
second order TVPs

y”(l‘) = f($’y($))’
y(0) = wo, ¥'(0) = wp. 2)

There is a vast literature for the numerical solu-

tion of these problems as well as for the general
second order IVPs

y//($) = f(x,%/(x),y/(/ﬁ))’ (3)
y(0) = o, ¥ (0) =y

See for example the excellent book by

Lambert®. Here we are interested specifically in
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two classes of methods. The first class, called
super-implicit, was developed recently by the
second author?® for the first order IVPs (1) and
for the special second order TVPs (2). The
methods are called super-implicit because they
require the knowledge of functions not only at
past and present but also at future time steps.
Fukushima developed Cowell and Adams type
super-implicit methods of arbitrary degree and
auxiliary formulas to be used in the starting
procedure. The resulting methods work as a
one-step methods integrating a large time in-
terval (on the order of tens of orbital periods).
Symmetric Cowell type methods of order up
to 12 are given. The integration error grows
linearly with respect to time as in symmetric
multistep methods.

The second one is due to Obrechkofff 10,
These methods for the solution of first order
IVPs (1) are given by (see e.g. Lambert®, pp.
199-204, or Lambert and Mitchell?)

k 4 k
doair = Y By
=0 i=1 ;=0

Ozkzl

According to Lambert and Mitchell”, the er-
ror constant decreases more rapidly with in-
creasing / rather than the step k. It 1s dif-
ficult to satisfy the zero stability for large k.
The weak stability interval appears to be small.
The advantage of Obrechkoff methods is the
fact that these are one-step high order meth-
ods and as such do not require additional start-

ing values. A list of Obrechkofl methods for

tBulgarian mathematician Academician Nikola
Obrechkoff (1896-1963, born in Varna) who did pio-
neering work in such diverse fields as analysis, algebra,
number theory, numerical analysis, summation of di-
vergent series, probability and statistics.



£ =1,2,...,b—k, k = 1,2,3,4 is given in
Lambert and Mitchell”. For example for k = 1
and ¢ = 2 we get an implicit method of order 4
with an error constant

C5 = 750

and the method 1s
h
Yntl — Yn = 9 (y;L-H + y;z)
; )
BT (yZH - y;{)

For k =1 and £ = 3 we get an implicit method
of order 6 with an error constant

1
100800

Cr
and the method 1s
h
5 (3/24-1 + yé)

Ynt+l — Yn =

h2

- 10 (yn+1 - yn) (6)
3
+ g (W + )

Obrechkoff methods for the solution of
second order IVPs (2) can be found
in  Ananthakrishnaiah®. Here P-Stable
Obrechkoff methods with minimal phase-lag for
periodic initial-value problems are discussed.
Also Simos'® presents P-stable Obrechkoff
method. In Rai and Ananthakrishnaiah'!
Obrechkoff methods for general second-order
differential equations (3) are developed.

Before we continue, we need several defini-
tions. For the multistep method to solve the

first order IVP

k

k
Z AiYnti = hZ bifnti (7)

1=0 =0

we define the characteristic polynomials

and

The order of the method is defined to be p if
for an adequately smooth arbitrary test func-

tion {(x),
k k
D aiC(w+ih) — kY b (w +ih) =
7=0 i=0
Cppth"H I (@) + O(h7F?)

where ()41 is the error constant. The method
1s assumed to satisfy the following:

—_

- ap =1, |ao|+ [bo| # 0,
2. p and ¢ have no common factor,
3. p(1) =0, p'(1) = o(1) (consistency)

4. The method is zero-stable (relates to the
magnitude of the roots of p)

For the multistep method to solve the second

order IVP

k

k
> aiynsi = b7 bifayi (10)

1=0 =0

we define the characteristic polynomials p and
o as before.

The order of the method is defined to be p if
for an adequately smooth arbitrary test func-

tion {(x),

k
> ail(z +ih) — hzzb(’”x—i—zh)

7=0 i=0
Cp+2h1’+2c(1’+2)(x) 4 O(hp+3)

where ()45 is the error constant. The method
1s assumed to satisfy the following:

k
1. ap = 1a |Clo| + |b0| ;é 0’ Z |bl| ;é Oa

i=0

2. p and ¢ have no common factor,

3 p(1) = (1) =
tency)

0, p”(1) = 20(1) (consis-

4. The method is zero-stable
The method is called symmetric if

a; = Ak —q, bi:bk—i fOIiIO,l,...,k.



Definition (Lambert and Watson®) The
method described by the characteristic polyno-
mials p, ¢ is said to have interval of periodicity
(0, HZ) if for all H? in the interval the roots of

V(w, H?) = p(w) + H*o(w) = 0, H =wh
satisfy:

0 (H) —i6(H)

wp =¢' , W2 =€ )

|w5|§]"8:3’4""’k’

where #(H) is a real function.

Definition (Lambert and Watson®) The
method described by the characteristic poly-
nomials p, o is said to be P-stable if its interval
of periodicity is (0, 00).

Lambert and Watson proved that a method
described by p,o has a nonvanishing inter-
val of periodicity only if it is symmetric and
for P-stability the order cannot exceed 2.
Fukushima?® has proved that the condition is
also sufficient. However higher order P-stable
methods were developed by introducing off-
step points or higher derivatives of f(z,y).

Definition (Brusa and Nigro?) Phase-lag is
the leading coefficient in the expansion of
(6(H) — H)/H].

Symmetric two-step Obrechkoff methods in-
volving higher order derivatives were developed
by Ananthakrishnaiah?.

First Order IVPs

To show the similarity between Obrechkoff
and super implicit methods, let us consider the
method given by (5). Now if we approximate
the higher order derivatives (in this case y”)
by some finite differences we get super implicit
methods (see Fukushima®). Clearly the ap-
proximation must be of high enough order so
as to preserve the order of Obrechkoff method.
If this is not done, we may get a super implicit
method of a lower order. For example, sup-
pose we use centered differences for the second
derivatives, then

Y1 — Yn—
y;f = % (11)

11 _ y;L-I—Z B y;l
e = T

Substituting these in (5), we get a second order
approximation:

h
Yn+1l — Yn Y (3/2+2 - 3/2—1)
(12)
13h
+ EYN (3/24-1 + yé)

Using MAPLE!2, we find that the truncation
error is

£h5 (5) 4 O(h6)

720" Y

so the method is actually fourth order. Notice
that the error constant is 11 times larger than
the original Obrechkoff method (5). We had to
pay a price for not requiring y” and it comes in
the form of larger error constant and requiring
a future value (y,42).

If we take a forward approximation of order
three

1
Y = % (3/;1+1 - yil—l)

1
~Toh (Y2 = 20n41 + 291 — Yp_o)
(13)
we get a third order approximation:
h h 5h
Yn+1 — Yn = myn+3 - Eyn+2 + ?ynﬂ—l
n 5h h n h
9 Yn 16yn—1 144yn—2

(14)
Again using MAPLE'?  we find that the trun-
cation error is

NG 6

—gh" v + O(k%)

so the method is actually fourth order. This
time we have the same error constant as
Obrechkoff method (5), but require more fu-
ture values than before. It doesn’t seem to be
worthwhile. The price now is 2 future values to
get the same error constant. For this price, we
can get a higher order super-implicit method.

Second Order IVPs

The numerical integration methods for (2)
can be divided into two distinct classes: (a)
problems for which the solution period 1s
known (even approximately) in advance; (b)
problems for which the period is not known!.



For the first class, see Gautschi® and Neta® and
references there. Here we consider the second
class only.

In this section we take the P-stable method
of order six given by Ananthakrishnaiah!

Yn+1 — 2Yn + Yn-1 =

2

h
20 (y;L/-H + 18y + i _1)

15)
h4 (
—————(ygfl-22y5”4-y§91)

h® () 6
248 1 )
* 14400 (y”“'F Y F Y-
and show how to get a super-implicit method
equivalent to it. This method has a truncation
error

_ 1 hSy(S) +0 <h10)

50400
and 1t’s of minimal phase-lag. In order to get a
super-implicit, we expand 3/516421 + 18y£16) + 31516—)1
in terms of y" at n and neighboring points, i.e.
(6) 94/(6) (6) _ A + By
Ynt1 T 20" T Ypl1 = AYp + BYps
(16)

+Cyp_1 + Dy o + Ey,

where the undetermined coefficients can be
found by comparing coefficients of the Taylor
series expansion on both sides. The resulting
system of equations is

A+ B+C+D+E =
B—C+2(D—E)
B+C+4(D+E) =
B—C+8(D—E)

B+C+16(D+E) =

= O O O O

94 (17)

h*
B-C+32(D—E) = 0

With 5 unknowns we can satisfy the first 5
equations, but it turns out that the symmetric
property of the solution satisfies also the sixth
automatically. It is easy to see that

24

A = ﬁ
16

B=C = —3 (18)
4

D=F = —

Thus

yoly 2 4l =

24y, — 16y 41 + Yn—1) +4HYn o + Yn_2)
e

(19)
Now we do the same for the 4t order deriva-
tives
)y — 2280+ yl ) = ayl byl
(20)

+ey, g + dyg+2 + ey o

where the undetermined coefficients can be

found in a similar fashion. It is easy to see
that

_ 168
“ 32
92

b=¢c = —3? (21)
8
d=c = 33

Thus
ity — 22y + gl =

168y, — 92(yn 1 + Yn—1) + 8(Yn o + ¥n_2)
3h2

(22)
Substituting (19) and (22) into (15) we have
after collecting terms,

97
n — 2y, n—-1 = h2 —yn
Yn+1 = 2Yn + Yn—1 {120yn

1 1
+E (Yns1 +Yn_1) — 520 (yn o + y;{_z)}
(23)

which is the sixth order method given as equa-
tion (3) in Fukushima®. The error constant of
this sixth order method 1s

1!
® 7 60480
which is larger than the error constant for the
P-stable sixth order method (15) of Ananthakr-
ishnaiah by a factor of more than 25. Are su-
per implicit methods always giving larger error
constant? In first order IVPs we showed that
we can get the same error constant if we allow
an extra future value (two instead of one). We
now get a super-implicit method of the same



order and error constant. The price is an ex-
tra future value. It can be shown that

1723 ,

n — 2y, n— :h2
Yn+1 = 2Yn + Yn—1 {2160yn

311 1 1
+2880 (yn+1 + yn—l)

53 11 11 23 11 11
7900 Wnee +¥i-a) + oy (s + vio)
(24)
has an error constant of
1
Cg = ————
® 50400

exactly as (15). For this price, Fukushima?® has
obtained an eighth order method.
We try the eighth order super-implicit

12067 ,,

n — 2y, n— :h2
Ynt1 = 2Yn + Yn-1 {15m0y"

2171 1 1 73 1 1
+20160 (yn+1 + yn—l) 10080 (yn+2 + yn—Z)

31
+ 50480 (Y4 + yg—?))}
(25)
Again using MAPLE, we find the error con-
stant

289
3628800

Compare this to the eighth order Obrechkoff
method of Ananthakrishnaiah! with an error

C110:_

constant

2

710!

The super implicit has an error constant more
than 1012 times larger. We can create su-
per implicit method of the same error constant
but requiring more future values than the ones
in Fukushima®. These additional future val-
ues can be used to increase the order. We
must remark here that future values require
more starting steps. For example the eighth or-
der super-implicit of Fukushima requires three
steps before actually using it. Formulas for
these steps are also given by Fukushima.

C110 =

Numerical Implementation Issues

To demonstarte how to implement the super-
implicit methods, we consider the sixth or-
der one as an example. In order to start the

method, we need yg, the initial value, as well
as y; and ys. These two values were obtained
by special super implicit methods of the same
order given in Fukushima3:

367
— h ! hZ 1
Y1 = yo + nyy + {—14403/0
3, 47 29 7 20
R/ 1" "o 7
TR T oY T3 ? 480y4}
19
— _ 2) =
Y2 =2y —yo+ h {2403/0
17 7 | | 0
o o 1"
TR TR IR 240y4}

For linear problems, this leads to a banded sys-
tem of N x N equations with a bandwidth of
5. But in general, we get a nonlinear system
of N equations. This system requires an initial
guess. If we want to continue after N steps, we
need the velocity at that point, which can be
approximated by

;YN —Yn-1 h 7y, 29

Y= + 1R0YN-4 T 30 YN-3
47 3, 367 ,,

+ 2403/N—2 83/N—1 144OyN

(28)
Fukushima?® asserts that the super-implicit
methods are less practical for scalar computers
but lends themselves quite easily to parallelism.

The Obrechkoftf methods require additional
formulas. For example ¥ is needed in calculat-
ing the higher derivatives.

Conclusion

In this paper we showed the equivalence of
super-implicit and Obrechkoff methods. The
advantage of Obrechkoff methods is that they
are high order one-step methods and thus will
not require additional starting values. On the
other hand they will require higher derivatives
of the right hand side. In case the right hand
side 1s complex, we may prefer super-implicit
methods. Omne can use super-implicit meth-
ods given by Fukushima. In general, these
methods have larger error constants. We have
found here that one can develop super-implicit
methods having the same error constants as
Obrechkoff but requiring an extra future value.



This extra future value can be used instead to
increase the order of the method.
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