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a b s t r a c t

Large time behavior of solutions and finite difference approximation of a nonlinear system
of integro-differential equations associated with the penetration of a magnetic field into
a substance is studied. Two initial-boundary value problems are investigated: the first
with homogeneous conditions on whole boundary and the second with nonhomogeneous
boundary data on one side of lateral boundary. The rates of convergence are also given.
Mathematical results presented show that there is a difference between stabilization
rates of solutions with homogeneous and nonhomogeneous boundary conditions. The
convergence of the corresponding finite difference scheme is also proved. The decay of the
numerical solution is compared with the analytical results.
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1. Introduction

Integro-differential equations and systems of such equations arise in the study of various problems in physics, chemistry,
technology, economics etc. Such systems arise, for instance, for mathematical modelling of the process of penetrating of
magnetic field in the substance. If the coefficient of thermal heat capacity and electroconductivity of the substance is highly
dependent on temperature, then Maxwell’s system, that describe the process of penetration of a magnetic field into a
substance [1], can be rewritten in the following form [2]:

∂H
∂t
= −rot

[
a
(∫ t

0
|rotH|2 dτ

)
rotH

]
, (1.1)

where H = (H1,H2,H3) is a vector of the magnetic field and the function a = a(S) is defined for S ∈ [0,∞).
If the magnetic field has the form H = (0,U, V ) and U = U(x, t), V = V (x, t), then we have

rot(a(S)rotH) =
(
0,−

∂

∂x

(
a(S)

∂U
∂x

)
,−

∂

∂x

(
a(S)

∂V
∂x

))
.

Therefore, we obtain the following system of nonlinear integro-differential equations:

∂U
∂t
=
∂

∂x

[
a

(∫ t

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dτ

)
∂U
∂x

]
,

∂V
∂t
=
∂

∂x

[
a

(∫ t

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dτ

)
∂V
∂x

]
.

(1.2)
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Note that the system (1.2) is complex, but special cases were investigated, see [2–7]. The existence of global solutions
for initial-boundary value problems of such models have been proven in [2,3,7] by using the Galerkin and compactness
methods [8,9]. For solvability and uniqueness properties for initial-boundary value problems (1.2), see e.g. [4–6]. The
asymptotic behavior of the solutions of (1.2) have been the subject of intensive research in recent years, (see e.g. [7,10]).
Laptev [5] proposed some generalization of equations of type (1.1). Assume that the temperature of the considered body

is constant throughout the material, i.e., depending on time, but independent of the space coordinates. If the magnetic field
again has the form H = (0,U, V ) and U = U(x, t), V = V (x, t), then the same process of penetration of the magnetic field
into the material is modeled by the following system of integro-differential equations [5]:

∂U
∂t
= a

(∫ t

0

∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dxdτ

)
∂2U
∂x2

,

∂V
∂t
= a

(∫ t

0

∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dxdτ

)
∂2V
∂x2

.

(1.3)

The purpose of this work is to study the asymptotic behavior of solutions of the initial-boundary value problem for the
system (1.3) and the convergence of the finite difference approximation for the case a(S) = 1+S. The solvability, uniqueness
and asymptotics to the solutions of (1.3) type scalar models are studied in [7,11].
Note that in [12,13] difference schemes for (1.2) type models were investigated. Difference schemes for one nonlinear

parabolic integro-differential scalar model similar to (1.2) were studied in [14]. Difference schemes for the scalar equation
of (1.3) type with a(S) = 1+ S were studied in [15].
The rest of the paper is organized as follows. In Section 2 large time behavior of solutions of the initial-boundary value

problem with zero lateral boundary data for the system (1.3) with a(S) = 1 + S is discussed. Section 3 is devoted to the
study of the problem with non-zero boundary data in part of lateral boundary. In Section 4 the finite difference scheme for
(1.3) is investigated. We close with a section on numerical implementations and present the numerical results comparing
the decay rate to the theoretical results.

2. The problem with zero boundary conditions

Consider the following initial-boundary value problem:

∂U
∂t
= (1+ S)

∂2U
∂x2

,
∂V
∂t
= (1+ S)

∂2V
∂x2

, (x, t) ∈ Q = (0, 1)× (0,∞), (2.1)

U(0, t) = U(1, t) = V (0, t) = V (1, t) = 0, t ≥ 0, (2.2)
U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ [0, 1], (2.3)

where

S(t) =
∫ t

0

∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dxdτ

and U0 = U0(x), V0 = V0(x) are given functions.
The existence and uniqueness of the solution of such problems in suitable classes are proved in [7]. Now we are going to

estimate the solution of the problem (2.1)–(2.3).
Recall the L2-inner product and norm:

(u, v) =
∫ 1

0
u(x)v(x)dx, ‖u‖ = (u, u)1/2.

We use the well-known Sobolev spaces Hk(0, 1) and Hk0(0, 1).

Theorem 2.1. If U0, V0 ∈ H10 (0, 1), then for the solution of problem (2.1)–(2.3) the following estimate is true

‖U‖ +
∥∥∥∥∂U∂x

∥∥∥∥+ ‖V‖ + ∥∥∥∥∂V∂x
∥∥∥∥ ≤ C exp(− t2

)
.

Remark: Note that here and in the following second and third sections, C , Ci and c denote positive constants independent
of t .
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Proof. Let us multiply the first equation of the system (2.1) by U and integrate on the interval (0, 1). Using the boundary
conditions (2.2) and integration by parts, we get

1
2
d
dt
‖U‖2 +

∫ 1

0
(1+ S)

(
∂U
∂x

)2
dx = 0.

From this, using Poincare’s inequality and the nonnegativity of S(t)we obtain

1
2
d
dt
‖U‖2 +

∥∥∥∥∂U∂x
∥∥∥∥2 ≤ 0, 1

2
d
dt
‖U‖2 + ‖U‖2 ≤ 0. (2.4)

Analogously,

1
2
d
dt
‖V‖2 +

∥∥∥∥∂V∂x
∥∥∥∥2 ≤ 0, 1

2
d
dt
‖V‖2 + ‖V‖2 ≤ 0. (2.5)

Let us multiply the first equation of the system (2.1) by ∂2U/∂x2. Using again integration by parts we have

∂U
∂t
∂U
∂x

∣∣∣∣1
0
−

∫ 1

0

∂2U
∂t∂x

∂U
∂x
dx =

∫ 1

0
(1+ S)

(
∂2U
∂x2

)2
dx.

Taking into account (2.2), from the last equality we get

1
2
d
dt

∥∥∥∥∂U∂x
∥∥∥∥2 + (1+ S) ∥∥∥∥∂2U∂x2

∥∥∥∥2 = 0, (2.6)

or

d
d t

∥∥∥∥∂U∂x
∥∥∥∥2 ≤ 0. (2.7)

Analogously,

d
dt

∥∥∥∥∂V∂x
∥∥∥∥2 ≤ 0. (2.8)

Using inequalities (2.4), (2.5), (2.7) and (2.8) we receive

exp(t)
d
dt

(
‖U‖2 + ‖V‖2

)
+ exp(t)

(
‖U‖2 + ‖V‖2

)
+ exp(t)

d
dt

(∥∥∥∥∂U∂x
∥∥∥∥2 + ∥∥∥∥∂V∂x

∥∥∥∥2
)
+ exp(t)

(∥∥∥∥∂U∂x
∥∥∥∥2 + ∥∥∥∥∂V∂x

∥∥∥∥2
)
≤ 0.

From this we get

d
dt

[
exp(t)

(
‖U‖2 + ‖V‖2 +

∥∥∥∥∂U∂x
∥∥∥∥2 + ∥∥∥∥∂V∂x

∥∥∥∥2
)]
≤ 0.

This inequality immediately proves Theorem 2.1. �
Note that Theorem 2.1 gives exponential stabilization of the solution of the problem (2.1)–(2.3) in the norm of the space

H1(0, 1). Let us show that the stabilization is also achieved in the norm of the space C1(0, 1). In particular, let us show that
the following statement holds.

Theorem 2.2. If U0, V0 ∈ H4(0, 1) ∩ H10 (0, 1), then for the solution of problem (2.1)–(2.3) the following relations hold:∣∣∣∣∂U(x, t)∂x

∣∣∣∣ ≤ C exp(− t2
)
,

∣∣∣∣∂V (x, t)∂x

∣∣∣∣ ≤ C exp(− t2
)
,∣∣∣∣∂U(x, t)∂t

∣∣∣∣ ≤ C exp(− t2
)
,

∣∣∣∣∂V (x, t)∂t

∣∣∣∣ ≤ C exp(− t2
)
.

To this end we need the following Lemma.
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Lemma 2.1. For the solution of problem (2.1)–(2.3) the following estimate holds∥∥∥∥∂U(x, t)∂t

∥∥∥∥+ ∥∥∥∥∂V (x, t)∂t

∥∥∥∥ ≤ C exp(− t2
)
.

Proof. Let us differentiate the first equation of the system (2.1) with respect to t

∂2U
∂t2
= (1+ S)

∂3U
∂x2∂t

+

(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)
∂2U
∂x2

(2.9)

and multiply by ∂U/∂t . Using integration by parts and boundary conditions (2.2), we deduce

1
2
d
dt

∫ 1

0

(
∂U
∂t

)2
dx+ (1+ S)

∫ 1

0

(
∂2U
∂x∂t

)2
dx+

(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

) ∫ 1

0

∂U
∂x

∂2U
∂x∂t

dx = 0,

or

d
dt

∫ 1

0

(
∂U
∂t

)2
dx+ 2(1+ S)

∫ 1

0

(
∂2U
∂x∂t

)2
dx = −2

(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)∫ 1

0

∂U
∂x

∂2U
∂x∂t

dx.

Now the right-hand side can be estimated as follows:

−2

(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)∫ 1

0

∂U
∂x

∂2U
∂x∂t

dx

≤

∣∣∣∣∣
∫ 1

0
2

{
(1+ S)−1/2

(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)
∂U
∂x

}{
(1+ S)1/2

∂2U
∂x∂t

}
dx

∣∣∣∣∣
≤

∫ 1

0
(1+ S)−1

{(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)
∂U
∂x

}2
dx+

∫ 1

0
(1+ S)

(
∂2U
∂x∂t

)2
dx.

Therefore,

d
dt

∫ 1

0

(
∂U
∂t

)2
dx+ (1+ S)

∫ 1

0

(
∂2U
∂x∂t

)2
dx ≤ (1+ S)−1

{∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

}2 ∫ 1

0

(
∂U
∂x

)2
dx. (2.10)

Using Poincare’s inequality, Theorem 2.1, the nonnegativity of S(t) and relation (2.10) we arrive at

d
dt

(
exp(t)

∥∥∥∥∂U∂t
∥∥∥∥2
)
≤ C exp(−2t),

or ∥∥∥∥∂U∂t
∥∥∥∥ ≤ C exp(− t2

)
.

A similar argument show that∥∥∥∥∂V∂t
∥∥∥∥ ≤ C exp(− t2

)
.

This proves Lemma 2.1. �
Now we turn to the proof of Theorem 2.1.

Proof. Let us estimate ∂2U/∂x2 in the norm of the space L1(0, 1). From the first equation of the system (2.1) we have

∂2U
∂x2
= (1+ S)−1

∂U
∂t
. (2.11)

Integrating on (0, 1) and using Schwarz’s inequality we get∫ 1

0

∣∣∣∣∂2U∂x2
∣∣∣∣ dx = ∫ 1

0

∣∣∣∣(1+ S)−1 ∂U∂t
∣∣∣∣ dx ≤ [∫ 1

0
(1+ S)−2dx

]1/2 [∫ 1

0

(
∂U
∂t

)2
dx

]1/2
.
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Applying Lemma 2.1 and taking into account the nonnegativity of S(t)we derive∫ 1

0

∣∣∣∣∂2U∂x2
∣∣∣∣ dx ≤ C exp(− t2

)
.

From this, taking into account the relation

∂U(x, t)
∂x

=

∫ 1

0

∂U(y, t)
∂y

dy+
∫ 1

0

∫ x

y

∂2U(ξ , t)
∂ξ 2

dξdy

and the boundary conditions (2.2), it follows that∣∣∣∣∂U(x, t)∂x

∣∣∣∣ = ∣∣∣∣∫ 1

0

∫ x

y

∂2U(ξ , t)
∂ξ 2

dξdy
∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣∂2U(y, t)∂y2

∣∣∣∣ dy ≤ C exp(− t2
)
.

Analogously,∣∣∣∣∂V (x, t)∂x

∣∣∣∣ ≤ C exp(− t2
)
.

At the next step, let us estimate ∂U/∂t in the norm of the space C1(0, 1). Let us multiply the first equation of the system
(2.1) by ∂3U/∂x2∂t . Using integration by parts we get

∂U
∂t

∂2U
∂x∂t

∣∣∣∣1
0
−

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 = (1+ S) ∫ 1

0

∂2U
∂x2

∂3U
∂x2∂t

dx. (2.12)

Taking into account the equality∫ 1

0

∂3U
∂x2∂t

∂2U
∂x2
dx =

1
2
d
dt

∥∥∥∥∂2U∂x2
∥∥∥∥2

and the boundary conditions (2.2) we arrive at

1+ S
2

d
dt

∥∥∥∥∂2U∂x2
∥∥∥∥2 + ∥∥∥∥ ∂2U∂x∂t

∥∥∥∥2 = 0,
or

d
dt

∥∥∥∥∂2U∂x2
∥∥∥∥2 ≤ 0. (2.13)

Note that from (2.12) we have∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 ≤ 1+ S2

∥∥∥∥∂2U∂x2
∥∥∥∥2 + 1+ S2

∥∥∥∥ ∂3U∂x2∂t

∥∥∥∥2 . (2.14)

Let us multiply the Eq. (2.9) by ∂3U/∂x2∂t . Integration by parts gives

∂2U
∂t2

∂2U
∂x∂t

∣∣∣∣1
0
−

∫ 1

0

∂3U
∂x∂t2

∂2U
∂x∂t

dx = (1+ S)
∥∥∥∥ ∂3U∂x2∂t

∥∥∥∥2 +
(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)∫ 1

0

∂2U
∂x2

∂3U
∂x2∂t

dx.

The last equality, by taking into account boundary conditions (2.2), can be rewritten as follows

d
dt

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 + 2(1+ S) ∥∥∥∥ ∂3U∂x2∂t

∥∥∥∥2 = −2
(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)∫ 1

0

∂2U
∂x2

∂3U
∂x2∂t

dx.

We estimate the right-hand side in a similar fashion as we have done to obtain (2.10). It is easy to see that

d
dt

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 + (1+ S) ∥∥∥∥ ∂3U∂x2∂t

∥∥∥∥2 ≤ (1+ S)−1
{∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

}2 ∫ 1

0

(
∂2U
∂x2

)2
dx.

Using Theorem 2.1, relation (2.11) and Lemma 2.1 we arrive at

d
dt

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 + (1+ S) ∥∥∥∥ ∂3U∂x2∂t

∥∥∥∥2 ≤ C exp(−3t). (2.15)
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Combining (2.4), (2.6) and (2.13)–(2.15) we get

‖U‖2 +
d
dt
‖U‖2 +

∥∥∥∥∂U∂x
∥∥∥∥2 + ddt

∥∥∥∥∂U∂x
∥∥∥∥2 + 2(1+ S) ∥∥∥∥∂2U∂x2

∥∥∥∥2 + ddt
∥∥∥∥∂2U∂x2

∥∥∥∥2
+

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 + ddt

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 + (1+ S) ∥∥∥∥ ∂3U∂x2∂t

∥∥∥∥2
≤
1+ S
2

∥∥∥∥∂2U∂x2
∥∥∥∥2 + 1+ S2

∥∥∥∥ ∂3U∂x2∂t

∥∥∥∥2 + C exp(−3t).
From this, keeping in mind the nonnegativity of S(t), we deduce

‖U‖2 +
d
dt
‖U‖2 +

∥∥∥∥∂U∂x
∥∥∥∥2 + ddt

∥∥∥∥∂U∂x
∥∥∥∥2 + ∥∥∥∥∂2U∂x2

∥∥∥∥2 + ddt
∥∥∥∥∂2U∂x2

∥∥∥∥2 + ∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 + ddt

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 ≤ C exp(−3t).

After multiplying by the function exp(t)we get

d
dt

[
exp(t)

(
‖U‖2 +

∥∥∥∥∂U∂x
∥∥∥∥2 + ∥∥∥∥∂2U∂x2

∥∥∥∥2 + ∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2
)]
≤ C exp(−2t).

Integration from 0 to t gives

‖U‖2 +
∥∥∥∥∂U∂x

∥∥∥∥2 + ∥∥∥∥∂2U∂x2
∥∥∥∥2 + ∥∥∥∥ ∂2U∂x∂t

∥∥∥∥2 ≤ C exp(−t).
From this, taking into account Lemma 2.1, it follows that∣∣∣∣∂U(x, t)∂t

∣∣∣∣ = ∣∣∣∣∫ 1

0

∂U(y, t)
∂t

dy+
∫ 1

0

∫ x

y

∂2U(ξ , t)
∂ξ∂t

dξdy
∣∣∣∣

≤

[∫ 1

0

(
∂U(x, t)
∂t

)2
dx

]1/2
+

∫ 1

0

∣∣∣∣∂2U(y, t)∂y∂t

∣∣∣∣ dy ≤ C exp(− t2
)
.

Analogously,∣∣∣∣∂V (x, t)∂t

∣∣∣∣ ≤ C exp(− t2
)
.

This completes the proof of Theorem 2.2. �

3. The problem with non-zero data on one side of lateral boundary

Consider again the system:

∂U
∂t
= (1+ S)

∂2U
∂x2

,
∂V
∂t
= (1+ S)

∂2V
∂x2

, (3.1)

where as before

S(t) =
∫ t

0

∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dxdτ . (3.2)

In the domain Q for the system (3.1) and (3.2) let us consider the following initial-boundary value problem:

U(0, t) = V (0, t) = 0, U(1, t) = ψ1, (1, t) = ψ2, t ≥ 0, (3.3)

U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ [0, 1], (3.4)

where ψ1 = Const ≥ 0, ψ2 = Const ≥ 0, ψ21 + ψ
2
2 6= 0; U0 = U0(x) and V0 = V0(x) are given functions.

The main result of this section can be formulated as follow.
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Theorem 3.1. If U0(0) = V0(0) = 0, U0(1) = ψ1, V0(1) = ψ2, ψ21 + ψ
2
2 6= 0, U0, V0 ∈ H

3(0, 1), then for the solution of
problem (3.1)–(3.4) the following estimates are true:∣∣∣∣∂U(x, t)∂x

− ψ1

∣∣∣∣ ≤ C(1+ t)−2, ∣∣∣∣∂V (x, t)∂x
− ψ2

∣∣∣∣ ≤ C(1+ t)−2, t ≥ 0,∣∣∣∣∂U(x, t)∂t

∣∣∣∣ ≤ C(1+ t)−1, ∣∣∣∣∂V (x, t)∂t

∣∣∣∣ ≤ C(1+ t)−1, t ≥ 0.

Before we proceed to the proof of Theorem 3.1, we state and prove some auxiliary lemmas.

Lemma 3.1. Following estimates are true:

ϕ
1
3 (t) ≤ 1+ S(t) ≤ Cϕ

1
3 (t), t ≥ 0,

where

ϕ(t) = 1+
∫ t

0

∫ 1

0
(1+ S)2

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dxdτ . (3.5)

Proof. From (3.2) it follows that

dS
dt
=

∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx, S(0) = 0. (3.6)

Let us multiply the first equality of (3.6) by (1+ S)2 and introduce following notations:

σ1 = (1+ S)
∂U
∂x
, σ2 = (1+ S)

∂V
∂x
.

We have

1
3
d(1+ S)3

dt
=

∫ 1

0

(
σ 21 + σ

2
2

)
dx. (3.7)

Integrating Eq. (3.7) on (0, t)we get

(1+ S)3

3
=

∫ t

0

∫ 1

0

(
σ 21 + σ

2
2

)
dxdτ +

1
3
,

or, taking into account (3.5)

ϕ
1
3 (t) ≤ 1+ S(t) ≤ [3ϕ(t)]

1
3 .

So, Lemma 3.1 is proved. �

Lemma 3.2. The following estimates are true:

cϕ
2
3 (t) ≤

∫ 1

0

(
σ 21 + σ

2
2

)
dx ≤ Cϕ

2
3 (t), t ≥ 0.

Proof. Taking into account Lemma 3.1 and the boundary conditions we get∫ 1

0

(
σ 21 + σ

2
2

)
dx =

∫ 1

0
(1+ S)2

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx ≥ ϕ

2
3 (t)

(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)

≥ ϕ
2
3 (t)

{[∫ 1

0

∂U
∂x
dx
]2
+

[∫ 1

0

∂V
∂x
dx
]2}
=
(
ψ21 + ψ

2
2

)
ϕ
2
3 (t),

or ∫ 1

0

(
σ 21 + σ

2
2

)
dx ≥ cϕ

2
3 (t). (3.8)

Let usmultiply the first equation of (3.1) by (1+S)−1∂U/∂t and integrate on the domain (0, 1)× (0, t). Using conditions
(3.3), (3.4) and integration by parts we have
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0

∫ 1

0
(1+ S)−1

(
∂U
∂τ

)2
dxdτ +

1
2

∫ 1

0

(
∂U
∂x

)2
dx−

1
2

∫ 1

0

(
dU0
dx

)2
dx = 0.

From this we get∫ 1

0

(
∂U
∂x

)2
dx ≤ C . (3.9)

Analogously,∫ 1

0

(
∂V
∂x

)2
dx ≤ C . (3.10)

From (3.9), (3.10) and Lemma 3.1 we conclude∫ 1

0

(
σ 21 + σ

2
2

)
dx = (1+ S)2

∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx ≤ Cϕ

2
3 (t).

So, the last inequality with estimate (3.8), proves Lemma 3.2. �

From Lemma 3.2 and relation (3.5) we receive following estimates:

cϕ
2
3 (t) ≤

dϕ(t)
dt
≤ Cϕ

2
3 (t), t ≥ 0.

Integrating this inequalities one can easily get(
1+

c
3
t
)3
≤ ϕ(t) ≤

(
1+

C
3
t
)3
,

or

c (1+ t)3 ≤ ϕ(t) ≤ C (1+ t)3 .

From this, taking into account Lemma 3.1 we get the following estimate:

c (1+ t) ≤ 1+ S(x, t) ≤ C (1+ t) , t ≥ 0. (3.11)

Lemma 3.3. The derivatives ∂U/∂t and ∂V/∂t satisfy the inequality∥∥∥∥∂U∂t
∥∥∥∥+ ∥∥∥∥∂V∂t

∥∥∥∥ ≤ C(1+ t)−1, t ≥ 0.

Proof. Note that inequality (2.10) is valid for the problem (3.1)–(3.4) as well. So, from (2.10), using Poincare’s inequality
and relations (3.9)–(3.11) we get

d
dt

∫ 1

0

(
∂U
∂t

)2
dx+ c(1+ t)

∫ 1

0

(
∂U
∂t

)2
dx ≤ C(1+ t)−1.

Using Gronwall’s inequality we arrive at∫ 1

0

(
∂U
∂t

)2
dx ≤ exp

(
−c

∫ t

0
(1+ τ) dτ

){∫ 1

0

(
∂U
∂t

)2
dx

∣∣∣∣∣
t=0

+ C
∫ t

0
exp

(
c
∫ τ

0
(1+ ξ) dξ

)
(1+ τ)−1 dτ

}

= C1 exp
(
−
c(1+ t)2

2

)[
C2 + C3

∫ t

0
exp

(
c(1+ τ)2

2

)
(1+ τ)−1dτ

]
. (3.12)

Applying L’Hospital’s rule we obtain

lim
t→∞

∫ t
0 exp

(
c(1+τ)2

2

)
(1+ τ)−1dτ

exp
(
c(1+t)2
2

)
(1+ t)−2

= lim
t→∞

exp
(
c(1+t)2

2

)
(1+ t)−1

exp
(
c(1+t)2
2

)
(1+ t)−1

[
c − 2(1+ t)−2

]
= lim
t→∞

1
c − 2(1+ t)−2

= C . (3.13)
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Therefore, from (3.12) and (3.13) we get∫ 1

0

(
∂U
∂t

)2
dx ≤ C(1+ t)−2.

Analogously,∫ 1

0

(
∂V
∂t

)2
dx ≤ C(1+ t)−2.

So, Lemma 3.3 is proved. �
Now we are ready to prove Theorem 3.1.

Proof. According to the method applied in Section 2, taking into account Lemma 3.3 and the estimate (3.11), we derive∣∣∣∣∂U(x, t)∂x
− ψ1

∣∣∣∣ = ∣∣∣∣∫ 1

0

∫ x

y

∂2U(ξ , t)
∂ξ 2

dξdy
∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣∂2U(x, t)∂x2

∣∣∣∣ dx
≤

∫ 1

0

∣∣∣∣(1+ S)−1 ∂U∂t
∣∣∣∣ dx ≤ [∫ 1

0
(1+ S)−2dx

]1/2 [∫ 1

0

∣∣∣∣∂U∂t
∣∣∣∣2 dx

]1/2
≤ C(1+ t)−2.

Hence, we have∣∣∣∣∂U(x, t)∂x
− ψ1

∣∣∣∣ ≤ C(1+ t)−2. (3.14)

Analogously,∣∣∣∣∂V (x, t)∂x
− ψ2

∣∣∣∣ ≤ C(1+ t)−2. (3.15)

Now let us estimate ∂U/∂t and ∂V/∂t . For this let us multiply (2.10) by (1+ t)2. Keeping in mind estimates (3.9)–(3.11),
we arrive at∫ t

0
(1+ τ)2

d
dτ

(∫ 1

0

(
∂U
∂τ

)2
dx

)
dτ + c

∫ t

0
(1+ τ)3

(∫ 1

0

(
∂2U
∂τ∂x

)2
dx

)
dτ ≤ C

∫ t

0
(1+ τ)dτ .

Integrating last inequality on (0, t), using integration by parts, estimate (3.11) and Lemma 3.3 we get

c
∫ t

0
(1+ τ)3

(∫ 1

0

(
∂2U
∂τ∂x

)2
dx

)
dτ ≤ −(1+ t)2

∫ 1

0

(
∂U
∂t

)2
dx+

∫ 1

0

(
∂U
∂t

)2
dx

∣∣∣∣∣
t=0

+ 2
∫ t

0
(1+ τ)

(∫ 1

0

(
∂U
∂τ

)2
dx

)
dτ +

1
2

[
(1+ t)2 − 1

]
≤ C1 + C2

∫ t

0
(1+ τ)−1dτ −

1
2
+
1
2
(1+ t)2 ≤ C(1+ t)2,

or ∫ t

0
(1+ τ)3

(∫ 1

0

(
∂2U
∂τ∂x

)2
dx

)
dτ ≤ C(1+ t)2. (3.16)

In an analogous way we can obtain∫ t

0
(1+ τ)3

(∫ 1

0

(
∂2V
∂τ∂x

)2
dx

)
dτ ≤ C(1+ t)2. (3.17)

Let us multiply (2.9) by (1+ t)3∂2U/∂t2∫ 1

0
(1+ t)3

(
∂2U
∂t2

)2
dx =

∫ 1

0
(1+ t)3(1+ S)

∂3U
∂x2∂t

∂2U
∂t2
dx

+

∫ 1

0
(1+ t)3

(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)
∂2U
∂x2

∂2U
∂t2
dx.
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Integration by parts and using the boundary conditions (3.3), gives∫ 1

0
(1+ t)3

(
∂2U
∂t2

)2
dx+

∫ 1

0
(1+ t)3(1+ S)

∂2U
∂x∂t

∂3U
∂t2∂x

dx

+

∫ 1

0
(1+ t)3

(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)
∂U
∂x

∂3U
∂t2∂x

dx = 0.

After integrating over (0, t)we arrive at∫ t

0

∫ 1

0
(1+ τ)3

(
∂2U
∂τ 2

)2
dxdτ +

1
2

∫ t

0

∫ 1

0
(1+ τ)3(1+ S)

∂

∂τ

(
∂2U
∂τ∂x

)2
dxdτ

+

∫ t

0
(1+ τ)3

(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)(∫ 1

0

∂U
∂x

∂

∂τ

(
∂2U
∂τ∂x

)
dx
)
dτ = 0.

Integration by parts again and taking into account (3.6) we get

(1+ t)3(1+ S)
2

∫ 1

0

(
∂2U
∂t∂x

)2
dx−

1
2

∫ 1

0

(
∂2U
∂t∂x

)2
dx

∣∣∣∣∣
t=0

≤
3
2

∫ t

0

∫ 1

0
(1+ τ)2(1+ S)

(
∂2U
∂τ∂x

)2
dxdτ

+
1
2

∫ t

0
(1+ τ)3

(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)(∫ 1

0

(
∂2U
∂τ∂x

)2
dx

)
dτ

− (1+ t)3
(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)(∫ 1

0

∂U
∂x

∂2U
∂t∂x

dx
)

+

(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)(∫ 1

0

∂U
∂x

∂2U
∂t∂x

dx
)∣∣∣∣∣
t=0

+ 3
∫ t

0
(1+ τ)2

(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)(∫ 1

0

∂U
∂x

∂2U
∂τ∂x

dx
)
dτ

+

∫ t

0
(1+ τ)3

d
dτ

(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)(∫ 1

0

∂U
∂x

∂2U
∂τ∂x

dx
)
dτ

+

∫ t

0
(1+ τ)3

(∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dx

)(∫ 1

0

(
∂2U
∂τ∂x

)2
dx

)
dτ .

By using Schwarz’s inequality in the last relation, keeping in mind estimates (3.9)–(3.11), we deduce

c
2
(1+ t)4

∫ 1

0

(
∂2U
∂t∂x

)2
dx ≤ C1 + C2

∫ t

0

∫ 1

0
(1+ τ)3

(
∂2U
∂τ∂x

)2
dxdτ

+ C3

∫ t

0
(1+ τ)3

(∫ 1

0

(
∂2U
∂τ∂x

)2
dx

)
dτ +

c
4
(1+ t)4

∫ 1

0

(
∂2U
∂t∂x

)2
dx

+ C4(1+ t)2
∫ 1

0

(
∂U
∂x

)2
dx+

(∥∥∥∥∂U∂x
∥∥∥∥2 + ∥∥∥∥∂V∂x

∥∥∥∥2
)∥∥∥∥∂U∂x

∥∥∥∥ ∥∥∥∥ ∂2U∂x∂t
∥∥∥∥
∣∣∣∣∣
t=0

+

∫ t

0
(1+ τ)3

(∫ 1

0

(
∂2U
∂τ∂x

)2
dx

)
dτ + C5

∫ t

0
(1+ τ)dτ

+ C6

∫ t

0
(1+ τ)3


[∫ 1

0

(
∂U
∂x

)2
dx

]1/2 [∫ 1

0

(
∂2U
∂x∂τ

)2
dx

]1/2
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+

[∫ 1

0

(
∂V
∂x

)2
dx

]1/2 [∫ 1

0

(
∂2V
∂x∂τ

)2
dx

]1/2
[∫ 1

0

(
∂U
∂x

)2
dx

]1/2 [∫ 1

0

(
∂2U
∂x∂τ

)2
dx

]1/2
dτ

+ C7

∫ t

0
(1+ τ)3

(∫ 1

0

(
∂2U
∂τ∂x

)2
dx

)
dτ .

From this, taking into account estimates (3.9)–(3.11), (3.16) and (3.17), we get

c
4
(1+ t)4

∫ 1

0

(
∂2U
∂t∂x

)2
dx ≤ C8 + C9(1+ t)2 + C10

∫ t

0
(1+ τ)dτ + C11

∫ t

0
(1+ τ)3

(∫ 1

0

(
∂2U
∂τ∂x

)2
dx

)
dτ

+ C11

∫ t

0
(1+ τ)3

[∫ 1

0

(
∂2V
∂τ∂x

)2
dx
∫ 1

0

(
∂2U
∂τ∂x

)2
dx

]1/2
dτ

≤ C12(1+ t)2 + C13

∫ t

0
(1+ τ)3

(∫ 1

0

(
∂2V
∂τ∂x

)2
dx

)
dτ + C13

∫ t

0
(1+ τ)3

(∫ 1

0

(
∂2U
∂τ∂x

)2
dx

)
dτ ≤ C14(1+ t)2,

or at last∫ 1

0

(
∂2U
∂t∂x

)2
dx ≤ C(1+ t)−2.

From this, according to the scheme of the second section, we obtain∣∣∣∣∂U(x, t)∂t

∣∣∣∣ ≤ C(1+ t)−1.
Analogously,∣∣∣∣∂V (x, t)∂t

∣∣∣∣ ≤ C(1+ t)−1.
So, the proof of the main Theorem 3.1 of this section is over. �

Remarks:

1. Note that in this sectionwe used a scheme similar to the scheme of [16] inwhich the adiabatic shearing of incompressible
fluids with temperature-dependent viscosity is studied.

2. The existence of globally defined solutions of the problems (2.1)–(2.3) and (3.1)–(3.3) can be obtained by a routine
procedure. One first establishes the existence of local solutions on a maximal time interval and then uses the derived
a priori estimates to show that the solutions cannot escape in finite time (see, for example, [7–9]).

3. Mathematical results, that are given in the second and third sections, show difference between stabilization rates of
solutions with homogeneous and nonhomogeneous boundary conditions.

4. Finite difference scheme

In the rectangle QT = (0, 1) × (0, T ), where T is a positive constant, we discuss finite difference approximation of the
nonlinear integro-differential problem:

∂U
∂t
−

{
1+

∫ t

0

∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dxdτ

}
∂2U
∂x2
= f1(x, t),

∂V
∂t
−

{
1+

∫ t

0

∫ 1

0

[(
∂U
∂x

)2
+

(
∂V
∂x

)2]
dxdτ

}
∂2V
∂x2
= f2(x, t),

(4.1)

U(0, t) = U(1, t) = V (0, t) = V (1, t) = 0, (4.2)
U(x, 0) = U0(x), V (x, 0) = V0(x). (4.3)

Here f1 = f1(x, t), f2 = f2(x, t),U0 = U0(x) and V0 = V0(x) are given sufficiently smooth functions of their arguments.
We introduce a net in the rectangle QT whose mesh points are denoted by (xi, tj) = (ih, jτ), where i = 0, 1, . . . ,M and

j = 0, 1, . . . ,N with h = 1/M, τ = T/N . The initial line is denoted by j = 0. The discrete approximation at (xi, tj) is denoted
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by uji, v
j
i and the exact solution to the problem (4.1)–(4.3) at those points by U

j
i , V

j
i . We will use the following notations for

the differences and norms:

∆xr
j
i =

r ji+1 − r
j
i

h
, ∇xr

j
i =

r ji − r
j
i−1

h
,

∆t r
j
i =

r j+1i − r
j
i

τ
, ∇t r

j
i = ∆t r

j−1
i =

r ji − r
j−1
i

τ
,

‖r‖h =

(
M−1∑
i=1

r2i h

)1/2
, ‖ r]|h =

(
M∑
i=1

r2i h

)1/2
.

Thus we have

∇tu
j
i −

{
1+ τh

M∑
l=1

j+1∑
k=1

[
(∇xukl )

2
+ (∇xv

k
l )
2]}∆x∇xuj+1i = f j1,i,

∇tv
j
i −

{
1+ τh

M∑
l=1

j+1∑
k=1

[
(∇xukl )

2
+ (∇xv

k
l )
2]}∆x∇xvj+1i = f j2,i, i = 1, 2, . . . ,M − 1; j = 0, 1, . . . ,N − 1,

(4.4)

uj0 = u
j
M = v

j
0 = v

j
M = 0, j = 0, 1, . . . ,N, (4.5)

u0i = U0,i, v0i = V0,i, i = 0, 1, . . . ,M. (4.6)

Multiplying the first equality of (4.4) by τhuj+1i (t), summing for each i from 1 toM − 1 and using the discrete analogue
of the integration by parts we get

‖uj+1‖2h − h
M−1∑
i=1

uj+1i u
j
i + τh

M∑
i=1

(
1+ τh

M∑
l=1

j+1∑
k=1

[
(∇xukl )

2
+ (∇xv

k
l )
2]) (

∇xu
j+1
i

)2
= τh

M−1∑
i=1

f j1,iu
j+1
i . (4.7)

Taking into account the following relations

h
M−1∑
i=1

uj+1i u
j
i ≤
1
2
‖uj+1‖2h +

1
2
‖uj‖2h, h

M−1∑
i=1

f ji u
j+1
i ≤

1
2
‖f j‖2h +

1
2
‖uj+1‖2h

and discrete analogue of Poincare’s inequality

‖uj+1‖h ≤‖ ∇xuj+1]|h (4.8)

from (4.7) we get

1
2
‖uj+1‖2h −

1
2
‖uj‖2h + τ ‖ ∇xu

j+1
] |
2
h ≤ τ‖f

j
1‖
2
h +

τ

2
‖ ∇xuj+1] |2h .

From this inequality it is not difficult to get the following estimation

‖un‖2h +
n∑
j=1

‖ ∇xuj] |2h τ < C, n = 1, 2, . . . ,N. (4.9)

Analogously, we can show that

‖vn‖2h +

n∑
j=1

‖ ∇xv
j
] |
2
h τ < C, n = 1, 2, . . . ,N. (4.10)

In (4.9) and (4.10) the constant C depends on T and on f1 and f2 respectively.
The a priori estimates (4.9) and (4.10) guarantee the stability and existence, see [9], of solution of the scheme (4.4)–(4.6).
The main result of this section is:

Theorem 4.1. If problem (4.1)–(4.3) has a sufficiently smooth solution U = U(x, t), V = V (x, t), then the solution uj =
(uj1, u

j
2, . . . , u

j
M−1), v

j
= (v

j
1, v

j
2, . . . , v

j
M−1), j = 1, 2, . . . ,N of the difference scheme (4.4)–(4.6) tends to U

j
= (U j1,U

j
2, . . . ,

U jM−1), V
j
= (V j1, V

j
2, . . . , V

j
M−1), j = 1, 2, . . . ,N as τ → 0, h→ 0 and the following estimates are true

‖uj − U j‖h ≤ C(τ + h), ‖vj − V j‖h ≤ C(τ + h), j = 1, 2, . . . ,N. (4.11)
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Proof. For U = U(x, t) and V = V (x, t)we have:

∇tU
j
i −

{
1+ τh

M∑
l=1

j+1∑
k=1

[
(∇xUkl )

2
+ (∇xV kl )

2]}∆x∇xU j+1i = f j1,i − ψ j1,i,
∇tV

j
i −

{
1+ τh

M∑
l=1

j+1∑
k=1

[
(∇xUkl )

2
+ (∇xV kl )

2]}∆x∇xV j+1i = f j2,i − ψ j2,i,
(4.12)

U j0 = U
j
M = V

j
0 = V

j
M = 0, (4.13)

U0i = U0,i, V 0i = V0,i, (4.14)

where

ψ
j
k,i = O(τ + h), k = 1, 2.

Solving (4.4)–(4.6) instead of the problem (4.1)–(4.3) we have the errors yji = u
j
i − U

j
i and z

j
i = v

j
i − V

j
i . From (4.4)–(4.6)

and (4.12)–(4.14) we get

∇ty
j
i −∆x

{(
1+ τh

M∑
l=1

j+1∑
k=1

[
(∇xukl )

2
+ (∇xv

k
l )
2])
∇xu

j+1
i

−

(
1+ τh

M∑
l=1

j+1∑
k=1

[
(∇xUkl )

2
+ (∇xV kl )

2])
∇xU

j+1
i

}
= ψ

j
1,i,

∇tz
j
i −∆x

{(
1+ τh

M∑
l=1

j+1∑
k=1

[
(∇xukl )

2
+ (∇xv

k
l )
2])
∇xv

j+1
i

−

(
1+ τh

M∑
l=1

j+1∑
k=1

[
(∇xUkl )

2
+ (∇xV kl )

2])
∇xV

j+1
i

}
= ψ

j
2,i,

(4.15)

yj0 = y
j
M = z

j
0 = z

j
M = 0, (4.16)

y0i = z
0
i = 0. (4.17)

Multiplying Eq. (4.15) by τhyj+1i and τhz j+1i , respectively, summing for each i from1 toM−1, using (4.16) and the discrete
analogue of formula of integration by parts we get

‖yj+1‖2h − h
M−1∑
i=1

yj+1i y
j
i + τh

M∑
i=1

{(
1+ τh

M∑
l=1

j+1∑
k=1

[
(∇xukl )

2
+ (∇xv

k
l )
2])
∇xu

j+1
i

−

(
1+ τh

M∑
l=1

j+1∑
k=1

[
(∇xUkl )

2
+ (∇xV kl )

2])
∇xU

j+1
i

}
∇xy

j+1
i = τh

M−1∑
i=1

ψ
j
1,iy

j+1
i ,

‖z j+1‖2h − h
M−1∑
i=1

z j+1i z
j
i + τh

M∑
i=1

{(
1+ τh

M∑
l=1

j+1∑
k=1

[
(∇xukl )

2
+ (∇xv

k
l )
2])
∇xv

j+1
i

−

(
1+ τh

M∑
l=1

j+1∑
k=1

[
(∇xUkl )

2
+ (∇xV kl )

2])
∇xV

j+1
i

}
∇xz

j+1
i = τh

M−1∑
i=1

ψ
j
2,iz

j+1
i .

(4.18)

Note that

h
M−1∑
i=1

r j+1i r
j
i =

1
2
‖r j+1‖2h +

1
2
‖r j‖2h −

1
2
‖r j+1 − r j‖2h, (4.19)

and ([
(∇xuki )

2
+ (∇xv

k
i )
2]
∇xu

j+1
i −

[
(∇xUki )

2
+ (∇xV ki )

2]
∇xU

j+1
i

)
(∇xu

j+1
i −∇xU

j+1
i )

=
[
(∇xuki )

2
+ (∇xv

k
i )
2] (∇xuj+1i )2 +

[
(∇xUki )

2
+ (∇xV ki )

2] (∇xU j+1i )2

−∇xu
j+1
i ∇xU

j+1
i

[
(∇xUki )

2
+ (∇xV ki )

2
+ (∇xuki )

2
+ (∇xv

k
i )
2]

=
1
2

(
∇xu

j+1
i −∇xU

j+1
i

)2 [
(∇xuki )

2
+ (∇xv

k
i )
2
+ (∇xUki )

2
+ (∇xV ki )

2]
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−
1
2
(∇xu

j+1
i )2

[
(∇xUki )

2
+ (∇xV ki )

2]
−
1
2
(∇xU

j+1
i )2

[
(∇xuki )

2
+ (∇xv

k
i )
2]

+
1
2
(∇xu

j+1
i )2

[
(∇xuki )

2
+ (∇xv

k
i )
2]
+
1
2
(∇xU

j+1
i )2

[
(∇xUki )

2
+ (∇xV ki )

2]
≥
1
2

[
(∇xu

j+1
i )2 − (∇xU

j+1
i )2

] [
(∇xuki )

2
+ (∇xv

k
i )
2
− (∇xUki )

2
− (∇xV ki )

2] . (4.20)

Analogously,([
(∇xuki )

2
+ (∇xv

k
i )
2]
∇xv

j+1
i −

[
(∇xUki )

2
+ (∇xV ki )

2]
∇xV

j+1
i

)
(∇xv

j+1
i −∇xV

j+1
i )

≥
1
2

[
(∇xv

j+1
i )2 − (∇xV

j+1
i )2

] [
(∇xuki )

2
+ (∇xv

k
i )
2
− (∇xUki )

2
− (∇xV ki )

2] . (4.21)

Taking into account relations (4.19)–(4.21), from (4.18) for all ε > 0 we have

‖yj+1‖2h +
1
2
‖yj+1 − yj‖2h −

1
2
‖yj+1‖2h −

1
2
‖yj‖2h + τ ‖ ∇xy

j+1
] |
2
h

+‖z j+1‖2h +
1
2
‖z j+1 − z j‖2h −

1
2
‖z j+1‖2h −

1
2
‖z j‖2h + τ ‖ ∇xz

j+1
] |
2
h

+
τ 2h2

2

M∑
i=1

M∑
l=1

j+1∑
k=1

[
(∇xukl )

2
+ (∇xv

k
l )
2
− (∇xUki )

2
− (∇xV ki )

2] [(∇xuj+1i )2 + (∇xv
j+1
i )2

− (∇xU
j+1
i )2 − (∇xV

j+1
i )2

]
≤ τε(‖ψ

j
1‖
2
h + ‖ψ

j
2‖
2
h)+

τ

4ε
(‖yj+1‖2h + ‖z

j+1
‖
2
h), j = 0, 1, . . . ,N − 1. (4.22)

Let us introduce the notation

ξ j = τh
j∑
k=1

M∑
l=1

[
(∇xukl )

2
+ (∇xv

k
l )
2
− (∇xUkl )

2
− (∇xV kl )

2] , ξ 0 = 0,

then

∆tξ
j
= h

M∑
l=1

[
(∇xu

j+1
l )2 + (∇xv

j+1
l )2 − (∇xU

j+1
l )2 − (∇xV

j+1
l )2

]
.

So, from (4.22) we get

‖yj+1‖2h − ‖y
j
‖
2
h + τ

2
‖∇tyj+1‖2h + τ ‖ ∇xy

j+1
] |
2
h+‖z

j+1
‖
2
h − ‖z

j
‖
2
h + τ

2
‖∇tz j+1‖2h + τ ‖ ∇xz

j+1
] |
2
h+τ

2 (∆tξ j)2
+ τξ j∆tξ

j
≤
τ

ε
(‖ψ

j
1‖
2
h + ‖ψ

j
2‖
2
h)+ 4ετ(‖y

j+1
‖
2
h + ‖z

j+1
‖
2
h). (4.23)

Using (4.17), discrete analogue of Poincare’s inequality

‖r j+1‖2h ≤‖ ∇xr
j+1
i ] |

2
h

and the relation

τξ j∆tξ
j
=
1
2

(
ξ j+1

)2
−
1
2

(
ξ j
)2
−
τ 2

2

(
∆tξ

j)2 ,
from (4.23) when ε = 1, we have

‖yn‖2h + τ
2
n−1∑
j=0

‖∆ty
j
i‖
2
h +

τ

2

n−1∑
j=0

‖ ∇xy
j+1
i ] |

2
h+‖z

n
‖
2
h + τ

2
n−1∑
j=0

‖∆tz
j
i‖
2
h

+
τ

2

n−1∑
j=0

‖ ∇xz
j+1
i ] |

2
h+

τ 2

2

n−1∑
j=0

(
∆tξ

j)2
+
1
2

(
ξ n
)2
≤ τ

n−1∑
j=0

(
‖ψ

j
1‖
2
h + ‖ψ

j
2‖
2
h

)
, n = 1, 2, . . . ,N. (4.24)

From (4.24) we get (4.11) and thus Theorem 4.1 has been proven. �

Remark: Note, that according to the scheme of proving convergence theorem, the uniqueness of the solution of the
scheme (4.4)–(4.6) can be proven. In particular, assuming the existence of two solutions (u, v) and (ū, v̄) of the scheme
(4.4)–(4.6), then for the differences ȳ = u− ū and z̄ = v − v̄ we get ‖ȳn‖2h + ‖z̄

n
‖
2
h ≤ 0, n = 1, 2, . . . ,N . So, ȳ = z̄ ≡ 0.
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5. Numerical implementation
The finite difference scheme (4.4)–(4.6) can be rewritten as follows:

uj+1i − u
j
i

τ
− Aj+1

uj+1i+1 − 2u
j+1
i + u

j+1
i−1

h2
= f j1,i,

v
j+1
i − v

j
i

τ
− Aj+1

v
j+1
i+1 − 2v

j+1
i + v

j+1
i−1

h2
= f j2,i, i = 1, 2, . . . ,M − 1, j = 0, 1, . . . ,N − 1,

(5.1)

where

Aj = 1+ τh
M∑
`=1

j∑
k=1

(uk` − uk`−1
h

)2
+

(
vk` − v

k
`−1

h

)2 . (5.2)

In order to rewrite this in matrix form, we define the vectors

uj =


uj1
uj2
...

ujM−1


and similarly vj, fj1, and f

j
2. We also define the symmetric tridiagonal (M − 1)× (M − 1)matrix T as follows

Tj+1rs =



−
1
h2
Aj+1, s = r − 1,

2
h2
Aj+1, s = r,

−
1
h2
Aj+1, s = r + 1,

0, otherwise.

Thus the system (5.1) becomes

1
τ

[
uj+1

vj+1

]
−
1
τ

[
uj

vj

]
+

[
Tj+1 0
0 Tj+1

] [
uj+1

vj+1

]
−

[
fj1
fj2

]
= 0. (5.3)

We will use Newton’s method to solve the nonlinear system (5.3). Let

Pj =
[
uj

vj

]
and

Fj =

[
fj1
fj2

]
and define

H(Pj+1) =
1
τ
Pj+1 −

1
τ
Pj + T̂

j+1
Pj+1 − Fj, (5.4)

where T̂
j+1
is the 2-by-2 block diagonalmatrixwith Tj+1 on diagonal.Wewill now construct the gradientmatrix. Thismatrix

can be written in block form as follows:

∇H =
[
Q R
W Z

]
,

where the matrices Q , R,W , Z are given below.

Qrs =
1
τ
δrs − Aj+1

δr+1s − 2δrs + δr−1s
h2

+ 2τh
uj+1r+1 − 2u

j+1
r + u

j+1
r−1

h2
uj+1s+1 − 2u

j+1
s + u

j+1
s−1

h2
(5.5)

Wrs = 2τh
v
j+1
r+1 − 2v

j+1
r + v

j+1
r−1

h2
uj+1s+1 − 2u

j+1
s + u

j+1
s−1

h2
(5.6)

Rrs = 2τh
uj+1r+1 − 2u

j+1
r + u

j+1
r−1

h2
v
j+1
s+1 − 2v

j+1
s + v

j+1
s−1

h2
(5.7)
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where δrs is the Kronecker delta and Zrs is obtained by replacing u by v in Qrs. Using definition (5.4) Newton’s method for the
system (5.3) is given by

∇H(Pj+1) |(n)(Pj+1 |(n+1)−Pj+1 |(n)) = −H(Pj+1) |(n) .

Theorem 5.1. Given the nonlinear system of equations

Hi (P1, . . . , P2M−2) = 0, i = 1, 2, . . . , 2M − 2.

If Hi are three times continuously differentiable in a region containing the solution ξ1, . . . , ξ2M−2 and the Jacobian does not vanish
in that region, then Newton’s method converges at least quadratically (see [17]).

The Jacobian is the matrix ∇H computed above. The term 1
τ
on diagonal ensures that the Jacobian does not vanish. The

differentiability is guaranteed, since ∇H is quadratic.
In our first numerical experiment (Example 1) we have chosen the right-hand side so that the exact solution is given by

U(x, t) = x(1− x) sin(x+ t), V (x, t) = x(1− x) cos(x+ t).

In this case the right-hand side is

f1(x, t) = x(1− x) cos(x+ t)−
(
1+

11
30
t
)
((−2− x+ x2) sin(x+ t)+ 2(1− 2x) cos(x+ t))

f2(x, t) = −x(1− x) sin(x+ t)−
(
1+

11
30
t
)
((−2− x+ x2) cos(x+ t)− 2(1− 2x) sin(x+ t)).

The parameters used are M = 100 which dictates h = 0.01. In the next four subplots we plotted the absolute value of
the difference between the numerical and exact solutions on a semi-log axis at t = 0.5 and t = 1 (Fig. 1) and it is clear that
the two solutions are almost identical.
In our next experiment (Example 2) we have taken zero right-hand side and initial condition given by

U0(x) = U(x, 0) = x(1− x) sin(8πx), V0(x) = V (x, 0) = x(1− x) cos(4πx).

In this case, we know that the solution will decay in time [11]. The parametersM, h, τ are as before. In Fig. 2, we plotted the
initial solution and in Fig. 3, we have the numerical solution at four different times. In both figures the top subplot is for u

Fig. 1. The absolute value of the difference between the numerical and exact solutions for u (left) and v (right) at t = 0.5 (top) and t = 1 (bottom) on a
semi-log scale.
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Fig. 2. The initial solution U0(x) = x(1− x) sin(8πx) (top) and V0(x) = x(1− x) cos(4πx) (bottom) for Example 2.

Fig. 3. The numerical solution at t = 0.1, 0.2, 0.3, 0.4 for u (top) and v (bottom).
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Fig. 4. The maximum norm of the numerical solution for ∂U
∂x (top) and

∂V
∂x (bottom) (Example 2) and e

−t/2 . Solid line for ∂U
∂x and

∂V
∂x and line marked with

∗ for the exponential.

Fig. 5. The initial solution U0(x) = x(1− x) sin(8πx)+ 0.0002x (top) and V0(x) = x(1− x) cos(4πx)+ 0.001x (bottom) for Example 3.

and the bottom subplot is for v. It is clear that the numerical solution is approaching zero for all x. We have also plotted the
maximum norm of the partial derivatives ∂U

∂x and
∂V
∂x versus the exponential e

−t/2. Fig. 4 shows that the maximum norm of
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Fig. 6. The numerical solution at t = 0.1, 0.2, 0.3, 0.4 for u (top) and v (bottom).
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Fig. 7. The maximum norm of the numerical solution for ∂U
∂x (top) and

∂V
∂x (bottom) (Example 3) and e

−t/2 . Solid line for ∂U
∂x and

∂V
∂x and line marked with

∗ for the exponential.
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∂U
∂x (top) and

∂V
∂x (bottom) decays faster than the exponential. Therefore the numerical approximation of the x-derivative of

the solution of our experiment fully agrees with the theoretical results given in [11].
We have experimentedwith several other initial solutions, and in all caseswe noticed the decay of the numerical solution

as expected [11].
We have solved the problem with nonhomogeneous boundary conditions on one side of lateral boundary as well

(Example 3). In this case we have taken the following initial conditions:

U0(x) = U(x, 0) = x(1− x) sin(8πx)+ 0.0002x, V0(x) = V (x, 0) = x(1− x) cos(4πx)+ 0.001x.

We plotted the initial solution in Fig. 5 and the numerical solution at various times in Fig. 6. Now the solution approaches
the steady state solution U(x) = 0.0002x and V (x) = 0.001x respectively.
We have also plotted the maximum norm of the partial derivatives ∂U

∂x and
∂V
∂x versus the exponential e

−t/2. Fig. 7
shows that the maximum norm of ∂U

∂x (top) and
∂V
∂x (bottom) decays faster than the exponential. Therefore the numerical

approximation of the x-derivative of the solution of our experiment shows exponential decay as in the homogeneous case.
Theoretically we could not prove better than polynomial decay. It is possible that this faster decay happens only under
special circumstances.
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