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1. Introduction

The classical second-order Newton’s method is most popular to locate an approximate root of a nonlinear equation.
It is, however, only linearly convergent to find the repeated roots for a nonlinear equation under consideration. In order
to efficiently find approximate repeated roots of a nonlinear equation in the form f(x) = 0, we usually employ modified
Newton’'s method [1,2] with quadratic-order convergence, given the multiplicity m > 1, as follows:

J(xn)
J'(%n)
Note that numerical scheme (1.1) is a second-order one-point optimal [3] method which is supported by Kung-Traub’s
conjecture [3] that any multipoint method [4] without memory can reach its convergence order of at most 2"~! for r
functional evaluations. We can find other higher-order multiple-zero finders in the literature, e.g., [5-15].

Assuming a known multiplicity of m > 1, we propose in this paper a family of eighth-order modified Newton-type
multiple-zero finders in the form of:

Xny1 = Xp — M ,n=0,1,2,... (11)
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Vo= x _m.f(xn)

e F'(xa)’

Wy = Xy — M - Lp(xp) - ;(( )) (1.2)
Xnt1 :Xn_m'Hf(Xn)']{(();n))

where the desired generic forms of weight functions Ly and Hy will be extensively studied for eighth-order of convergence
in Section 3. To the best of our knowledge, there is no other generic eighth-order method for multiple roots.

In what follows, we briefly organize the remaining portion of the paper as follows. Section 2 introduces existing studies on
multiple-zero finders. Fully investigated in Section 3 is methodology and convergence analysis for newly proposed multiple-
zero finders. A main theorem on the properties of the family of proposed methods (1.2) is derived to discover eighth-order
convergence as well as to induce asymptotic error constants and error equations by use of a family of weight functions L¢
and Hy dependent on two function-to-function ratios. In Section 4, special cases of rational weight functions are considered.
Section 5 extensively investigates the extraneous fixed points and relevant dynamics underlying the basins of attraction.
Tabulated in Section 6 are computational results for a variety of numerical examples. Table 6 compares the magnitudes of
e, = X, — « of the proposed methods with those of existing sixth-order multiple-zero finders. Dynamical characteristics
of the proposed methods are illustrated at great length by means of their basins of attraction with various test equations.
Overall conclusions are stated at the end along with comments on future development of higher-order methods extending
the current approach.

2. Review of existing sixth-order multiple-zero finders

In the literature as claimed at the end of the first paragraph of Section 1, we rarely find multiple-zero finders with
convergence order higher than 4. Recently Geum-Kim-Neta [16,17] have developed two families of sixth-order multiple-
zero finders with extensive analysis of their relevant dynamics behind the basins of attraction from the viewpoint of the
extraneous fixed points.

Let a function f : C — C have a repeated zero « with integer multiplicity m > 1 and be analytic [18] in a small
neighborhood of «. Then the following two members of the aforementioned Geum-Kim-Neta’s family are of sixth-order
convergence and described below by (2.1) and (2.2).

yy— o — i)
T T )
1 1 (2.1)
N _ _ m+ a{s y 1 .f(yn) s — f(yn) m t = f/(yn) m—1 form > 2
= Jn 1+ bys + bps? 1+2(m—1)t f/(J’n), N f(xn) T f'(xn) '
where = SOt ) _ AR ang by — — g
—x _mf(xn)
T T
b 2025 = 1) flxn)
nE T S T Bs —2) [ (%) (2.2)
1 1
e =251 fw) [fow)TTfe]m
T T s —2) (s +v—1) ) Lf(xn) T L) ] =

These two members will be compared with another family of optimal eighth-order multiple-zero finders to be developed
in the next section.

3. Methodology and convergence analysis
Let a function f : C — C possess a repeated zero o with integer multiplicity m > 1 and be analytic in a small

neighborhood of @. Then new three-point iterative methods locating an approximate zero « of multiplicity m are proposed
below to have optimal eighth-order convergence: for a given initial guess xq sufficiently close to «,

y . L)

T )

wy = X m- Lf(S) ;/((};r;))’ (31)
XTH—l —_— Xn —m- Hf( u) . f(xn) — xn —-m- [Lf(s) + Kf(s, u)] . f(xn)

f'(xa)’
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wheren=20,1,2,...,
1
_ |:f(Yn):| m
f(xn)
1
. [f(wn)} ’ (3.3)
Fm)
and where Ly : C — C is analytic in a neighborhood of 0 and K; : C? — C is holomorphic [19,20] in a neighborhood of

(0, 0). Note that Hy in (1.2) is expressed as the sum of Ly and K. Since s and u are respectively one-to-m multiple-valued
functions, we consider their principal analytic branches [18]. Hence, it is convenient to treat s as a principal root given

(3.2)

bys = exp[L Log(f(x ))] with Log(f(y” ) = Log|§&"‘) + lArg(f(x )) for —m < Arg(f(y")) < gr; this convention of Arg(z)
for z € C agrees with that of Log[z] command of Mathematica [21] to1 be employed later in numerical experiments of
Section 6. By means of further inspection of s, we find that s = chg—:i m - expl;; i Arg(f (y"))] = O(ey). Similarly we treat

1 ,
U= |f(w”) " - expl Arg(f;(&’:)) )] = O(é?). In addition, we find that O(ff,((’;’;))) = 0(ey).

fyn)
Definition 1. (Error Equation, Asymptotic Error Constant, Order of Convergence)
Let xo, X1, ..., Xn, . .. be a sequence converging to « and e, = X, — « be the nth iterate error. If there exist real numbers
p € Rand b € R — {0} such that the following error equation holds

ent1 =be,” +0(eb™), (3.4)
then b or |b| is called the asymptotic error constant and p is called the order of convergence [22].
Recently a special case of (3.1) has been treated in [23] with weight functions of the form

Lf(s)=1+S Q(h), Kf(s,u)=ls~u-G(h,u), h= 5 ,

m m a; + axs
where Q : C — Cand G : C> — C are analytic in a neighborhood of (0) and (0, 0), respectively; a; and a, are non-zero
complex parameters.

Our primary aim is to investigate a more generic family of optimal eighth-order methods (3.1). A main theorem will
be first established for the optimal convergence. On the basis of the results of the main theorem, we will construct weight
functions Hy and Ky for a multiparametric family of eighth-order multiple-zero finders. To this end, we observe that it suffices
to consider both weight functions Hy and K up to the seventh-order terms in e, due to the fact that O( ("" ) = 0O(ey,), which
leads us to the development of a more generic family of optimal eighth-order multiple-zero finders.

Applying the Taylor’s series expansion of f about «, we get the following relations:

(3.5)

(M)
f(xn) = f m(‘ )en’” [1 + O2eq + 03€2 + b€ + Oser + Oge, + 01€5 + Ogel, + Oged + O(eg)], (3.6)
, (o m+1 m+2 m+3 m+4
(%) = &enm’1 1+ Oren + 6ze2 + 6qe3 + fsel
(m—1) m m
m+5 m+6 m+7
+ Ose> + 67€5 + Oge! + O(eﬁ)], (3.7)
m m
where 6, = om0 for k € N — {1}. For convenience, we drop the subscript n from e, whenever required to do

(m—=14k)!  f(M)(a)
so. Dividing (3.6) by (3.7), we have
f(xa) e 6,62 Yse2  Yse*  Yse®  Yge® Y7e7 Yge
= — 4+ —+ —+ —+ — —— 4+ 0(e 3.8
P~ m m2+m3+m4+m5+m5+ + + 0(e?), (3.8)
where Y3 = (14 m)07 — 2mbs, Y4 = —(1+ m)*6; + m(4 + 3m)0,0; — 3m294 and Y; = Yi(m, 6y, 65, ...,09)for5 <i<8.
Thus, from relation (3.8), we obtain

92 ez Y3 63 Y4€4 Ys es Y5€6 Y7 67 Yge

MECT T T T mt . m 0(e") 59)
%) b2\m o, Yz (m —1)Y2—2Y492+292 2
= —) el ——e

fyn) - (=)™ 5C T 2mé?

m— 1)(m — 2)Y2 + 6Ys02 + 6Y30,(Y4 — mY, + (m + 1)03 LI
| X Y5 4+ 6Y565 4 6Y36,(Y, 4+ (m+ )2)€3+Z]i€l+0(8

3.10
6m26; (3.10)

Where],- :jl-(m, 6r,03,...,09,Y3, Yy, ..., Yg)fOl'4 <i<7.
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By Taylor’s expansion or multinomial expansion, we get an expression s in (3.2) as follows:

0y Y3462 ,  —2Y4+ 6,[2Y5 + (m + 3)02 — 2mo .o
s=te_ 2T 22 4102125 + ( )63 3]63+ZW,-€1+O(69), (3.11)
m m2 2m3 —
where W; = W,~(m, 65,05,...,09,Y3,Ys, ..., Yg) ford <i<8.
With the use of s in (3.11), expanding Taylor series of L¢(s) about 0 up to seventh-order terms we find:

Le(s) = Lo + L15 + Lps* + L3s® + Las* + Lss® + Lgs® + L7s” + O(e®), (3.12)
2o
where L; = 7 for0<0<7.
Hence by substituting (3.6)—(3.12) into w, in (3.1) with explicit use of Y;(3 < j < 8) from relation (3.8), we find:
Lo—L
wp=a+(1—Lye+ ((’mil)ezez + Z303 + Zye* + Zse® + Zgeb + Z7e” + Zge® + 0(€), (3.13)

where Z; = Zi(65,05 - - - , 09, Lo, L1, ...,L7)for3 <i < 8.Byselecting Lo = 1, = 1, L, = 2, we have
m+9 — 2L3)03 — 2mé,0
wy, = a + (m + 2;)132 23 o4 4 Zoe5 + Zse® + Zye” + Zge® + 0(e0), (3.14)

Hence, we obtain f(w,) as follows:

fM(a)s™ Zs 2(m — 1)Z2 + Zss
=——eM1+ —e+ ——————
flwn) = o 1+ 35 36ms?
10(m — 1)(m —2)Z2 + vy 5 20(m — 1)(m —2)(m — 3)Z¢ + v, , 5
e e o(e’)|, 3.15
1620m283 + 38880m3s* +0(e”)] (3.15)

where § = (9+m — 2L3)0; — 2m6,03, vi = 45(m — 1)Z5Zs8 + 27 Z;8? and v, = 180(m — 1)(m — 2)Z2Z8 + 27(m — 1)(522 +
87577)8% + 108Zg8> + 194405°0,.

With the use of (3.10) and (3.15), we get an expression u in (3.3) after Taylor’s expansion or multinomial expansion as
follows:

9+ m — 2L3)02 — 2mé °.
U= (« 2'7311 2 3)ez + Bse® + Zﬂiel + o(e”), (3.16)
i=4

3 62 —2mo —21L3)02 —2m0 . . .
Zs+3((m+1)05 2’"6?")569;’" L3 )0y —2m 3)f and B; = Bi(m, 65,03, ...,09,7Z5,Zs, ...,Zg)for4 < i < 6.Using s in (3.11)

and u in (3.16) and expanding Taylor series of K¢(s, u) about (0, 0) up to seventh-order terms we find:

where 83 =

Ke(s,u) = 145+ 25% + L3s® + Las* + Lss® + Lgs® + KzoS

+ [s+25>+ (14 L3)s® + (2Ls + Ly — 4)s* + K518°Ju + (5 + 45% + K35 u? + Kyssu® + 0(e®), (3.17)
where Kj = 22 Ky(s. )] (g_g.um0) fOr 0 < i < 7,0 <j < 3,

Hence by substituting (3.6)-(3.17) into the proposed method (3.1) with explicit uses of Y3, ..., Ys, Zs, .. ., Zg, we obtain
the error equation as

8

X .
X1 — o = Xy — & — m[Lg(s) + Kp(s, u)] - % =Tie+ Y Tie' +0(e%), (3.18)
n i=2
where T; = —Kgo and the coefficients Ti(2 < i < 8) generally depend onm, 6;(2 < j < 9), Li(3 < j < 7)and

Kix(0 <j < 7,0 <k < 3).Solving T; = 0 for Koo, we get
Koo = 0. (3.19)
Substituting Koo = 0 into T, = 0 and simplifying, we obtain '%002 = 0, from which

Kio =0 (3.20)

follows independently of 6,. Continuing in this manner at the ith stage with 3 < i < 7, we substitute such Kj found from
T, = 0 at the preceding stages for 1 < £ < (i — 1) into T; = 0 and solve T; = 0 for remaining Kj to find:

Ko1 =0, Kyo =0,K11 =1, K30 = 0,K40 =0, K31 =2, Koo =0, K50 =0,
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K31 =14+13,Ki3 =1,Kg0 =0,Kg41 =23+ Ly — 4, Ky =4, Kyp3 = 0, (3.21)

independently of 6, and 6.
Substituting (3.18)-(3.20) into Tg = 0 and simplifying, we get:

)

Tg = —2—
87 2am?

[@95 + 260503 + ¢36505 + 465604 + 24(Ky3 — 1)m’03 — 24m3929394], (322)

where

#1 = 3879 — 108Ks; — 24K70 — 1780L3 + 216Ly + 12L3(2Ks; + 1713 — 4Ls — 2Ls) + 108Ls + 1349m

+ 12(=Ks1 + (=30 + L3)Ls + 2L4 + Ls)m + 5(33 — 4L3)m? 4+ 7m> — 6K33(9 — 2L3 + m)?> — 3K13(9 — 2L; + m)?,
@2 = 2m[—1349 + 12Ks; — 12(—30 + L3)L3 — 24Ls — 12Ls — 312m + 36L3m — 19m?

+ 12K35(9 — 2L + m) + 9K13(9 — 2L3 + m)?],

¢3 = —12m*[—43 4 2K3, + 4L3 — 5m + 3K13(9 — 2L3 + m)],

¢4 = 12m*(m + 9 — 2L3).

The consequence of the analysis carried out thus far immediately leads us to the following theorem.

Theorem 3.1. Let m € N be given. Let f : (C( = ,)(C have a zero o of multiplicity m and be analytic in a small neighborhood

Il m—1+ . e e . . .
of . Let k € N be given. Let 6; = (m_n;.ﬂ)! . W for j € N — {1}. Let xq be an initial guess chosen in a sufficiently small
neighborhood of «. Let Ly : C — C be analytic in a neighborhood of 0 and let K : C? — C be holomorphic in a neighborhood
of (0,0). Let L, = %%Lf(s)gzofor 0<k<7andK; = T}!ai;;;jl(f(s, U)|(s—0.u—0y for 0 < i < 7,0 < j < 3. Suppose that
Ly =L = 1,1, = 2, Koo = K10 = Ko1 = K0 = Koz = Koz = Kzo0 = Kgo = Ksp = Keop = 0,K11 = K1z = 1, K31 =
2,Ky = 4,K31 = 1+ L3, K4y = 2L3 + Ly — 4 hold. Then iterative methods (3.1) are of eighth-order and possess the following
error equation:

0,
24m’

where ¢i(1 < i < 4)isgivenin (3.22).

eni1 = |:¢10§ + 260703 + $30207 + ¢40504 + 24(Ki3 — 1)m6; — 24m3929304] ed +0(ed), (3.23)

4. Special cases of weight functions

According to Theorem 3.1, we are able to find L¢(s) and K;(s, u) in the form of Taylor polynomials below:

Lf(S) =1+s+ 252 + L3S3 + L4$4 + L5$5 + L5S6 + L7S7 + O(es),
Ki(s, u) = su[1+4 u + Kisu® + 25(1 + 2u) 4+ s°(1 + L3 + K3ou) + (=4 + 2L3 + Ly) + Ks15%] (4.1)
+ K78’ + 0(e®),

where L3, L4, Ls, Lg, L7, K13, K33, K51 and K7 are free parameters.

It is evident that various forms of weight functions L¢(s) and K;(s, u) are available to design a family of optimal multiple-
zero finders. In the existing studies by [ 16,24], we have noticed that either weight function Ly or K is of polynomial type has
empirically shown poor convergence. Consequently, taking into account the fact thats = O(e),u = 0(e?)and f,((’;’;)) = O(e), we
shall establish eighth-order convergence by restricting ourselves to considering L¢(s) as a family of second-order univariate
rational functions and K¢(s, u) as a family of fifth-order bivariate rational functions with real coefficients in the form below.

by + bis + bys?

h 1+ a;s

K(s,u) = + 415 + q25” + 35° + as* 4 (s + q6S + 475° + qsS® + qos*)u
14118 + 1252 + 1353 + 145% + (15 + 165 + 1752 + 1853 + 195%)U

where a;, b;, g;, 1; € R are to be determined for optimal eighth-order convergence. Note that K(s, u) adopts the only linear

u reducing the complexities that may be strengthened from the presence of nonlinear wu.

Lg(s)
(42)
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We let (4.2) satisfy the constraints described by hypotheses of Theorem 3.1, which give us the following coefficients: with
b= b,

bo=1,by=—-1+b,a1=—-2+b,

1
do = q1 =qz=q3=q4=qs=0,qe=1,q7=2+r1,qs=5[—2—2b2+q9—r1+2b(4+r1)—r3], (4.3)
r2:—5+2b+q8—2r1,r5:—1,r6:—2—r1.

As a result, the reduced form of the desired weight functions is found to be:
1+ (b — 1)s + bs?

be) =y

X X s (4.4)
su[242(2+r1)s — (2 + 2b2 — g + 11 — 2b(4 + 11) + 13)5> + 205>

242r1s 4+ [—12 — 2b(b — 6) + qg + (2b — 5)r1 — r3]s2 + 21383 + 21454 +2[—1 — (2 +11)s + 1752 + 1883 + rostu’
where b, r1, 13, 14,17, 13, T9, Qg € R are 8 free parameters.

In view of the fact that s = O(e) and u = 0(e?), we find Ki(s,u) = 0(e”) from (3.17), according to which the last sub-step
iterative scheme of (3.1) should give rise to an optimal convergence order of eight with a suitable choice of parameters.

Although numerous cases of weight functions satisfying Theorem 3.1 can be constructed in this paper, we are especially
interested in special cases with b = 0 for which all of the extraneous fixed points of the proposed scheme (3.1) are purely
imaginary. The notion of an extraneous fixed point and its preference for being purely imaginary will be fully discussed in
Section 5. From (5.7) of Section 5, we desire the governing equation of the extraneous fixed points to take the form of

1 G(t
H(z) = . L t =22, (4.5)

2(1+1t) (1)
where G(t) = t"1(1 4 t)2(1 + 3t)"3 - g(t) for y1, y», y3 € N. In addition, g(t) and £2(t) are polynomials of degree at most
2 and 6, respectively, with y; + y» + y3 = 5. Observe that G(t) and £2(t) have common factors, which further simplify the
resulting expressions of H(z). The remaining task is again for us to determine appropriate parameters of weight functions in
such a way that all the roots of H(z) should be located on imaginary axis of the complex plane.

In Section 5, we shall give an extensive investigation with an appropriate selection of free parameters leading us to purely
imaginary extraneous fixed points. To this end, we will seek feasible relationships among the free parameters by imposing
some constraints on simplifying the numerator of the resulting expression G(t) to be described in (5.8). The following cases
A-]J are of our main interest whose values of (y4, y», y3) and 7 parameters qq, I'1, '3, '3, 7, s, '9 € R for each case with
A = g + g are discussed in Section 5. We remark that the cases under consideration form a biparametric family of methods
dependent upon two parameters A and rq.

Case A: (y1,72,73) =(0,2,3), -1 <1 <21-10V3,

Qo =—2(4+ 1), 11 = 2(—=29— A), 13 = =9 — 21, 14 = 55(68 — 5rg + 222.),

r7 = 55(5r — 18(4 4 1)), 15 = —r9 + A.

CaseB: (y1.72.73) =(0.3,2), 1 <A <%,

Go=—-1—A, 1= —g,% = —% =314 = %(—6— r9 + 104),

r7 = 3(rg —2(10 + 1)), 13 = —rg + A.

CaseC: (y1.712.¥3)=(0,4,1), =5+4/5 <1 <7,

@9 = =51 = 3(=9—A) 13 = 5(=31= 1), 14 = 4(66 — 1o — 81),

7 = %(—4 + 9 — 6)\), s = —TI9 + A.

Case D: (1.2, v3) =(0,5,0), 3(—2+6V6) <1 <2,

go=—%—ar=3(-47-31),r3=-2 - & r; = L(68 — 31 + 61),

r7 = 3:(—88 + 9rg — 421.), 15 = —Tg + A.

CaseE: (y1,12,¥3) =(1,2,2), -6 <1 <4,

Go = 3(—5—A),r1 = 3(—=37 = 21), 13 = 1(—43 — 8A), 14 = 15(—3r9 + 2(5 + 1)),

7 = %(—52 + 3T9 — 14)\), rg = —Ig + A
CaseF: (y1.72.3)=(1.3.1), -4 <A1 <7,

Go=32(=3—A)r1=13(-25—2A),r3 = 2(—=27—7A), 14 = 2(3—ro + 1),

r7=3(—18+719 —4L), 15 = =19 + A.

Case G: (y1,¥2,13)=(1,4,0), 1 <A <7,

Go=2—Ar1=3(—17=A),r3=3(—1-81), 1, =

r7 = 15(—40 + 3rg — 141), 15 = —Tg + A.

Kf(S, Ll) =

1(=4 —rg +22),
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CaseH: (y1,72,13)=(2,2,1), =2 <1 < —1,
Go=13,rm=3-43-30),3=21(-13=-3A),u=—1 -2
r7 = 15(—76 + 3rg — 181), 13 = —ro + A.

Casel: (y1,72,v3) = (2,3,0), =2 <) <22-14V2,
Go = 2,1y = 1(—41 = 1), r3 = 2(—=17 — 4X), 1y = 55 (—Trg — 2(6 + 1)),
r7 = (=104 + 7rg — 221),Tg = —Tg + A.

Case]: (y1,%.,13)=(3,2,0), =3 <A1 < -7,
Qo = 2(26 4+ 31), 11 =5+ A, 13 = 2(—23 — 4X), 14 = 55(—52 — 519 — 61),
r7 =272+ 719+ 61), 15 = —r9 + A.

5. Extraneous fixed points and their dynamics

Understanding the dynamics of iterative map (3.1) requires the knowledge of its extraneous fixed points [25] as well
as relevant basins of attraction. The dynamics underlying basins of attraction was initiated by Stewart [26] and followed
by works of Amat et al. e.g. [27,28], Andreu et al. [29], Argyros-Magrefian [30], Chicharro et al. [31], Chun et al. [32], Chun-
Neta [33], Cordero et al. [34], Geum et al. [ 16,35], Magrefian [36], Magrefian et al. [37], Neta et al. [ 38-40] and Scott et al. [41].

An approximate zero « of a nonlinear equation f(x) = 0 is usually sought by means of a fixed point £ of iterative methods
of the form

Xny1 = Re(xn),n=0,1,..., (5.1

where Ry is the iteration function under consideration. In general, Ry might possess other fixed points £ # «, being called
the extraneous fixed points of the iteration function Ry. Such extraneous fixed points may induce attractive, indifferent or
repulsive cycles as well as other periodic orbits or chaotic attractors [42] influencing the dynamics underlying the basins of
attraction. Exploration of the dynamics and discovery of its complicated behavior give us a valuable motivation of the current
analysis. In view of proposed family of methods (3.1), we establish a weighted family of modified Newton-like iterative maps
(5.1) as follows:

F(xn)
I'(xn)
where Hy(x,) = Ls(s) + Kf(s, u) can be regarded as a weight function of the classical Newton’s method. It is obvious that « is
a fixed point of Ry. The points & # « for which Hy(§) = 0 are extraneous fixed points of Ry.

For convenience of analysis of the relevant dynamics, we only consider combinations of weight functions L¢(s) and K¢ (s, u)
in the form of univariate and bivariate rational functions as described by (4.2). A special attention will be paid to some
selected cases to be shown later in this section in order to pursue further properties of their extraneous fixed points and
relevant dynamics associated with their basins of attraction. The existence of such extraneous fixed points would affect the
global iteration dynamics, which was demonstrated for simple zeros via Kénig functions and Schréder functions [25] applied
to a family of functions {fy(x) = x* — 1, k > 2} according to the joint work of Vrscay and Gilbert [25] published in 1988.
Especially the presence of attractive cycles induced by the extraneous fixed points of R may alter the basins of attraction
due to the trapped sequence {x,}. Even in the case of repulsive or indifferent fixed points, an initial value xo chosen near a
desired root may converge to another unwanted remote root. Indeed, these aspects of the Schroder functions were observed
in an application to the same family of functions {fi(x) = x* — 1, k > 2}.

For simplified dynamics related to the extraneous fixed points of iterative maps (5.2), we first choose a simple quadratic
polynomial from the family of functions {fi(x) = x* — 1, k > 2}. By closely following the works of Chun et al. [24,43] and
Neta et al. [38,40,44], we then construct Hf(x,;) = L¢(s) 4+ Kr(s, u) in (5.2). We now take the multiplicity m of zero « into
account and apply a prototype quadratic polynomial f(z) = (z> — 1)" to Hy(x,) in order to construct H(z), with a change of
avariable t = z2, in the form of

N(t)

H(z) Ok (5.3)
where both D(t) and A/(t) are polynomial functions of t with no common factors. Since H is a rational function, it would
be preferable for us to deal with the underlying dynamics of iterative map (5.2) on the Riemann sphere [45] where points
“0(zero)” and “00” can be treated as the desired extraneous fixed points. If such points arise, we are interested in only the
finite extraneous fixed point 0 under which the relevant dynamics can be described in a region containing the origin by
investigating the attractor basins associated with iterative map (5.2).

The extraneous fixed points & of Ry in (5.2) can be directly found from the roots t of H(z) withz = t1/2 via relation below:

Xnt1 = Re(xp) =%, —m Hy(xn), (5.2)

ez, ift #0,

(5.4)
0(double root), ift =0.
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5.1. Purely imaginary extraneous fixed points

Itis clear that the boundary of two basins of attraction of two roots for the prototype quadratic polynomial f(z) = (z2—1)"
is the imaginary axis of the complex plane. Indeed, the imaginary axis symmetrically divides the whole complex plane into
two half planes. Since we want to display the convergence behavior in the dynamical planes through the basins of attraction
in a square region centered at the origin, the resulting dynamics behind the extraneous fixed points on the symmetry
(imaginary) axis would be less influenced by the presence of the possible periodic or chaotic attractors. This motivates our
exploration of the extraneous fixed points on the imaginary axis influencing the convergence behavior of iterative map (5.2).

Our important task is to construct a possible combination of weight functions Ly and Ky leading to purely imaginary
extraneous fixed points, whose investigation was first done by Chun et al. [43]. As a preliminary task, we first describe the
following lemma regarding the negative real roots of a quadratic equation, which would play a role in determining the
desired purely imaginary extraneous fixed points.

We now introduce the following lemma shown in [17] regarding the negative real roots of a quadratic equation for later
use to characterize the equation g(t) described by (5.11).

Lemma 5.1. Let q(x) = ax?> + bx + ¢ be a quadratic equation with real coefficients a # 0, b, ¢ satisfying b*> — 4ac > 0. Let t;
and t; be the two roots of q(x) = 0. Then both roots t; < 0 and t, < 0 hold if and only if all three coefficients a, b, c have the
same sign.
Employing weight function Ly(s) with parameter b = 0 in (4.4) applied to f(z) = (2% — 1)™, we find:
1 1
s =-(1-=),
L)
132241 )
S22
In addition, we are able to express Kf(s, u) in terms of z and free parameters qo, 11, I3, 14, I'7, I's, T9 With the use of

u—] (22— 1) (5.6)
T4 (241 .
Although such lengthy expression of K; is not explicitly shown here, the simplified second-order form of Ly will greatly
reduce the complexity of Ky as well as the desired Hy = Ly 4- Kf given by (5.3). Consequently, the explicit form of the relevant
H(z) given by (5.3) takes the form of

1 G(t; /307/31""!/37)

(5.5)
Ly

H(z) = : , (5.7)
2(1+f) .Q(t;wo,a)l,...,a)s)
where G(t; Bo, B1, ..., B7) and 2(t; we, w1, ..., we) are concisely denoted by G(t) and £2(t), respectively, as below:
7
Gty=) Bt (5.8)
i=0

with ﬂo = ZQQ +4T'4 +r9, /31 =8— 14QQ +4T1 — 12T'3 —|—4r4 —4T'3 — 3T9, ﬁz = —288 +64q$ +34QQ — 1121"1 — 481’3 — 28T4 +
1617 +8rg —3rg, ﬂ3 = —1112—|—192q8—3OQQ—652T1+100T3+4T4—16T7 +20rg+25rg, /34 = 1792—128q8—]OQQ—704T1+
64r; + 44ry — 96r; — 80rg — 4519, 5 = 6104 — 384qs + 38q9 — 84r; — 132r3 — 20r4 + 224r; + 100rg 4 3919, Bs = 8736 +
64q8 —26CI9+ 1328r; — 16r3 —20r4 — 17617 — 5613 — 17719, /37 = 1144+ 192Q8 +6Q9 +220r1+44r3+12r4+ 4817 4+ 12rg+ 39,
and

6
Q)= ot (5.9)
i=0

with wo = 4ry + Ig, w1 = —2(8T3 +4r,+ 27'8 + 3r9), wy = —320+ 64% —128r1 + ]6T3 —4ry+ 1617 + 20Tg + ]Srg, w3 =
—4(—32 + 481'1 — 8T'3 — 4T4 + 167‘7 + 10rg + 5r9), w4 = 1024 — 128(]8 — 1921'1 — 32T3 — 4T4 + 967'7 + 40rg + 15T'9, w5 =
2(]472 + 224T1 — 8r3 — 4T4 — 32T7 — ]Org — ]?)Tg), wg = 320 —+ 64q8 —+ 641”1 —+ 16T3 —+ 4r4 + 16T7 —+ 4Tg + Tg.

Observe that the weight function L¢(z) = 3( 1;?; ) with t = z? contains two factors (1 + 3t) and (1 4+ t). In view of this

observation, we naturally consider a special case of H(z) in the form of a simplified rational function possibly with such two
factors. To this end, we construct

1 G(t
Q, (5.10)
2(1+t) £2(t)
where G(t) and £2(t) may involve some of such factors in addition to a factor t corresponding to the origin (considered as
purely imaginary) of the complex plane, as shown below:

G(t) = t"1(1+46)2(1 430" - g(t) foryr, y2, 3 e N JO), m+r2+y3=5
2(t) = u(v),

Hf =Lf + Kr =

(5.11)
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where g(t) and w(t) are polynomials of degree at most 2 and 6, respectively. The expression of H(z) in (5.7) will be further
simplified as:

— 1 1 n—1 3—1 &
H(Z)_2 (1 4+ t)27 (1 4+ 3t) (0

If we further restrict with y, > 2, then all possible 10 combinations of (y4, y, y3) are listed by {(0, 2, 3), (0, 3, 2),(0, 4, 1),
(0,5,0),(1,2,2),(1,3,1),(1,4,0),(2,2,1),(2, 3,0),(3, 2, 0)}. For convenience, we assign ten case letters A, B, C, D, F, G,
H, I, ] to those 10 combinations in order.

For each case, we should let H(z) have all purely imaginary extraneous fixed points. To do so, we further require that all
the roots of g(t) should be negative. Let g(t) = go + g1t + g2t and pu(t) = po + pit + pat? + pat> 4+ pat* + pst> + pst®. Then
the roots of g(t) = 0 would contribute to the desired extraneous fixed points. In view of the fact that y; + y» + y3 = 5, the
forms of (5.11) would require a set of five constraints

with t = 2. (5.12)

0=G0)=G(0)=---G"0)=G-1)=G(=1)=--- G2 V(-1) = c(—%) = c’(—%) =.. -c%—”(—%) (5.13)
Since G(—1) = 128(32+8r; —4r; —2rg —19), 2(—1) = —64(32+8ry —4r; — 2rg —r9), we find that G(—1) = —22(—1),
from which G(—1) = 0 implies £2(—1) = 0. Consequently, we find u(t)=(1 + t)w(t) with w(t) = dg + dit + dot? + dst> +
dst* + dst® provided that G(—1) = 0. For any of cases, we can solve these 5 constraints for 5 parameters qq, 11, I's, T4, I7 in
terms of at most 2 remaining parameters rg and r9. If we substitute these 5 parameters back into G(t) and £2(t) in (5.11),
the explicit forms of g(t) and w(t) with their coefficients in terms of at most 2 remaining parameters rg, rg for a given
combination of (y1, y», y3). If a new parameter A = rg + rg is conveniently introduced, then for all 10 Cases A, B...., J, we
can express 6 parameters qq, I'1, '3, I'4, 7, I's € R in terms of two parameters A and ry. After a tedious algebra, the resulting
parameters for all 10 cases are already described at the end of Section 3. The following proposition plays an important role
in analyzing both computational and dynamical aspects of proposed family of methods (3.1).

Proposition 5.1. For each case, all coefficients of g(t) and w(t) can be expressed as an affine combination of A.

Proof. Since one proof is similar to another, it suffices to consider a typical case Awith (y1, y2, v3) = (0, 2, 3)and A = rg+ry.
Solving the 6 constraints, we obtain gg = —2(4 + A), 1y = 2(—29 — A),r3 = =9 — 2,14 = 55(68 — 5r9 + 224),17 =
%(5@ — 18(4 + 1)), rs = —rg + A. Substituting these coefficients into G(t) and £2(t), we find:

4
g(t) = g[“ + 4) + t(54 — 41) + 15t%]

2
w(t) = Z[34+ 110 + 1258 + 374) + 78t%(14 4 1) — 6t3(9% — 334) + t4(1498 — 731) + t5(234 + 1)],

completing the proof. O

We now seek the possible extraneous fixed points from the roots of the quadratic equation

g(t) = go + g1t + Lt (5.14)

with g; = gi(A), (0 < i < 2), being dependent on parameter A. Let D be the discriminant of g(t) to be expressed in terms of
parameter A. We denote a set

A={reR:D >0} (5.15)
We further denote a set

P={A € R:gog > 0and gyg, > 0} (5.16)

whose elements make all three coefficients go, g1, g2 have the same sign. We now use Lemma 5.1 to locate all two negative
roots of g(t) = 0 for purely imaginary extraneous fixed points. After a lengthy algebra, we are able to find the desired sets
A, Pand A NP containing A-values for which purely imaginary extraneous fixed points can be located.

Notice that extraneous fixed point zeros & = 0 (being considered as purely imaginary) may be found on the boundary

of P. Let P denote the closure of P. According to interesting values of A € A N P, we classify the subcases of each case from
Cases A, B, ..., ] by appending sequential Arabic numerals such as Cases A1,A2,...,B1,B2,...,J1,]2,....

Presented below are values of (y1, 2, ¥3), A, g(t), A, Pand A NP for each case under consideration with A = rg + ro.
Case A: (y1,v2,v3) =(0,2,3).

(1) g(t) = 11 + 41 + t(54 — 4)) + 15¢2.

(2) A={A:A<21-10/30rA>21+10V3}, P={a: -1 <) < Z}.

(3) AnP={r:— <i<21-10V3}

The five subcases A1, A2, ..., A5 are identified with A € {—11, =2, =3, 1, 2} in order.
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Case B: (y1,72, v3) =(0,3,2).

(1) gt)=—14+x—2t(L —8)+ t3(1 + A).

2 A=:2A<BLP={L:1<i<8}

(3) ANP={Ar: 1<A<ﬁ}

The five subcases B1, B2, ..., B5 are identified with A € {1, 2 2,2,4, %} in order.
Case C: (1, 12, ¥3) = (0, 4, 1).

(1) g(t) = =7 + A+ (10 — 6A) + 5t(A — 7).

() A={:a<—-5-4J50ra> —5+4/5, P={1:3 <A <7}

(3) ANP={r:—-54+4/5<x <7}

The five subcases C1, C2, ..., C5 are identified with A € {4, 1, 6, 112357 7} in order.
Case D: (y1, y2, ¥3) = (0,5, 0).

(1) g(t) = =3 + (2 — 61) + t3(6A — 71).

(2)A={r:r<3(-2-6V6)orr>3(-2+6V6)}, P={r:1<r <}

(3) ANP={1:3(-24+6V6)<i <}

The five subcases D1, D2, ..., D5 are identified with 1 € {5, 2,9, &2, L} in order.
CaseE: (y1,y2,y3) =(1,2,2).

(1) g(t) = =3(6 + 1) + 2t(A — 13) + t3(A — 4).

() A=R, P={1:—6 <A <4}

3B)ANP={1:—-6 <A <4}

The seven subcases E1, E2, ..., E7 are identified with A € {—6, —5, —3, —1, 1, 2 = ,4} in order.
CaseF: (y1,72,v3)=(1,3,1).

(1) g(t) = —11 — 31 4 2t(h — 23) + t2(A — 7).

2) A=R, P={xr: ——<k<7}
3)AnP={r: ——<k<7}
The six subcases F1, F2, ..., F6 are identified with A € {—— -3,1,3,4 = ,7} in order.

Case G: (y1, 12, v3) = (1,4, 0).

(1) gt)=1—r— 18t +t3(x — 7).

() A=R, P={A:1<x<7).

B)AnP={r:1<Ar <7}

The five subcases G1, G2, ..., G5 are identified with A € {1, 2, 4, %, 7} in order.
Case H: (y1, 72, 13) = (2,2, 1).

(1) g(t) = =73 — 91 + (61 — 26) + 3t3(1 + 1).

(2) A=R,P= {)\ —f<x<—1}
3 ANP={: -2 <1 <-1}.
The seven subcases H1 H2, ..., H7 are identified with A € {—%, -6, -5, -3, -2, —ﬁ, —1} in order.

Casel: (y1,v2,13) =(2,3, O).

(1) g(t) = 19 4 21 — 2t(A — 15) + 72,

(2) A={r: A<22—14forx>22+14f2}, P={:—-2 <x<15).

3)ANP={r: -2 <1 <22-14V2}.

The five subcases I1, 12 ., I5 are identified with A € {—‘2—9, —7,—6, —1, 1} in order.
CaseJ: (y1,v2,¥3) =(3,2, 0)-

(1) g(t) = =7(7 + 1) + £(58 + 41) + t3(31 + 31).

(2) A=R, P= {k' —d <r<-7)

B)ANP={r:-3 <1< -7

The five subcasesjl,]Z, ..J5 are identified with A € {—3}, =234 -9, =% —7} in order.

Although rich subcases are available as considered thus far, in Table 1, we preferably present 32 sub-subcases A3Z,
A4X, ..., I5Z, J4X, ]J5Y based on simplified forms of their corresponding weight functions K(s, u) along with parameter
values of qq, 11, 13, 14, 77,78, 79, A and H(z). The sub-subcase numbers ending in letters X, Y, Z correspond to the values
ofry = 0,17 = 0,19 = 0, respectively. Indeed, Table 2 lists the extraneous fixed points for the specially selected 18 sub-
subcases.

The analysis done so far and a thorough inspection of Table 1 yield the following useful remark.

Remark 5.2. (i) Once A is chosen, we have freedom to select parameter rg. Note that H(z) can be obtained without
specifying parameter values of rg for all selected cases. (ii) Three cases (A3X, B3Z, E2Y) (highlighted in yellow) give the
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Table 1
H(z) for the selected values of A and qq, 11, '3, T4, 7, T'g, Tg.
H(), t=2" (99,71,73,74,77) (rs,r9) A
2(1+31)%(1+121+312) (—3,-1 61 9 (_, 0) 3
7+60t+210t2+204t43+3114 R S| 3
(3+1)(1+31) 2 e o
9-+59r423412+390r3 +285¢4 +-4715 (=3,-6,-11,0,0) (=17,18) !
2(141) (1431) (14261 +51%) (-3,-1 10,0,-1) (~1 9 3
9+100t+2328_t2+148z3+217t4 2 2 2 2
2(1+431)=(1+12¢43t%) 213 23 5 _
7+60t+2210t2+204t3+3114 (3.-%3.-5.-3.0 (=22,24) 2
2(1+1) (1+3t)3 (3+5t) (7577%,7%’ 1727777) (4,0) 4
(5-%-%.%-9 (40 | ¥
(_57_%7_%737_10) (670) 6
(—5,-8,-19,0,-9) (—3,10) 7
) I 2 2
(1430) (1445947112 +413+71%) (-8-%,-%.5,-11) (5.0 3
D3X 16(141)° (3+1)(1+171) (-2 7 _om o 35 (-8 12
1834 1457¢+3206¢2+2978¢3 + 123504 + 15715 3 9 9% 9 3° 3
D4z, 4(141)3 (1944341 431%) (—26 _21 2135 68 307 ) 670
32942948 +567812 445323+ 1105¢% o> 570 5757 19 57> 57
DsY 32(141)3(14231) (-25,_5 13 — 1 0) _@ 65) 7
139+1249t+23982tz+1906t34»2455t4—3t5 20 67 37 6
2(1431) (141214-317) 9 13 - -
7+60t+210t2+204t3+%lt4 0.-3,-3,3,0) (1,-6) >
2t (141)(7+t)(1431) 5 13 11 _9 _
E3X 1+30t+134t2+224t3+113t4;—10t5 (-2-%-7.0,-3) (=3.4) !
2(1+1)(1+431) (14261 +5t) 113 _3 _ _
9. 100238 + 148 1717 (0,—%,-3,0,—3) (3,0 3
2(141)(1431) (14261+5t) u 3 _3 _ _
F2y 9+100t+238t2j;148t3+217t4 0.-%,-3-30 (=9.6) 3
2t(141)(7+1)(1431) 5 13 17 9 _
F3Y 1+30t+134t2+224t3+113t4+10t5 (-2-%.-2.3.0 (-21,22) !
FAX 8t(1+t)(21+3t)(§+10t+t ) (~3,-7,-12,0,-6) (~3,6) 3
(—5,-8,-19,-9,0) (—39,46) 7
6417 (141)~ (3+1)
—1+25:4-2782+434¢3 +251,4 43715 (1,-6,-3,0,5) (3.-2) !
0,-%,-4,0,-4) (2,0) 2
(2,-7,-11,0,-7) (0,4) 4
(-5,-8,-19,3,-2) (7,0) 7
81~ (1431)~ (19+51) (l 255 0 §) (,E 7;) _6
— 14-19r+28612 4124613+ 131514420715 30 60672 3° 3
(3-%.110 -3-% | -5
161~ (1431)(23+221+31%) 117 _2¢ _ 7 _2 —
HaX —1+3714+6462+1498¢3 +81114+8115 G-5.-50-2 (=5.-3) 3
25617 (2+1) (1+31) (1,-20 50 -5) (-1,-2) -1
— 14+-49¢+886124- 166613 +475t* 315 30 30 37 30 3
(07 _5717071) (_670) -6
(07 _5¢1717O) (_27 _4) -6
6417 (141)~ (3+1)
15Y — 14251 +278:2 44343425114 +37:5 (1,-6,-3,-5,0) (=17,18) !
(0 _%7370 5) (_237670) _2?6
2561 (3+1)
—14+9r—42r2 421013 +-699r% +-149/5 (1,-2,1,0,7) (=5.-2) -7
_ 2(1436)2(1+12+3t2) - .. . _
same H(z) = TTe0r 210242085131 four cases (B2X, C3Z, F2X, F2Y) (highlighted in light gray) give the same H(z) =
2(14£)(143t)(14-26t45t2) 64t(141)(143t)
311000238 14801178 three cases (C5X, F6Y, G5Z) (highlighted in green) give the same H(z) = STIT3707 L4060 1 A
. . . 2y
two cases (C2Z, G2X) (highlighted in magenta) give the same H(z) = ;55?32(21:;18{;?; o, three cases (G3X, 13X,
13Y) (highlighted in violet) give the same H(z) = —StHUT6EE) vy cases (H3Y, J4X) (highlighted in light green)

(1436)(1433t+27t243t3)

. _ 32t2(7414t43t2)
give the same H(z) = —14-28t4+322t24-364t34+55t4"
26(14t)(7+8)(143)?

1430t +134t24+224t34+113t4+1065

and two cases (E5X, F3Y) (highlighted in gray) give the same H(z) =
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5.2. Stability of extraneous fixed points

After locating the roots of H(z) investigated thus far for f(z) = (z2 — 1)™, we list in Table 2 the desired purely imaginary
extraneous fixed points in typical subcases. By computing the absolute values of multipliers R(¢) for iterative map (5.2)
with f(z) = (z2 — 1)™, we claim that all of the purely imaginary extraneous fixed points & of H in each of the listed cases in
Table 2 are indifferent except for extraneous fixed point double 0. The extraneous fixed point double O for each of Cases G3X
and I3X is found to be repulsive and highlighted by a framed-value. Interestingly attractive extraneous fixed points have not
been found in any of the selected cases. Stabilities of the multipliers for all cases A, B, ..., J are well described in the following
proposition.

Proposition 5.3. Let & be the extraneous fixed points obtained from the expression H(z) with t = z%in(5.12) and let . = rs +71¢
be as described earlier in Section 5.1. Then stabilities of the possible extraneous fixed points & for the 10 cases A, B, ..., ] are
characterized by the following:

(1) The nonzero extraneous fixed points for the 10 cases are all found to be indifferent.

(2) The multipliers of the extraneous fixed point double 0 for cases E, F and G are respectively given by —
They are found to be repulsive respectively for —7 < A < —=3(A # —6)and —10 < A < —%(A # —8).

(3) The extraneous fixed point (quadruple, sextuple, octuple) 0 is found to be indifferent for cases E-J.

(36451)  (32434)
6 and — g5y

Proof. (1): It suffices to show for Case A for the nonzero extraneous fixed points. Proofs for the remaining cases can be
similarly treated.
The corresponding H(z) for Case A found to be:
B (1+36)3(11 + 4 + (54 — 41) + 15t2)
T 344 110 + (258 4 37A) + 78t2(14 + A) — 6t3(—334 + 91) + t4(1498 — 731) + t5(234 + 1)’

where t = z2. Hence the extraneous fixed points & are given by :t%(triple) and &t with t = 72 for which 11+4x 4 t(54 —
4)) 4+ 15t = 0. Besides, the corresponding derivative of the iterative map Rf in (5.2) is given by
(t — D11+ 4A + £(107 + 181) + t3(542 + 481) + t3(1046 — 361) + t4(791 — 361) + t3(63 + 21)]

Ri(z) = . (518
7(2) 26[34 + 11% + £(258 + 371) + 78t2(14 + A) — 6t3(—334 + 91) + t4(1498 — 731) + (5(234 + A)] (5.18)

H(z) (5.17)

By direct substitution of the extraneous fixed points z = :l:% (triple), i.e., t = —% into R}(z), we immediately find

R}(:I:%) = 1. We now let the extraneous fixed points +7 satisfy

11441+ t(54—40)+ 152 =0

with t = 72, For brevity, we first denote the left side of the above equation by d;(t) = 11 + 4 + t(54 — 41) + 15t%. Then
the second factors of the numerator and the denominator of (5.18) are respectively given by

11+ 41 + £(107 + 181) + t2(542 + 481) + t3(1046 — 361) + t4(791 — 361) + t3(63 + 21)
= qq;(t) - dp(£) + r1(t) = rq(0),
34 + 11A + (258 + 37A) + 78t%(14 + A) — 6t3(—334 4 91) + t4(1498 — 731) + t7(234 + 1)

=, (t) - d(t) + 125 (1) = 1rp(8),

where
8o + 156(—232047 + 430264 — 213642 + 3243) 4 225t%(8463 — 3961 + 8A2) 4 3375t3(63 + 2A)
qi,(t) = ,
50625
81 + 156(— 118746 + 24483A — 112842 + 16A3) + 225t%(9834 — 213X + 4A2) + 3375t3(234 + A)
g2, (t) = ,
50625
() = 128[85 + t(—5127489 + 19556104 — 25852512 + 151804 — 4051* + 415)]
A 50625 ’
and
(6) 256[84 + t(—1660176 + 5923801 — 7371042 + 411023 — 1054% + A3)]
22 = )

50625

with 8 = 12963393 — 35320321 + 30988812 — 1075213 + 1281%, §; = 8475174 —20887 111+ 17096412 —56161> + 6414,
83 = —1109691—999901+8374512 —8760A3+3251% — 41>, and §4 = —357444—40500) 42529012 — 243013 +8514 —A°.
Hence (5.18) at this extraneous fixed points &7 with t = 72 becomes

(t — Dy, (t)
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Since (t — 1)ry;(£) =2t 15, (t) = d,,(£)-(100881 — 275941 424211% — 84134+ 1*) = 0in view of the fact d,(t) = 0, we find that
R}(j:r) = 1. Further, in case of A = % d, (t) reduces to a degenerated first-degree polynomial equation. The corresponding

extraneous fixed points t are found to be j:\iﬁ and R}(j:%ﬁ) = 1. The proofs for all other remaining cases can be similarly
made.

By direct substitution of the extraneous fixed points z = 0 (double), i.e.,t = Ointo R}(z), we immediately find R}(O) =-7,
implying repulsive fixed points 0.

(2)(i): Case E for extraneous fixed points 0 (double).

The corresponding H(z) and R}(z) are found to be:

4t(1 4 3t)?[—3(6 + 1) + 2t(A — 13) + t3(A — 4)]
54+ A+ t(157 + 23X) + t2(730 + 74A) + 14t3(95 + 1) + t4(769 — 91A) + £5(81 — 211)’
(t — 1)[—31—51 — 2t(89 + 101) — 6t%(60 + 1) + 2t3(—95 + 144) + 3t*(—3 + 1)]
5 + A 4 t(157 4 231) + t2(730 + 74A) + 14t3(95 + 1) + t4(769 — 911) + t5(81 — 211)°
By direct substitution of the extraneous fixed points 0 (double), i.e,, t = 0, into R}(z), we immediately find R}(O) =
- (3(;1“15\?) Thus the extraneous fixed points 0 are repulsive for —6 < A < 4(A # —5).
(ii): Case F for extraneous fixed points 0 (double).
The corresponding H(z) and R}(z) are found to be:
4t(1 4 £)(1 4 36)[—11 — 31 + 2t(A — 23) + 2(A — 7)]
T 35— 3t(33 + 7A) — 262(251 + 17X) + 14t3(—65 + 1) + t4(—487 + 351) + t3(—47 + 71)°
R.(2) = (t — 1[—19 — 51 — 2¢(61 + 51) + 4t3(A — 62) + 2t3(5A1 — 59) + t*(A — 5)] .
! —3— % —3t(33 4+ 7A) — 2t2(251 4 171) + 14t3(A — 65) + t4(351 — 487) + t5(71 — 47)
By direct substitution of the extraneous fixed points 0 (double), i.e,, t = 0, into Ri(z), we immediately find R¢(0) =
- (1(2115\?) Thus the extraneous fixed points 0 are repulsive for =1 <1 < 7(x # —3).
(iii): Case G for extraneous fixed points 0 (double).
The corresponding H(z) and R}(z) are found to be:

32t(1 4+ t)2[1 — A — 18t + t2(—=7 + A)]

H(z) =

(5.20)

Ri(z) =

H(z)

(5.21)

H(z) = )
@ 6 — 31 — t(26 + 49)) — 2t2(394 + 231) + 14t3(A — 94) + t*(651 — 818) + t3(19A — 130) (5.22)
Ri(z) = (t — D10 — 134 — 12t(17 + 1) + 2t%(A — 172) + 4t3(51 — 53) + 3t*(1 — 6)] '
Y276 — 30 — £(26 + 490) — 2t2(394 + 2314) + 14t3(h — 94) + t4(651 — 818) + t5(191 — 130)
By direct substitution of the extraneous fixed points 0 (double), i.e., t = 0, into R(z), we immediately find R;(0) = 13((’;_1;’)\
Thus the extraneous fixed points 0 are repulsive for 1 < A < 7(A # 2).
(3) Cases E-] for extraneous fixed points 0.
The corresponding H(z) for each of cases H-J is found to be:
8t2(1 4 3t)[=73 — 9 + t(6A — 26) + 3t2(1 + A)]
for case H,
1 —t(55 + 61) — 2t2(503 + 601) — 14t3(125 + 61) + t4(—307 + 1681) + 5(45 + 421)
2 _ _ 2
H(z) = 64t2(1+ £)(19 + 24 — 2¢(A — 15) + 7¢2) for case . (5.23)
—6 — A+ 7t(22 + 3X) + 2t2(906 + 671) + t3(3108 — 704) + t4(1842 — 851) + t5(258 + A)
128t3[—7(7 + 1) + t(58 + 4A) + t2(31 4 31)]
for case J.

—26 — 3A + £(262 + 31A) — 14t2(134 + 171) — 14t3(254 + 471) + t4(7982 + 6411) + £5(2334 + 2271.)

In addition, subcases E1X-E1Z, F1X-F1Z, G1X-G1Z possess extraneous fixed points 0 (quadruple), i.e., each H(z) of them
contains a factor t>whose explicit expression is not shown here. Note that each H(z) of the selected cases E-J has the factor
tk for k > 2 in the numerator for some A. Hence, we find that the corresponding fixed points 0 are found from the repeated
roots of t*, stating Ri(0) = 1. O

In case that f(z) is a generic polynomial rather than (z2 — 1)™, it would be certainly interesting to investigate the
dynamics underlying the relevant extraneous fixed points. However, due to the increased algebraic complexity, we resort to
an effective way of exploring such dynamics through a variety of basins of attraction under iterative map (5.2) with f(z) as
a generic polynomial. We will illustrate the basins of attraction to explore the dynamics of the iterative map R, of the form

p(zn)

Zn1 = Rp(zn) =Zn — H (Zn)a (5-24)
for a generic polynomial p(z, ) and a weight function Hp(z,). In fact, basins of attraction for the fixed points or the extraneous
fixed points will be illustrated throughout various polynomials in the latter part of Section 6.

We now prefix the iterative maps in Table 2 corresponding to cases A3Z, A4X, B2X, B3Y, B4Z, C2Z, C3Z, D2Z, E2Y, F2X,
G1X, G2X, G3X, H2X, H3Y, I3X, J4X, J5X with W for later use in describing their relevant dynamics. In addition, we identify
map GKNG6A and GKNG6B, respectively for methods (2.1) and (2.2).
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Table 2

Extraneous fixed points & and their stability for selected cases.

Case 3 No. of &
A3Z +i/+/3(double), + 1.9786i, +0.291798i 8
A4X ++/31, +i/+/3(quadruple) 10
B2X +i, +i/+/3, +2.27184i, +0.196851i 8
B3Y +i/+/3(double), + 1.9786i, =+ 0.291798i 8
B4Z +i(double), =+ i/~/3(double), + 0.774597i 10
C2zZ +i(double), 4 0.237572i, =+ 1.88243i 8
C3z +i, +i/+/3, +0.196851i, =+ 2.27184i 8
D2Z +i(triple), +0.273951i, =+ 1.21676i 10
E2Y +i/+/3(double), +0.291798i, + 1.9786i 8
F2X +i, +i/+/3, £0.196851i, =+ 2.27184i 8
G1X 0(quadruple), =+ i(double), +/3i 10
G2X +i(double), 4 0.237572i, + 1.88243i 8
G3X O(double), i, +0.414214i, +2.41421i 8
H2X 0(quadruple), :I:i/ﬁ(double), + 1.94936i 10
H3Y O(quadruple), =+ 0.754652i, =+ 2.02415i 8
13X O(double), +1i,+2.41421i, + 414214i 8
Jax O(quadruple), =+ 2.02415i, =+ 0.754652i 8
J5X O(octuple), =+ +/3i 10

In the above table, all nonzero extraneous fixed points are indifferent, while
boxed-values of zero extraneous fixed points are repulsive. Interestingly, no
attractive extraneous fixed points exist for the selected cases.

6. Numerical experiments and complex dynamics

We first analyze computational aspects of proposed family of methods (3.1) for a number of test functions along
with existing sixth-order methods GKNG6A given by (2.1) and GKN6B given by (2.2); then we investigate the dynamics
underlying purely imaginary extraneous fixed points based on iterative maps (5.24) through their illustrative basins of
attraction. In Section 5, we were able to find extraneous fixed points using A-values without specifying parameters rg, rg.
For numerical experiments in both computational and dynamical aspects, we need to provide the required 7 coefficients
Qo, T1, 13, T4, 17, T8, Tg Of K¢ (s, u) for a given A. Table 3 shows the desired parameter values and K;(s, u) for the 18 selected
cases A3Z, A4X, B2X, B3Y, B4Z, C2Z, C3Z, D2Z, E2Y, F2X, G1X, G2X, G3X, H2X, H3Y, I3X, J4X, J5X. Each case has been
implemented to verify the theoretical convergence. Later on in this section, we will explore the complex dynamics with
the use of illustrated basins of attraction of selected rational iterative maps WA3Z through WJ5X and existing sixth-order
methods GKN6A and GKN6B.

Numerical experiments have been implemented by Mathematica programming with 160 digits of minimum number of
precision, via Mathematica command $ MinPrecision = 160.

Definition 2 (Computational Convergence Order). Assume that theoretical asymptotic error constant 7 = lim;,_, % and
-

convergence order p > 1 are known. Define p, = l‘gg“::i '17‘| as the computational convergence order. Note that lim,_, .op;, = p.
Remark 6.1. Note that p, requires knowledge at two points x;, x,_1, while the usual COC (computational order of

log([xn—Xn—11/1Xn—1—*n—21)
log(|xq—1—Xn—21/1%n—2—Xn—31
with a less number of working precision digits than the usual COC whose number of working precision digits is at least p
times as large as that of p,.

convergence) )does require knowledge at four points x,, X,_1, X;_2, X,_3. Hence p, can be handled

Computed values of x,, are accurate with up to $MinPrecision significant digits. If « has the same accuracy of $MinPrecision
as that of x,, then e, = x, — a would be nearly zero and hence computing |e,;1|/|en|” would unfavorably break down. In
case that « is not exact, we employ the approximate « found with more precision digits of @ + $MinPrecision. To supply
such an approximate «, a set of following Mathematica commands are used:

sol = FindRoot [f(x), {x, X0}, PrecisionGoal — ® + $MinPrecision,
WorkingPrecision — 2 x $MinPrecision];
a = sol[[1, 2]].
In the current experiment, we assign @ = 16. As a result, the numbers of significant digits of x, and « are found to be 160

and 176, respectively. Nonetheless, we list both of them with up to 15 significant digits for proper readability. The error
bound € = 3 x 107128 is assigned to satisfy [x, — | < €.
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Table 3
Parameter values of A, A, A7, As, By, B3, Ba, Bs, Bg, dy, da, and K;(s, u) for selected cases.
Case Kp(s,u) (q9,r1,73,74,77) (rg,r9) A
_ 2su(sfl)2(3sf2) 31 7 9 3 3
A3Z 4—225+40s2 24534+ 754+ (—4+145—952—653 )u (-3-%.76.5-3) (=30 2
_ su(s—1)(1—-35+35%) I -~
A4X 1651352 — 1153+ (—1+4s— 1753 +185%)u (=3,-6,-11,0,0) (=17,18) 1
su(s—1)%(55—2) 5 13 7 15 3
B2X (25—1)(=2+95—1052+(2—55—352+953 )u) (-3,-%,-10.0,—3) (=3.9) 2
_ su(s—1)(2s—1)(35—2) 2 13 23 _5 _
B3Y 2135429522353 — 55 +(—2+95—44s3+485* )u (3-%.-5.-3.0 (-22,24) 2
i su(s—1)(2—7s+10s%) s 13 35 17 _
B4AZ 2—135+3352—3553+175%+(—2+95— 1452 +8s3 )u (=5-3.-3,7,77 (4,0 4
c2z (-5,-2,-2,3,-9) (4.0) g
su(s—1)(2s—1)(55s—2 15 7 9
c3z T 215543952 3753495+ (—2+ 1 15— 205>+ 125 )u (=5-3,-7,3.-10 (6,0) 6
su(—3+17s—3552+24s°) B 71 28 2 2
D2z " 3-23546652— 77534285+ (=34 175—33524+225% )u (=8-3,-3,3,-11) (3,0 3
B su(s—1)(3s—2) 9 13 _ _
E2Y —2+95— 1152453 — 357+ (2—55—253 +125 )u 0,-3,-3.3,0) (1,-6) >
_ su(s—1)(55s—2) U 30 _3 _ —
F2X — 24 11s— 17524353+ (2—Ts+3s2+653 )u 0,-5,-3,0,—3) (=3,0) 3
su(1—4s+4s°+s7)
GIX T TGy 1152353+ (1454552353 125N u (1,-6,-3,0,-5) (3,-2) 1
G2X 0,-%2,-%,0-49) (2,0) 2
G3X (2,-7,-11,0,-7) (0,4) 4
su(s—1)(—6+7s42s°) 1 _25 505 16 _2
H2X T —6+255—2552—553+(6—135— 155243253 +-4s )u (5:-%:503) (=3.-3) -6
H3Y ErEEEIIE
BX (0,-5,1,0,1) (—6,0) -6
14X 0,-%,3,0,5) %0 | -®
su(1+4s)(1—s+s°)
X T 1425 +52— 53+ (1-7s2+553 +25)u (1,-2,1,0,7) (=5,-2) —7
Table 4
Convergence for test functions F;(x) — F3(x) with typically selected methods AX2, BX1, DY7.
MT F n Xn IF(xa)] xn — len/el | ] Pa
0 —2.2 0.220278 0.165263
1 —2.03473702902612 1.411 x 1077 1.027 x 1078 0.01846758266 0.06316552009 8.68311
WA3Z F 2 —2.03473701875034 3.678 x 10733 7.852 x 1076 0.06316551487 8.00000
3 —2.03473701875034 7.260 x 107866 1.145 x 107174
0 14 0.0160177 0.0634181
1 1.46341814023295 1.666 x 10728 1.458 x 10710 0.5574998039 0.8530972576 8.15425
WB2X F, 2 1.46341814037882 2.869 x 1072 1.748 x 10°7° 0.8530972568 8.00000
3 1.46341814037882 0.0 x 107812 5.406 x 107174
0 1.1 0.205800 0.0585181
1 1.04148187080088 2.406 x 10~18 2.165 x 10710 1.574812549 1.400174304 7.95859
WH3Y F, 2 1.04148187058433 2.351 x 10713 6.770 x 10778 1.400174305 8.00000
3 1.04148187058433 3.678 x 1073% 0.0 x 10~1%°
MT = method, ( ;7" = 1.96 — 0.36i, i = v/—T.

Typical methods WA3Z, WB2X, WH3Y have been successfully implemented with test functions F; — F3 below:

2 5 5
WASZ : Fi(x) = (cos(—-) + ¥ = 7)°, @ ~ ~2.03473701875034, m = 5.
WB2X : Fy(x) = [1+cos(x* + 1) —xlog(x* — 7 +2)P(X¥* +1—7n), a =~/7m — 1, m= 3.
WH3Y : F3(x) = [sin(x — 1)"! + ¢ — 3]?, & ~ 1.04148187058433, m = 2.

Table 4 well verifies eighth-order convergence. The values of computational asymptotic error constant agree up to 9
significant digits with . Table 5 lists additional test functions to further confirm the convergence behavior of proposed
scheme (3.1).

In Table 6, we compare numerical errors |x, — «| of proposed methods WA3Z through WJ5X with those of methods
GKNG6A and GKNG6B. The least errors within the prescribed error bound are highlighted in bold face. Although we are limited
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Table 5

Additional test functions f;(x) with zeros «, initial guesses xo, and multiplicity m.
i fi(x) o Xo m
1 x2[x3 — log(1 + x2))? 0 —0.05 m=6
2 [3 + sinx — x> 4 2x]? 1.99124467662365 2.15 m=2
3 [2x — 4+ cosx log(x* + 1)]* /2 15 m=4
4 [2x3 + e~ + sin(x2) — 2]’ 0.784656783178930 0.8 m=7

; 1 301
5 [xfx3cos(%*)+x2+1 — 35 x -3y 3 2.87 m=5
I(x= 324312 _ . . _

6 exp| Freia TP } 0.5+ +/3i 0.495 + 1.72i m=2
7 (x — 1)(xlogx — /x 4 x*)? 1 1.05 m=3

Here logz (z € C) represents a principal analytic branch with —z < Im(logz) < 7.

to the selected current experiments, within two iterations, a strict comparison shows that Method WB2X displays slightly
better convergence for three test functions f>, fa, f¢ and method WEF2X for two test functions f3, f7, while method WG1X for
two test functions f; and fs.

In view of a close inspection of the asymptotic error constant 7(6;, Ly, Kf) = % we should be aware that the local
-

convergence is dependent on the function f(x), an initial value xo, the zero « itself as well as the weight functions Ly and K.
Hence, we should not expect that for all given set of test functions, the convergence of one method is always better than the
others.

The efficiency index [22] abbreviated by EI is found to be 8!/4 ~ 1.68179 for the proposed family of methods (3.1), being
better than classical Newton's method and any other known method for multiple roots.

Selection of good initial guesses is crucial to guarantee the convergence behavior of Newton-like iterative map (5.24)
with a weight function H,(z). It is, however, not a simple task since the initial guesses need to be close to zero « and are
sensitive to computational precision, error bound and the given function f(x) under consideration.

We now introduce the notion of the basin of attraction that is the set of initial guesses leading to long-time behavior
approaching the attractors (e.g., periodic, quasi-periodic or chaotic behaviors of different types) under the action of the
iterative function. Hence, one effective way of selecting stable initial guesses would be directly using visual basins of
attraction. Since the area of convergence can be seen on the basins of attraction, it would be reasonable to say that a method
having a larger area of convergence implies a more robust method. A quantitative analysis is clearly necessary for measuring
the size of area of convergence. Conveniently, convergence behavior of global character can be clearly observed on the basin
of attraction. The basic topological structure of such a basin of attraction as a region can vary greatly from system to system
with various forms of weight functions.

To show the performance of the listed methods, we present Tables 7-9 featuring a statistical data giving the average
number of iterations per point, CPU time (in seconds) and number of points requiring 40 iterations. In the following examples,
we take a 6 by 6 square centered at the origin and containing all the zeros of the given functions. We then take 601 x 601
equally spaced points in the square as initial points for the iterative methods. We color the point based on the root it
converged to. This way we can figure out if the method converged within the maximum number of iteration allowed and if
it converged to the root closer to the initial point.

We now are ready to discuss the complex dynamics of selected iterative maps in Table 2 for A3Z, A4X, B2X, B3Y, B4Z,
C2Z, C3Z, D2Z, E2Y, F2X, G1X, G2X, G3X, H2X, H3Y, I3X, J4X, J5X and existing sixth-order multiple-zeros finders GKN6A
and GKN6B, when applied to various polynomials py(z), (1 < k < 6).

Example 1. As a first example, we have taken a quadratic polynomial raised to the power of 2 with all real roots:

pi(z) = (22 = 1. (6.1)

Clearly the roots are 1. Basins of attraction for WA3Z - WJ5X, GKN6A and GKN6B are given in Fig. 1. Consulting Tables 7-9,
we find that the method WG3X uses the least number (2.84) of iterations per point on average (ANIP) followed by WI3X with
2.86 ANIP. The fastest method is WI3X with 528.952 s followed closely by WG3X with 529.467 s. The slowest are WB2X and
WJ4X with 923.494 and 826.213 s, respectively. GKN6A has the lowest number of black points and WJ5X has the highest
such number (7479).

Example 2. As a second example, we have taken the same quadratic polynomial now raised to the power of 5:

pa(z) = (22 = 1)°. (6.2)

The basins for the best methods are plotted in Fig. 2. The worst are WB2X, WB4Z, and WJ5X. In terms of ANIP, the best
is WG3X (3.70) and the worst are WB2X (7.23) and WJ4X (6.41). The fastest is WG3X using 1622.051 s followed by WI3X
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Fig. 1. The top row for WA3Z (left), WA4X (center left), WB2X (center right) and WB3Y (right). The second row for WB4Z (left), WC2Z (center left), WC3Z
(center right) and WD2Z (right). The third row for WE2Y (left), WF2X (center left), WG1X(center right) and WG2X (right). The fourth row for WG3X (left),
WH2X (center left), WH3Y (center right) and WI3X (right). The bottom row for WJ4X (left), WJ5X (center left), GKN6A (center right) and GKN6B (right),
for the roots of the polynomial (z2 — 1),
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Table 6
Comparison of |x, — «| for selected methods applied to various test functions.
Method %y — | F(x); xo
fi; —0.05 f2; 2.15 f3; 1.5 fa; 0.8 fs; 2.87 fe; 0.495 = 1.72i fz; 1.05
WA3Z |x1 — «af 3.41e—13° 8.16e—9 1.13e—9 6.65e—15 8.55e—14 5.11e—16 2.30e—11
|2 — ] 2.37e—102 7.34e—67 7.70e—72 9.43e—114 2.32e—110 3.75e—62 6.07e—86
WA4X |x1 — | 7.92e—13 1.08e—8 1.37e—9 1.26e—14 9.91e—14 2.14e—16 2.39e—11
|y — ] 5.01e—99 9.98e—66 4.34e—71 3.11e—111 1.05e—109 8.64e—47 8.78e—86
WB2X |x; — «f 3.75e—13 9.55e—10 6.44e—11 1.04e—15 8.79e—14 8.72e—17 9.45e—13
|x2 — ] 5.69e—102 2.68e—75 2.29e—30 5.14e—121 3.09e—110 3.38e—130 2.16e—98
WB3Y |x1 — «f 7.90e—13 1.02e—9 2.45e—10 4.57e—15 1.01e—13 7.42e—16 5.69e—12
|x) — ] 4.83e—99 7.25e—75 1.69e—28 3.16e—115 1.24e—109 3.57e—45 1.06e—33
WB4Z |x1 — af 4.55e—13 3.30e—8 5.18e—9 2.79e—14 8.47e—14 1.70e—15 9.58e—11
|2 — af 3.37e—101 2.16e—61 6.70e—66 3.81e—108 2.13e—110 4.62e—60 2.25e—80
wce2z |x1 — af 151e—13 1.10e—8 1.66e—9 6.69e—15 7.93e—14 9.83e—16 3.31e—11
|, — ] 1.35e—105 9.79e—66 2.31e—70 9.97e—114 1.05e—110 5.15e—61 1.52e—84
WC3Z |x1 — | 8.93e—14 5.80e—9 8.63e—10 2.36e—15 7.82e—14 8.45e—16 1.97e—11
|, — a] 9.22e—108 3.03e—68 6.30e—73 8.79e—118 9.07e—111 2.80e—61 1.43e—86
WD2Z |x1 — «f 2.79e—13 1.82e—8 2.78e—9 1.34e—14 8.20e—14 1.13e—15 5.22e—11
|2 — ] 3.88e—103 9.32e—64 2.36e—68 5.38e—111 1.51e—110 9.01e—61 9.29e—83
WE2Y |x1 — «f 3.20e—13 8.35e—9 1.17e—9 6.74e—15 8.47e—14 5.71e—16 2.41e—11
|2 — af 1.31e—102 9.17e—67 1.08e—71 1.07e—113 2.11e—110 5.86e—62 9.30e—86
WEF2X |x1 — «f 2.41e—13 5.13e—9 6.25e—10 2.03e—15 8.31e—14 4.45e—16 1.24e—11
|, — af 9.59e—104 6.58e—69 2.14e—-74 1.81e—118 1.72e—110 2.17e—62 1.91e—88
WF2Y |x1 — «af 3.73e—13 1.13e-9 3.31e—11 1.05e—15 8.78e—14 9.00e—17 1.34e—12
|, — a] 5.45e—102 1.08e—74 4.19e—31 5.58e—121 3.09e—110 4.36e—130 3.73e—97
WG1X |x1 — | 8.32e—14 1.30e—8 2.14e—9 1.00e—14 7.66e—14 1.38e—15 4.60e—11
|xp — a] 6.15e—108 5.92e—65 2.75e—69 4,05e—112 7.25e—111 2.02e—60 3.23e—83
WG2X |x1 — af 9.32e—14 9.11e-9 1.47e—9 6.49e—15 7.77e—14 1.11e—15 3.31e—11
|x) — ] 1.67e—107 2.30e—66 9.49e—71 8.05e—114 8.41e—111 8.55e—61 1.66e—84
WG3X |x1 — af 7.30e—13 7.98e—8 1.26e—8 6.32e—14 8.64e—14 3.47e—15 2.20e—10
|2 — «f 2.49e—99 5.51e—58 1.81e—62 5.91e—105 2.64e—110 8.03e—59 3.87e—77
WH2X |x1 — «af 5.04e—13 8.64e—9 1.11e-9 7.85e—15 9.06e—14 1.89e—16 2.05e—11
|, — ] 8.27e—101 1.12e—66 5.94e—72 4.12e—113 4.23e—110 7.03e—64 2.06e—86
WH3Y |x1 — | 291e—13 6.45e—9 9.11e—10 5.71e—15 8.41e—14 5.71e—16 2.07e—11
|y — «] 5.77e—103 1.06e—67 1.29e—72 2.50e—114 1.97e—110 5.89e—62 2.59e—86
WI3X |x1 — af 3.17e—13 4.27e—10 1.75e—10 1.05e—15 8.63e—14 1.14e—16 2.48-12
|y — ] 1.19e—102 7.76e—78 6.18e—29 1.12e—44 2.55e—110 3.84e—129 8.90e—35
WJ4x |x1 — «f 5.88e—13 9.42e—11 2.40e—10 3.84e—15 9.47e—14 2.91e—16 9.91e—13
|x3 — ] 3.50e—100 2.61e—30 1.59e—28 7.79e—116 6.71e—110 2.17e—46 5.62e—36
WJ5X |x1 — af 9.46e—13 1.83e—8 2.77e—9 2.59e—14 1.02e—13 4.42e—16 5.70e—11
|2 — «f 2.63e—98 1.67e—63 3.47e—68 2.15e—108 1.44e—109 2.10e—62 2.67e—82
GKN6A |x1 — «af 4.47e—9 1.32e—5 3.16e—6 9.21e—10 1.03e—10 9.56e—11 2.10e—7
|2 — ] 4.21e—51 1.35e—29 6.67e—32 6.14e—53 3.09e—64 1.64e—59 2.07e—39
GKN6B |x1 — ] 6.34e—10 4.74e—7 8.48e—8 1.64e—11 6.88e—10 3.06e—8 3.32e—9
|, — a] 3.61e—57 5.10e—40 3.06e—43 2.74e—65 4.78e—59 3.93e—15 3.48e—52

2 341e—13 = 3.41 x 10713,

using 1633.018 s and the slowest is GKN6A (5183.446) preceded by WB2X (3128.849 s). GKN6A has only 7 black points. The
highest number is for WB4Z (14 659) preceded by WJ5X with 14493 and WB2X with 10513 black points. We will remove
these 3 methods from further consideration.

Example 3. In our third example, we have taken a cubic polynomial raised to the power of 3:

pa2(z) = (2% + 42° — 10)°.

(6.3)

Basins of attraction are given in Fig. 3. The worst is WJ4X. In terms of ANIP, the best is WI3X (3.42) followed by WF2X (3.68)
and the worst are GKNG6A (7.78) and WJ4X (6.77). The fastest is WI3X using 1722.109 s followed by WF2X using 1852.684 s
and the slowest is WJ4X (3408.965 s). There are 2 methods with less than 10 black points. The highest number is for WA4X
(7143) preceded by WB3Y (1036) and WE2Y (1010).



Y.H. Geum et al. / Journal of Computational and Applied Mathematics 333 (2018) 131-156 149

3 2 -1 0 1 2 3

3

3

2

f

0

4

2

3

] 2 E] 0 1 2 3

(1) WA3Z. (4) WB3Y.

3. 3 3

2

1

0

4

2

kS 2 E] 0 1 2 3 E E ] 2 ] 0 1 2 3 ] 2 E] 0 1 2 3
(5) WB4Z. (6) WC2Z. (7)WC3Z. (8) WD2Z.

3. 3 3 3

2

1

0

4

2

k< 2 E] 0 1 2 3 ] 2 E] 0 1 2 3 ] 2 -1 0 1 2 3 ] 2 E] 0 1 2 3
(9) WE2Y. (10) WF2X. (11) WG1X. (12) WG2X.

w

] 2 El

(13) WG3X. (14) WH2X. (15) WH3Y. (16) WI3X.

0 1 2 3

o
o

E] 0 1 2 3

w
w

@
w
@
o

1 0 1 2 3 2 -1 0 1 2 - =
17) WJ4X. (18) WJ5X. (19) GKN6A. (20) GKN6B.

w
@
0

E] 0 1 2 -1 0 1 2

w

2

3
3 2 5
(

Fig. 2. The top row for WA3Z (left), WA4X (center left), WB2X (center right) and WB3Y (right). The second row for WB4Z (left), WC2Z (center left), WC3Z
(center right) and WD2Z (right). The third row for WE2Y (left), WF2X (center left), WG1X(center right) and WG2X (right). The fourth row for WG3X (left),
WH2X (center left), WH3Y (center right) and WI3X (right). The bottom row for J4X (left), WJ5X (center left), GKN6A (center right) and GKN6B (right), for
the roots of the polynomial (z2 — 1)°.
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Fig. 3. The top row for WA3Z (left), WA4X (center left), WB3Y (center right) and WC2Z (right). The second row for WC3Z (left), WD2Z (center left), WE2Y
(center right) and WF2X (right). The third row for WG1X (left), WG2X (center left), WG3X(center right) and WH2X (right). The fourth row for WH3Y (left),
WI3X (center left), WJ4X (center right) and GKNGA (right). The bottom row for GKN6B (center), for the roots of the polynomial (z* + 4z2 — 10)°.
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Table 7
Average number of iterations per point for each example (1-6).
Map Example
I:!m=2 | 22m=5 | 33m=3 | 4$m=4 | 5:m=3 | 6:m=5 | Average

WA3Z 3.18 4.10 4.00 5.00 5.65 6.96 4.82
WA4X 3.36 4.69 445 5.53 4.65 6.42 4.85
WB2X 5.00 7.23 - - - - -
WB3Y 3.03 3.96 3.78 4.18 6.89 17.76 6.60
WB4Z 3.77 5.49 - - - - -
WC2Z 3.01 3.88 4.11 4.55 5.61 6.47 4.60
WC3Z 2.90 3.77 4.01 4.53 5.38 6.17 4.46
WD2Z 3.36 4.24 4.32 4.74 5.82 6.68 4.86
WE2Y 3.04 4.08 3.95 4.70 5.20 6.17 4.52
WEF2X 2.89 3.77 3.68 4.29 5.10 6.01 4.29
WG1X 3.39 4.03 4.25 4.63 8.66 11.92 6.15
WG2X 3.01 3.84 4.11 4.59 5.69 6.44 4.61
WG3X 2.84 3.70 3.92 4.45 7.23 7.82 4.99
WH2X 3.08 4.09 3.84 4.60 6.11 6.93 4.77
WH3Y 3.00 3.85 3.79 4.40 5.12 5.67 4.31
WI3X 2.86 3.75 342 4.45 4.17 542 4.01
WJ4X 4.49 6.41 6.77 6.85 15.46 - -
WJsX 3.88 5.29 - - - - -
GKN6A 8.17 13.12 7.78 8.86 10.00 14.93 10.48
GKN6B 3.83 5.85 5.09 6.06 6.69 8.87 6.06

Example 4. As a fourth example, we have taken a different cubic polynomial raised to the power of 4:

pa(z) = (2° = 2)*. (6.4)

The basins are given in Fig. 4. We now see that WJ4X is the worst followed by WB3Y. In terms of ANIP, WB3Y is the best
(4.18) followed by WF2X (4.29) and the worst are GKNG6A (8.86) and WJ4X (6.85). The fastest is WB3Y (1961.51 s) and the
slowest is GKNGA (3520.849 s) preceded by WJ4X (3204.385 s). Seven methods have no black point, namely WC3Z, WD2Z,
WE2X, WG2X, WH3Y, WJ4X and GKN6A, WG3x has 4 black points and the worst being WA4X with 9786 points. Even though
W]J4X has no black points, we should exclude it because of the chaotic basins. Also WB3Y does prefer the non zero roots and
should be excluded. This is a reason why we need to view the basins as well as consulting the quantitative results. We will
determine these exclusions based on the results of dynamics for remaining experiments.

Example 5. As a fifth example, we have taken a quintic polynomial raised to the power of 3:

p3(z) = (2° — 1) (6.5)

The basins for the best methods left are plotted in Fig. 5. The worst is WJ4X followed by WG1X, WH2X and WG3X. In terms
of ANIP, the best is WI3X (4.17) followed by WA4X (4.65) and the worst are WJ4X (15.46) and GKN6A (10.00). The fastest is
WI3X using 2066.639 s followed by WA4X using 2346.224 s and the slowest is WJ4X (7460.030 s). There are 3 methods with
less than 10 black points, namely WI3X (1), WC3Z (7) and WF2X (9). The highest number is for WJ4X (68594) preceded by
WG1X with 33592 black points. We will eliminate WJ4X from further consideration.

Example 6. As a sixth example, we have taken a quartic polynomial raised to the power of 5:

ps(2) = (z* = 1)°. (6.6)

The basins for the best methods left are plotted in Fig. 6. It seems that most of the methods left are good except WG1X, WG3X
and WH2X. Based on Table 7 we find that WI3X has the lowest ANIP (5.42) followed by WH3Y (5.67). The fastest method is
WI3X (2644.966 s) followed by WH3Y (2793.229 s). The slowest is WB3Y (8107.528 s). The lowest number of black points
is for GKN6A (817) and the highest number is for WB3Y with 129797 black points.

In summary, we find that there is no method which is best overall. The worst in terms of the number of black points
is WB3Y and in ANIP and CPU time is GKNG6A. Of course this is excluding the methods eliminated along the way, namely
WB2X, WB4Z, WJ4X and WJ5X. To summarize the results of the 6 examples, we have averaged the results in Tables 7-9
across examples. Based on Table 7 we find that WI3X uses the least number of iterations per point (4.01 on average) followed
closely by WF2X (4.29) and WH3Y (4.31). All other methods use more than 4.4 iterations per point on average. The method
requiring the highest number of iterations per point is GKN6A (10.48). The fastest method is WI3X (1779.93 s) followed by
WF2X (1938.79 s). The slowest is GKN6A (3743.14 s). As for the number of black points (see Table 9) we find that GKN6A
has the lowest number (425 points) followed closely by WF2X (447 points), WH3Y (449 points), and WC3Z (450 points).
The method with the most black points is WB3Y (22835 points). It is clear that WF2X came close second in all 3 categories
and WI3X came first in two out of the 3 categories. It is worth to observe that the existing sixth-order methods GKN6A and
GKNG6B are not quite comparable to many members of the proposed family in view of all 3 categories.
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Fig. 4. The top row for WA3Z (left), WA4X (center left), WB3Y (center right) and WC2Z (right). The second row for WC3Z (left), WD2Z (center left), WE2Y
(center right) and WF2X (right). The third row for WG1X (left), WG2X (center left), WG3X(center right) and WH2X (right). The fourth row for WH3Y (left),
WI3X (center left), WJ4X (center right) and GKNGA (right). The bottom row for GKN6B (center), for the roots of the polynomial (z> — z)*.
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Fig. 5. The top row for WA3Z (left), WA4X (center left), WB3Y (center right) and WC2Z (right). The second row for WC3Z (left), WD2Z (center left), WE2Y
(center right) and WF2X (right). The third row for WG1X (left), WG2X (center left), WG3X(center right) and WH2X (right). The fourth row for WH3Y (left),
WI3X (center left), WJ4X (center right) and GKNG6A (right). The bottom row for GKN6B (center), WJ5X (center left), GKN6A (center right) and GKN6B (right),
for the roots of the polynomial (z°> — 1),
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Fig. 6. The top row for WA3Z (left), WA4X (center left), WB3Y (center right) and WC2Z (right). The second row for WC3Z (left), WD2Z (center left), WE2Y
(center right) and WF2X (right). The third row for WG1X (left), WG2X (center left), WG3X(center right) and WH2X (right). The bottom row for WH3Y (left),
WI3X (center left), GKNGA (center right) and GKN6B (right), for the roots of the polynomial (z* — 1)°.

We now conclude our current study as follows. Given the known multiplicity m of a zero to be sought, we have developed
Theorem 3.1 to achieve optimal eighth-order convergence of proposed family of methods (3.1) by means of modified
Newton-type multiple-zero finders with simple fifth-order multivariate rational weight functions. Computational aspects
investigated through a number of test equations well support the developed theory underlying the convergence order as
well as asymptotic error constants. We have also investigated the dynamical aspects through their basins of attraction not
only with a qualitative stability analysis on purely imaginary extraneous fixed points for a prototype quadratic polynomial
f(z) = (z2 — 1)™ motivated by the earlier work of Vrscay and Gilbert [25], but also with a quantitative statistical analysis for
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Table 8

CPU time (in seconds) required for each example (1-6) using a Dell
Multiplex-990.

Map Example

1: m=2 2: m=5 3: m=3 4: m=4 5:m=3 6: m=5 Average
WA3Z 628.606 1886.894 | 2116.326 | 2429.934 | 2893.101 3480.772 | 2239.272
WA4X 632.506 | 2122.846 | 2283.137 | 2676.025 2346.224 | 3130.940 | 2198.613
WB2X 923.494 | 3128.849 - - - -
WB3Y 608.169 1768.007 | 1977.001 1961.510 | 3553.126 | 8107.528 | 2995.890
‘WB4Z 715.311 2453.257 - - - - -
wC2zZ 574.536 | 1793.434 | 2128.634 | 2170.333 | 2886.362 | 3316.956 | 2145.043
WC3Z 561.557 | 1715.122 | 2051.226 | 2165.122 | 2739.643 | 3106.869 | 2056.590
WD2Z 651.133 | 1902.401 | 2227.163 | 2217.087 | 2973.489 | 3300.217 | 2211915
WE2Y 592.492 1867.784 | 2006.953 2259.238 2664.279 | 3086.511 2079.543
WF2X 537.470 1648.571 1852.684 | 2040.275 2561.879 | 2991.865 1938.791
WG1X 668.604 | 1835414 | 2168.648 | 2234.106 | 4415.156 | 5815.218 | 2856.191
WG2X 548.656 | 1749.161 2125.264 | 2168.102 | 2878.359 | 3147.414 | 2102.826
WG3X 529.467 1622.051 2002.335 | 2070.290 | 3647.444 | 3805.535 | 2279.520
WH2X 581.134 | 1850.266 | 1954.692 | 2220.549 | 3049.507 | 3463.097 | 2186.541
WH3Y 580.994 | 1720.582 | 1966.096 | 2048.028 | 2569.602 | 2793.229 | 1946.422
WI3X 528.952 1633.018 1772.109 | 2033.894 | 2066.639 | 2644.966 1779.930
WJ4x 826.213 | 2834.819 | 3408.965 | 3204.385 | 7460.030 - -
WI5X 719.352 | 2433.927 - - - - -
GKN6A | 978.267 | 5183.446 | 2914.504 | 3520.849 | 3275.100 | 6586.659 | 3743.138
GKN6B | 643.909 | 2500.431 | 2410.387 | 2713.325 | 3148.443 | 4113.840 | 2588.389

Table 9

Number of points requiring 40 iterations for each example (1-6).
Map Example

I:!m=2 | 22m=5 | 33m=3 | 4$m=4 | 5:m=3 | 6:m=5 | Average

WA3Z 2309 1877 899 4198 2959 12409 4109
WA4X 3171 8397 7143 9786 4272 12413 7530
WB2X 7263 10513 - - - - -
WB3Y 913 2061 1036 1270 1933 129797 22835
WB4Z 6307 14659 - - - - -
wC2zZ 765 705 12 96 35 1201 469
WC3Z 763 715 16 0 7 1201 450
WD2Z 3039 1659 106 0 51 1209 1011
WE2Y 905 1953 1010 1632 1320 6001 2137
WEF2X 731 715 29 0 9 1201 448
WG1X 4253 797 141 16 33592 58157 16159
WG2X 781 701 4 0 67 1209 460
WG3X 751 745 29 4 19568 16233 6222
WH2X 1027 1695 407 638 15983 14633 5731
WH3Y 741 715 31 0 11 1201 450
WI3X 747 813 18 1024 1 3505 1018
WJ4X 891 829 94 0 68594 - -
WJsX 7479 14493 - - - - -
GKN6A 601 7 2 0 1128 817 426
GKN6B 791 861 652 1642 5488 10673 3352

various polynomials pi(z). The better members of the proposed family of methods (3.1) with better convergence behavior
can be directly observed from the illustrative basins of attraction.

As our future work, we will pursue an extended approach enhancing the dynamical characteristics associated with the
purely imaginary extraneous fixed points of a higher-order family of simple- or multiple-zero finders by considering other
types of weight functions.
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