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An optimal family of eighth-order multiple-zero finders and the dynamics behind their
basins of attraction are proposed by considering modified Newton-type methods with
multivariate weight functions. Extensive investigation of purely imaginary extraneous
fixed points of the proposed iterative methods is carried out for the study of the dynamics
associated with corresponding basins of attraction. Numerical experiments strongly sup-
port the underlying theory pursued in this paper. An exploration of the relevant dynamics
of the proposedmethods is presented alongwith illustrative basins of attraction for various
polynomials.
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1. Introduction

The classical second-order Newton’s method is most popular to locate an approximate root of a nonlinear equation.
It is, however, only linearly convergent to find the repeated roots for a nonlinear equation under consideration. In order
to efficiently find approximate repeated roots of a nonlinear equation in the form f (x) = 0, we usually employ modified
Newton’s method [1,2] with quadratic-order convergence, given the multiplicitym ≥ 1, as follows:

xn+1 = xn − m
f (xn)
f ′(xn)

, n = 0, 1, 2, . . . (1.1)

Note that numerical scheme (1.1) is a second-order one-point optimal [3] method which is supported by Kung–Traub’s
conjecture [3] that any multipoint method [4] without memory can reach its convergence order of at most 2r−1 for r
functional evaluations. We can find other higher-order multiple-zero finders in the literature, e.g., [5–15].

Assuming a known multiplicity of m ≥ 1, we propose in this paper a family of eighth-order modified Newton-type
multiple-zero finders in the form of:
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yn = xn − m ·
f (xn)
f ′(xn)

,

wn = xn − m · Lf (xn) ·
f (xn)
f ′(xn)

,

xn+1 = xn − m · Hf (xn) ·
f (xn)
f ′(xn)

,

(1.2)

where the desired generic forms of weight functions Lf and Hf will be extensively studied for eighth-order of convergence
in Section 3. To the best of our knowledge, there is no other generic eighth-order method for multiple roots.

Inwhat follows,we briefly organize the remaining portion of the paper as follows. Section 2 introduces existing studies on
multiple-zero finders. Fully investigated in Section 3 ismethodology and convergence analysis for newly proposedmultiple-
zero finders. A main theorem on the properties of the family of proposed methods (1.2) is derived to discover eighth-order
convergence as well as to induce asymptotic error constants and error equations by use of a family of weight functions Lf
and Hf dependent on two function-to-function ratios. In Section 4, special cases of rational weight functions are considered.
Section 5 extensively investigates the extraneous fixed points and relevant dynamics underlying the basins of attraction.
Tabulated in Section 6 are computational results for a variety of numerical examples. Table 6 compares the magnitudes of
en = xn − α of the proposed methods with those of existing sixth-order multiple-zero finders. Dynamical characteristics
of the proposed methods are illustrated at great length by means of their basins of attraction with various test equations.
Overall conclusions are stated at the end along with comments on future development of higher-order methods extending
the current approach.

2. Review of existing sixth-order multiple-zero finders

In the literature as claimed at the end of the first paragraph of Section 1, we rarely find multiple-zero finders with
convergence order higher than 4. Recently Geum–Kim–Neta [16,17] have developed two families of sixth-order multiple-
zero finders with extensive analysis of their relevant dynamics behind the basins of attraction from the viewpoint of the
extraneous fixed points.

Let a function f : C → C have a repeated zero α with integer multiplicity m ≥ 1 and be analytic [18] in a small
neighborhood of α. Then the following two members of the aforementioned Geum–Kim–Neta’s family are of sixth-order
convergence and described below by (2.1) and (2.2).⎧⎪⎪⎪⎨⎪⎪⎪⎩

yn = xn − m
f (xn)
f ′(xn)

,

xn+1 = yn −
m + a1s

1 + b1s + b2s2
×

1
1 + 2(m − 1)t

·
f (yn)
f ′(yn)

, s =

[
f (yn)
f (xn)

] 1
m

, t =

[
f ′(yn)
f ′(xn)

] 1
m−1

, for m ≥ 2,
(2.1)

where a1 =
2m(4m4

−16m3
+31m2

−30m+13)
(m−1)(4m2−8m+7)

, b1 =
4(2m2

−4m+3)
(m−1)(4m2−8m+7)

and b2 = −
4m2

−8m+3
4m2−8m+7

.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − m
f (xn)
f ′(xn)

,

wn = xn − m
(s − 2)(2s − 1)
(s − 1)(5s − 2)

·
f (xn)
f ′(xn)

xn+1 = xn − m
(s − 2)(2s − 1)

(5s − 2)(s + v − 1)
·
f (xn)
f ′(xn)

, s =

[
f (yn)
f (xn)

] 1
m

, v =

[
f (wn)
f (xn)

] 1
m

, for m ≥ 1.

(2.2)

These twomembers will be comparedwith another family of optimal eighth-ordermultiple-zero finders to be developed
in the next section.

3. Methodology and convergence analysis

Let a function f : C → C possess a repeated zero α with integer multiplicity m ≥ 1 and be analytic in a small
neighborhood of α. Then new three-point iterative methods locating an approximate zero α of multiplicity m are proposed
below to have optimal eighth-order convergence: for a given initial guess x0 sufficiently close to α,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yn = xn − m ·
f (xn)
f ′(xn)

,

wn = xn − m · Lf (s) ·
f (xn)
f ′(xn)

,

xn+1 = xn − m · Hf (s, u) ·
f (xn)
f ′(xn)

= xn − m · [Lf (s) + Kf (s, u)] ·
f (xn)
f ′(xn)

,

(3.1)
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where n = 0, 1, 2, . . . ,

s =

[
f (yn)
f (xn)

] 1
m

, (3.2)

u =

[
f (wn)
f (yn)

] 1
m

, (3.3)

and where Lf : C → C is analytic in a neighborhood of 0 and Kf : C2
→ C is holomorphic [19,20] in a neighborhood of

(0, 0). Note that Hf in (1.2) is expressed as the sum of Lf and Kf . Since s and u are respectively one-to-m multiple-valued
functions, we consider their principal analytic branches [18]. Hence, it is convenient to treat s as a principal root given
by s = exp[

1
mLog( f (yn)f (xn)

)], with Log( f (yn)f (xn)
) = Log

⏐⏐ f (yn)
f (xn)

⏐⏐ + i Arg( f (yn)f (xn)
) for −π < Arg( f (yn)f (xn)

) ≤ π ; this convention of Arg(z)
for z ∈ C agrees with that of Log[z] command of Mathematica [21] to be employed later in numerical experiments of

Section 6. By means of further inspection of s, we find that s =
⏐⏐ f (yn)
f (xn)

⏐⏐ 1
m

· exp[
i
m Arg( f (yn)f (xn)

)] = O(en). Similarly we treat

u =
⏐⏐ f (wn)
f (yn)

⏐⏐ 1
m

· exp[
i
m Arg( f (wn)

f (yn)
)] = O(e2n). In addition, we find that O( f (xn)

f ′(xn)
) = O(en).

Definition 1. (Error Equation, Asymptotic Error Constant, Order of Convergence)
Let x0, x1, . . . , xn, . . . be a sequence converging to α and en = xn − α be the nth iterate error. If there exist real numbers

p ∈ R and b ∈ R − {0} such that the following error equation holds

en+1 = b enp + O(ep+1
n ), (3.4)

then b or |b| is called the asymptotic error constant and p is called the order of convergence [22].

Recently a special case of (3.1) has been treated in [23] with weight functions of the form

Lf (s) = 1 +
s · Q (h)

m
, Kf (s, u) =

1
m

s · u · G(h, u), h =
s

a1 + a2s
, (3.5)

where Q : C → C and G : C2
→ C are analytic in a neighborhood of (0) and (0, 0), respectively; a1 and a2 are non-zero

complex parameters.
Our primary aim is to investigate a more generic family of optimal eighth-order methods (3.1). A main theorem will

be first established for the optimal convergence. On the basis of the results of the main theorem, we will construct weight
functionsHf and Kf for amultiparametric family of eighth-ordermultiple-zero finders. To this end,we observe that it suffices
to consider both weight functions Hf and Kf up to the seventh-order terms in en due to the fact that O( f (xn)

f ′(xn)
) = O(en), which

leads us to the development of a more generic family of optimal eighth-order multiple-zero finders.
Applying the Taylor’s series expansion of f about α, we get the following relations:

f (xn) =
f (m)(α)
m!

enm
[
1 + θ2en + θ3e2n + θ4e3n + θ5e4n + θ6e5n + θ7e6n + θ8e7n + θ9e8n + O(e9n)

]
, (3.6)

f ′(xn) =
f (m)(α)
(m − 1)!

enm−1
[
1 +

m + 1
m

θ2en +
m + 2
m

θ3e2n +
m + 3
m

θ4e3n +
m + 4
m

θ5e4n

+
m + 5
m

θ6e5n +
m + 6
m

θ7e6n +
m + 7
m

θ8e7n + O(e8n)
]
, (3.7)

where θk =
m!

(m−1+k)!
f (m−1+k)(α)

f (m)(α)
for k ∈ N − {1}. For convenience, we drop the subscript n from en whenever required to do

so. Dividing (3.6) by (3.7), we have

f (xn)
f ′(xn)

=
e
m

−
θ2e2

m2 +
Y3e3

m3 +
Y4e4

m4 +
Y5e5

m5 +
Y6e6

m6 +
Y7e7

m7 +
Y8e8

m8 + O(e9), (3.8)

where Y3 = (1 + m)θ2
2 − 2mθ3, Y4 = −(1 + m)2θ3

2 + m(4 + 3m)θ2θ3 − 3m2θ4 and Yi = Yi(m, θ2, θ3, . . . , θ9) for 5 ≤ i ≤ 8.
Thus, from relation (3.8), we obtain

yn = α +
θ2e2

m
−

Y3e3

m2 −
Y4e4

m3 −
Y5e5

m4 −
Y6e6

m5 −
Y7e7

m6 −
Y8e8

m7 + O(e9). (3.9)

f (yn) =
f (m)(α)
m!

(θ2

m

)me2m{1 −
Y3

θ2
e +

(m − 1)Y 2
3 − 2Y4θ2 + 2θ4

2

2mθ2
2

e2

−
(m − 1)(m − 2)Y 3

3 + 6Y5θ
2
2 + 6Y3θ2(Y4 − mY4 + (m + 1)θ3

2 )
6m2θ3

2
e3 +

7∑
i=4

Jiei + O(e8)}, (3.10)

where Ji = Ji(m, θ2, θ3, . . . , θ9, Y3, Y4, . . . , Y8) for 4 ≤ i ≤ 7.
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By Taylor’s expansion or multinomial expansion, we get an expression s in (3.2) as follows:

s =
θ2

m
e −

Y3 + θ2
2

m2 e2 +
−2Y4 + θ2[2Y3 + (m + 3)θ2

2 − 2mθ3]

2m3 e3 +

8∑
i=4

Wiei + O(e9), (3.11)

whereWi = Wi(m, θ2, θ3, . . . , θ9, Y3, Y4, . . . , Y8) for 4 ≤ i ≤ 8.
With the use of s in (3.11), expanding Taylor series of Lf (s) about 0 up to seventh-order terms we find:

Lf (s) = L0 + L1s + L2s2 + L3s3 + L4s4 + L5s5 + L6s6 + L7s7 + O(e8), (3.12)

where Lj =
L(j)f (0)

j! for 0 ≤ 0 ≤ 7.
Hence by substituting (3.6)–(3.12) into wn in (3.1) with explicit use of Yj(3 ≤ j ≤ 8) from relation (3.8), we find:

wn = α + (1 − L0)e +
(L0 − L1)

m
θ2e2 + Z3e3 + Z4e4 + Z5e5 + Z6e6 + Z7e7 + Z8e8 + O(e9), (3.13)

where Zi = Zi(θ2, θ3 · · · , θ9, L0, L1, . . . , L7) for 3 ≤ i ≤ 8. By selecting L0 = 1, L1 = 1, L2 = 2, we have

wn = α +
(m + 9 − 2L3)θ3

2 − 2mθ2θ3

2m3 e4 + Z5e5 + Z6e6 + Z7e7 + Z8e8 + O(e9), (3.14)

Hence, we obtain f (wn) as follows:

f (wn) =
f (m)(α)δm

m!2mm3m e4m
[
1 +

Z5
3δ

e +
2(m − 1)Z2

5 + Z6δ
36mδ2

e2

+
10(m − 1)(m − 2)Z3

5 + ν1

1620m2δ3
e3 +

20(m − 1)(m − 2)(m − 3)Z4
5 + ν2

38880m3δ4
e4 + O(e5)

]
, (3.15)

where δ = (9+m−2L3)θ3
2 −2mθ2θ3, ν1 = 45(m−1)Z5Z6δ +27 Z7δ2 and ν2 = 180(m−1)(m−2)Z2

5 Z6δ +27(m−1)(5Z2
6 +

8Z5Z7)δ2 + 108Z8δ3 + 19440δ5θ2.
With the use of (3.10) and (3.15), we get an expression u in (3.3) after Taylor’s expansion or multinomial expansion as

follows:

u =
((9 + m − 2L3)θ2

2 − 2mθ3)
2m2 e2 + β3e3 +

6∑
i=4

βiei + O(e7), (3.16)

where β3 =
Z5+3((m+1)θ22−2mθ3)((9+m−2L3)θ22−2mθ3)

6m3θ2
f and βi = βi(m, θ2, θ3, . . . , θ9, Z5, Z6, . . . , Z8) for 4 ≤ i ≤ 6. Using s in (3.11)

and u in (3.16) and expanding Taylor series of Kf (s, u) about (0, 0) up to seventh-order terms we find:

Kf (s, u) = 1 + s + 2s2 + L3s3 + L4s4 + L5s5 + L6s6 + K70s7

+ [s + 2s2 + (1 + L3)s3 + (2L3 + L4 − 4)s4 + K51s5]u + (s + 4s2 + K32s3)u2
+ K13su3

+ O(e8), (3.17)

where Kij =
1
i!j!

∂ i+j

∂sj∂uj
Kf (s, u)|(s=0,u=0) for 0 ≤ i ≤ 7, 0 ≤ j ≤ 3.

Hence by substituting (3.6)–(3.17) into the proposed method (3.1) with explicit uses of Y3, . . . , Y8, Z5, . . ., Z8, we obtain
the error equation as

xn+1 − α = xn − α − m[Lf (s) + Kf (s, u)] ·
f (xn)
f ′(xn)

= T1e +

8∑
i=2

Tiei + O(e9), (3.18)

where T1 = −K00 and the coefficients Ti(2 ≤ i ≤ 8) generally depend on m, θj(2 ≤ j ≤ 9), Lj(3 ≤ j ≤ 7) and
Kjk(0 ≤ j ≤ 7, 0 ≤ k ≤ 3). Solving T1 = 0 for K00, we get

K00 = 0. (3.19)

Substituting K00 = 0 into T2 = 0 and simplifying, we obtain K10
m θ2 = 0, from which

K10 = 0 (3.20)

follows independently of θ2. Continuing in this manner at the ith stage with 3 ≤ i ≤ 7, we substitute such Kjk found from
Tℓ = 0 at the preceding stages for 1 ≤ ℓ ≤ (i − 1) into Ti = 0 and solve Ti = 0 for remaining Kjk to find:

K01 = 0, K20 = 0, K11 = 1, K30 = 0, K40 = 0, K21 = 2, K02 = 0, K50 = 0,
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K31 = 1 + L3, K12 = 1, K60 = 0, K41 = 2L3 + L4 − 4, K22 = 4, K03 = 0, (3.21)

independently of θ2 and θ3.
Substituting (3.18)–(3.20) into T8 = 0 and simplifying, we get:

T8 =
θ2

24m7

[
φ1θ

6
2 + φ2θ

4
2 θ3 + φ3θ

2
2 θ2

3 + φ4θ
3
2 θ4 + 24(K13 − 1)m3θ3

3 − 24m3θ2θ3θ4

]
, (3.22)

where

φ1 = 3879 − 108K51 − 24K70 − 1780L3 + 216L4 + 12L3(2K51 + 17L3 − 4L4 − 2L5) + 108L5 + 1349m

+ 12(−K51 + (−30 + L3)L3 + 2L4 + L5)m + 5(33 − 4L3)m2
+ 7m3

− 6K32(9 − 2L3 + m)2 − 3K13(9 − 2L3 + m)3,

φ2 = 2m[−1349 + 12K51 − 12(−30 + L3)L3 − 24L4 − 12L5 − 312m + 36L3m − 19m2

+ 12K32(9 − 2L3 + m) + 9K13(9 − 2L3 + m)2],

φ3 = −12m2
[−43 + 2K32 + 4L3 − 5m + 3K13(9 − 2L3 + m)],

φ4 = 12m2(m + 9 − 2L3).

The consequence of the analysis carried out thus far immediately leads us to the following theorem.

Theorem 3.1. Let m ∈ N be given. Let f : C → C have a zero α of multiplicity m and be analytic in a small neighborhood
of α. Let k ∈ N be given. Let θj =

m!

(m−1+j)! ·
f (m−1+j)(α)

f (m)(α)
for j ∈ N − {1}. Let x0 be an initial guess chosen in a sufficiently small

neighborhood of α. Let Lf : C → C be analytic in a neighborhood of 0 and let Kf : C2
→ C be holomorphic in a neighborhood

of (0, 0). Let Lk =
1
k!

dk

dsk
Lf (s)|s=0 for 0 ≤ k ≤ 7 and Kij =

1
i!j!

∂ i+j

∂sj∂uj
Kf (s, u)|(s=0,u=0) for 0 ≤ i ≤ 7, 0 ≤ j ≤ 3. Suppose that

L0 = L1 = 1, L2 = 2, K00 = K10 = K01 = K20 = K02 = K03 = K30 = K40 = K50 = K60 = 0, K11 = K12 = 1, K21 =

2, K22 = 4, K31 = 1 + L3, K41 = 2L3 + L4 − 4 hold. Then iterative methods (3.1) are of eighth-order and possess the following
error equation:

en+1 =
θ2

24m7

[
φ1θ

6
2 + φ2θ

4
2 θ3 + φ3θ

2
2 θ2

3 + φ4θ
3
2 θ4 + 24(K13 − 1)m3θ3

3 − 24m3θ2θ3θ4

]
e8n + O(e9n), (3.23)

where φi(1 ≤ i ≤ 4) is given in (3.22).

4. Special cases of weight functions

According to Theorem 3.1, we are able to find Lf (s) and Kf (s, u) in the form of Taylor polynomials below:⎧⎪⎨⎪⎩
Lf (s) = 1 + s + 2s2 + L3s3 + L4s4 + L5s5 + L6s6 + L7s7 + O(e8),

Kf (s, u) = su
[
1 + u + K13u2

+ 2s(1 + 2u) + s2(1 + L3 + K32u) + s3(−4 + 2L3 + L4) + K51s4
]

+ K70s7 + O(e8),

(4.1)

where L3, L4, L5, L6, L7, K13, K32, K51 and K70 are free parameters.
It is evident that various forms of weight functions Lf (s) and Kf (s, u) are available to design a family of optimal multiple-

zero finders. In the existing studies by [16,24], we have noticed that either weight function Lf or Kf is of polynomial type has
empirically shownpoor convergence. Consequently, taking into account the fact that s = O(e),u = O(e2) and f (xn)

f ′(xn)
= O(e),we

shall establish eighth-order convergence by restricting ourselves to considering Lf (s) as a family of second-order univariate
rational functions and Kf (s, u) as a family of fifth-order bivariate rational functions with real coefficients in the form below.⎧⎪⎪⎨⎪⎪⎩

Lf (s) =
b0 + b1s + b2s2

1 + a1s
,

Kf (s, u) =
q0 + q1s + q2s2 + q3s3 + q4s4 + (q5 + q6s + q7s2 + q8s3 + q9s4)u
1 + r1s + r2s2 + r3s3 + r4s4 + (r5 + r6s + r7s2 + r8s3 + r9s4)u

,

(4.2)

where ai, bi, qi, ri ∈ R are to be determined for optimal eighth-order convergence. Note that Kf (s, u) adopts the only linear
u reducing the complexities that may be strengthened from the presence of nonlinear u.
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We let (4.2) satisfy the constraints described by hypotheses of Theorem 3.1, which give us the following coefficients: with
b = b2⎧⎪⎪⎨⎪⎪⎩

b0 = 1, b1 = −1 + b, a1 = −2 + b,

q0 = q1 = q2 = q3 = q4 = q5 = 0, q6 = 1, q7 = 2 + r1, q8 =
1
2

[
−2 − 2b2 + q9 − r1 + 2b(4 + r1) − r3

]
,

r2 = −5 + 2b + q8 − 2r1, r5 = −1, r6 = −2 − r1.

(4.3)

As a result, the reduced form of the desired weight functions is found to be:⎧⎪⎪⎨⎪⎪⎩
Lf (s) =

1 + (b − 1)s + bs2

1 + (b − 2)s
,

Kf (s, u) =
su

[
2 + 2(2 + r1)s − (2 + 2b2 − q9 + r1 − 2b(4 + r1) + r3)s2 + 2q9s3

]
2 + 2r1s + [−12 − 2b(b − 6) + q9 + (2b − 5)r1 − r3]s2 + 2r3s3 + 2r4s4 + 2[−1 − (2 + r1)s + r7s2 + r8s3 + r9s4]u

,

(4.4)

where b, r1, r3, r4, r7, r8, r9, q9 ∈ R are 8 free parameters.
In view of the fact that s = O(e) and u = O(e2), we find Kf (s, u) = O(e7) from (3.17), according to which the last sub-step

iterative scheme of (3.1) should give rise to an optimal convergence order of eight with a suitable choice of parameters.
Although numerous cases of weight functions satisfying Theorem 3.1 can be constructed in this paper, we are especially

interested in special cases with b = 0 for which all of the extraneous fixed points of the proposed scheme (3.1) are purely
imaginary. The notion of an extraneous fixed point and its preference for being purely imaginary will be fully discussed in
Section 5. From (5.7) of Section 5, we desire the governing equation of the extraneous fixed points to take the form of

H(z) =
1

2(1 + t)
·
G(t)
Ω(t)

, t = z2, (4.5)

where G(t) = tγ1 (1 + t)γ2 (1 + 3t)γ3 · g(t) for γ1, γ2, γ3 ∈ N. In addition, g(t) and Ω(t) are polynomials of degree at most
2 and 6, respectively, with γ1 + γ2 + γ3 = 5. Observe that G(t) and Ω(t) have common factors, which further simplify the
resulting expressions of H(z). The remaining task is again for us to determine appropriate parameters of weight functions in
such a way that all the roots of H(z) should be located on imaginary axis of the complex plane.

In Section 5, we shall give an extensive investigationwith an appropriate selection of free parameters leading us to purely
imaginary extraneous fixed points. To this end, we will seek feasible relationships among the free parameters by imposing
some constraints on simplifying the numerator of the resulting expression G(t) to be described in (5.8). The following cases
A–J are of our main interest whose values of (γ1, γ2, γ3) and 7 parameters q9, r1, r3, r4, r7, r8, r9 ∈ R for each case with
λ = r8 + r9 are discussed in Section 5. We remark that the cases under consideration form a biparametric family of methods
dependent upon two parameters λ and r9.
Case A: (γ1, γ2, γ3) = (0, 2, 3), −

11
4 < λ ≤ 21 − 10

√
3,

q9 = −
3
5 (4 + λ), r1 =

1
5 (−29 − λ), r3 = −9 − 2λ, r4 =

1
20 (68 − 5r9 + 22λ),

r7 =
1
20 (5r9 − 18(4 + λ)), r8 = −r9 + λ.

Case B: (γ1, γ2, γ3) = (0, 3, 2), 1 < λ ≤
65
16 ,

q9 = −1 − λ, r1 = −
13
2 , r3 = −

11
2 − 3λ, r4 =

1
4 (−6 − r9 + 10λ),

r7 =
1
4 (r9 − 2(10 + λ)), r8 = −r9 + λ.

Case C: (γ1, γ2, γ3) = (0, 4, 1), −5 + 4
√
5 ≤ λ < 7.,

q9 = −5, r1 =
1
2 (−9 − λ), r3 =

1
2 (−31 − λ), r4 =

1
4 (66 − r9 − 8λ),

r7 =
1
4 (−4 + r9 − 6λ), r8 = −r9 + λ.

Case D: (γ1, γ2, γ3) = (0, 5, 0), 1
3 (−2 + 6

√
6) ≤ λ < 71

6 ,

q9 = −
2
3 − λ, r1 =

1
9 (−47 − 3λ), r3 = −

55
9 −

8λ
3 , r4 =

1
12 (68 − 3r9 + 6λ),

r7 =
1
36 (−88 + 9r9 − 42λ), r8 = −r9 + λ.

Case E: (γ1, γ2, γ3) = (1, 2, 2), −6 < λ < 4,
q9 =

1
3 (−5 − λ), r1 =

1
6 (−37 − 2λ), r3 =

1
6 (−43 − 8λ), r4 =

1
12 (−3r9 + 2(5 + λ)),

r7 =
1
12 (−52 + 3r9 − 14λ), r8 = −r9 + λ.

Case F: (γ1, γ2, γ3) = (1, 3, 1), −
11
3 < λ < 7,

q9 =
1
2 (−3 − λ), r1 =

1
4 (−25 − λ), r3 =

1
4 (−27 − 7λ), r4 =

1
4 (3 − r9 + λ),

r7 =
1
4 (−18 + r9 − 4λ), r8 = −r9 + λ.

Case G: (γ1, γ2, γ3) = (1, 4, 0), 1 < λ < 7,
q9 = 2 − λ, r1 =

1
3 (−17 − λ), r3 =

1
3 (−1 − 8λ), r4 =

1
4 (−4 − r9 + 2λ),

r7 =
1
12 (−40 + 3r9 − 14λ), r8 = −r9 + λ.
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Case H: (γ1, γ2, γ3) = (2, 2, 1), −
73
9 < λ < −1,

q9 =
1
3 , r1 =

1
6 (−43 − 3λ), r3 =

1
6 (−13 − 3λ), r4 = −

1
6 −

r9
4 ,

r7 =
1
12 (−76 + 3r9 − 18λ), r8 = −r9 + λ.

Case I: (γ1, γ2, γ3) = (2, 3, 0), −
19
2 < λ < 22 − 14

√
2,

q9 =
6+λ
7 , r1 =

1
7 (−41 − λ), r3 =

1
7 (−17 − 4λ), r4 =

1
28 (−7r9 − 2(6 + λ)),

r7 =
1
28 (−104 + 7r9 − 22λ), r8 = −r9 + λ.

Case J: (γ1, γ2, γ3) = (3, 2, 0), −
31
3 < λ < −7,

q9 =
1
5 (26 + 3λ), r1 = 5 + λ, r3 =

1
5 (−23 − 4λ), r4 =

1
20 (−52 − 5r9 − 6λ),

r7 =
1
4 (72 + r9 + 6λ), r8 = −r9 + λ.

5. Extraneous fixed points and their dynamics

Understanding the dynamics of iterative map (3.1) requires the knowledge of its extraneous fixed points [25] as well
as relevant basins of attraction. The dynamics underlying basins of attraction was initiated by Stewart [26] and followed
by works of Amat et al. e.g. [27,28], Andreu et al. [29], Argyros–Magreñan [30], Chicharro et al. [31], Chun et al. [32], Chun–
Neta [33], Cordero et al. [34], Geum et al. [16,35], Magreñan [36], Magreñán et al. [37], Neta et al. [38–40] and Scott et al. [41].

An approximate zero α of a nonlinear equation f (x) = 0 is usually sought bymeans of a fixed point ξ of iterativemethods
of the form

xn+1 = Rf (xn), n = 0, 1, . . . , (5.1)

where Rf is the iteration function under consideration. In general, Rf might possess other fixed points ξ ̸= α, being called
the extraneous fixed points of the iteration function Rf . Such extraneous fixed points may induce attractive, indifferent or
repulsive cycles as well as other periodic orbits or chaotic attractors [42] influencing the dynamics underlying the basins of
attraction. Exploration of the dynamics and discovery of its complicated behavior give us a valuablemotivation of the current
analysis. In view of proposed family ofmethods (3.1), we establish aweighted family ofmodified Newton-like iterativemaps
(5.1) as follows:

xn+1 = Rf (xn) = xn − m
f (xn)
f ′(xn)

Hf (xn), (5.2)

where Hf (xn) = Lf (s)+ Kf (s, u) can be regarded as a weight function of the classical Newton’s method. It is obvious that α is
a fixed point of Rf . The points ξ ̸= α for which Hf (ξ ) = 0 are extraneous fixed points of Rf .

For convenience of analysis of the relevant dynamics, we only consider combinations ofweight functions Lf (s) and Kf (s, u)
in the form of univariate and bivariate rational functions as described by (4.2). A special attention will be paid to some
selected cases to be shown later in this section in order to pursue further properties of their extraneous fixed points and
relevant dynamics associated with their basins of attraction. The existence of such extraneous fixed points would affect the
global iteration dynamics, whichwas demonstrated for simple zeros via König functions and Schröder functions [25] applied
to a family of functions {fk(x) = xk − 1, k ≥ 2} according to the joint work of Vrscay and Gilbert [25] published in 1988.
Especially the presence of attractive cycles induced by the extraneous fixed points of Rf may alter the basins of attraction
due to the trapped sequence {xn}. Even in the case of repulsive or indifferent fixed points, an initial value x0 chosen near a
desired root may converge to another unwanted remote root. Indeed, these aspects of the Schröder functions were observed
in an application to the same family of functions {fk(x) = xk − 1, k ≥ 2}.

For simplified dynamics related to the extraneous fixed points of iterative maps (5.2), we first choose a simple quadratic
polynomial from the family of functions {fk(x) = xk − 1, k ≥ 2}. By closely following the works of Chun et al. [24,43] and
Neta et al. [38,40,44], we then construct Hf (xn) = Lf (s) + Kf (s, u) in (5.2). We now take the multiplicity m of zero α into
account and apply a prototype quadratic polynomial f (z) = (z2 − 1)m to Hf (xn) in order to construct H(z), with a change of
a variable t = z2, in the form of

H(z) =
N (t)
D(t)

, (5.3)

where both D(t) and N (t) are polynomial functions of t with no common factors. Since H is a rational function, it would
be preferable for us to deal with the underlying dynamics of iterative map (5.2) on the Riemann sphere [45] where points
‘‘0(zero)’’ and ‘‘∞’’ can be treated as the desired extraneous fixed points. If such points arise, we are interested in only the
finite extraneous fixed point 0 under which the relevant dynamics can be described in a region containing the origin by
investigating the attractor basins associated with iterative map (5.2).

The extraneous fixed points ξ of Rf in (5.2) can be directly found from the roots t of H(z) with z = t1/2 via relation below:

ξ =

{
t
1
2 , if t ̸= 0,

0(double root), if t = 0.
(5.4)
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5.1. Purely imaginary extraneous fixed points

It is clear that the boundary of twobasins of attraction of two roots for the prototype quadratic polynomial f (z) = (z2−1)m
is the imaginary axis of the complex plane. Indeed, the imaginary axis symmetrically divides the whole complex plane into
two half planes. Since wewant to display the convergence behavior in the dynamical planes through the basins of attraction
in a square region centered at the origin, the resulting dynamics behind the extraneous fixed points on the symmetry
(imaginary) axis would be less influenced by the presence of the possible periodic or chaotic attractors. This motivates our
exploration of the extraneous fixed points on the imaginary axis influencing the convergence behavior of iterativemap (5.2).

Our important task is to construct a possible combination of weight functions Lf and Kf leading to purely imaginary
extraneous fixed points, whose investigation was first done by Chun et al. [43]. As a preliminary task, we first describe the
following lemma regarding the negative real roots of a quadratic equation, which would play a role in determining the
desired purely imaginary extraneous fixed points.

We now introduce the following lemma shown in [17] regarding the negative real roots of a quadratic equation for later
use to characterize the equation g(t) described by (5.11).

Lemma 5.1. Let q(x) = ax2 + bx + c be a quadratic equation with real coefficients a ̸= 0, b, c satisfying b2 − 4ac ≥ 0. Let t1
and t2 be the two roots of q(x) = 0. Then both roots t1 < 0 and t2 < 0 hold if and only if all three coefficients a, b, c have the
same sign.

Employing weight function Lf (s) with parameter b = 0 in (4.4) applied to f (z) = (z2 − 1)m, we find:⎧⎪⎨⎪⎩
s =

1
4
(1 −

1
z2

),

Lf =
1
2
(
3z2 + 1
z2 + 1

).
(5.5)

In addition, we are able to express Kf (s, u) in terms of z and free parameters q9, r1, r3, r4, r7, r8, r9 with the use of

u =
1
4

·
(z2 − 1)2

(z2 + 1)2
. (5.6)

Although such lengthy expression of Kf is not explicitly shown here, the simplified second-order form of Lf will greatly
reduce the complexity of Kf as well as the desiredHf = Lf +Kf given by (5.3). Consequently, the explicit form of the relevant
H(z) given by (5.3) takes the form of

H(z) =
1

2(1 + t)
·

G(t; β0, β1, . . . , β7)
Ω(t; ω0, ω1, . . . , ω6)

, (5.7)

where G(t; β0, β1, . . . , β7) and Ω(t; ω0, ω1, . . . , ω6) are concisely denoted by G(t) and Ω(t), respectively, as below:

G(t) =

7∑
i=0

βi t i, (5.8)

with β0 = 2q9 +4r4 + r9, β1 = 8−14q9 +4r1 −12r3 +4r4 −4r8 −3r9, β2 = −288+64q8 +34q9 −112r1 −48r3 −28r4 +

16r7+8r8−3r9, β3 = −1112+192q8−30q9−652r1+100r3+4r4−16r7+20r8+25r9, β4 = 1792−128q8−10q9−704r1+
64r3 + 44r4 − 96r7 − 80r8 − 45r9, β5 = 6104− 384q8 + 38q9 − 84r1 − 132r3 − 20r4 + 224r7 + 100r8 + 39r9, β6 = 8736+

64q8−26q9+1328r1−16r3−20r4−176r7−56r8−17r9, β7 = 1144+192q8+6q9+220r1+44r3+12r4+48r7+12r8+3r9,
and

Ω(t) =

6∑
i=0

ωi t i, (5.9)

with ω0 = 4r4 + r9, ω1 = −2(8r3 + 4r4 + 2r8 + 3r9), ω2 = −320+ 64q8 − 128r1 + 16r3 − 4r4 + 16r7 + 20r8 + 15r9, ω3 =

−4(−32 + 48r1 − 8r3 − 4r4 + 16r7 + 10r8 + 5r9), ω4 = 1024 − 128q8 − 192r1 − 32r3 − 4r4 + 96r7 + 40r8 + 15r9, ω5 =

2(1472 + 224r1 − 8r3 − 4r4 − 32r7 − 10r8 − 3r9), ω6 = 320 + 64q8 + 64r1 + 16r3 + 4r4 + 16r7 + 4r8 + r9.
Observe that the weight function Lf (z) =

1
2 (

1+3t
1+t ) with t = z2 contains two factors (1 + 3t) and (1 + t). In view of this

observation, we naturally consider a special case of H(z) in the form of a simplified rational function possibly with such two
factors. To this end, we construct

Hf = Lf + Kf =
1

2(1 + t)
G(t)
Ω(t)

, (5.10)

where G(t) and Ω(t) may involve some of such factors in addition to a factor t corresponding to the origin (considered as
purely imaginary) of the complex plane, as shown below:{

G(t) = tγ1 (1 + t)γ2 (1 + 3t)γ3 · g(t) for γ1, γ2, γ3 ∈ N
⋃

{0}, γ1 + γ2 + γ3 = 5

Ω(t) = µ(t),
(5.11)
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where g(t) and µ(t) are polynomials of degree at most 2 and 6, respectively. The expression of H(z) in (5.7) will be further
simplified as:

H(z) =
1
2

· tγ1 (1 + t)γ2−1(1 + 3t)γ3−1
·
g(t)
µ(t)

with t = z2. (5.12)

If we further restrict with γ2 ≥ 2, then all possible 10 combinations of (γ1, γ2, γ3) are listed by {(0, 2, 3), (0, 3, 2), (0, 4, 1),
(0, 5, 0), (1, 2, 2), (1, 3, 1), (1, 4, 0), (2, 2, 1), (2, 3, 0), (3, 2, 0)}. For convenience, we assign ten case letters A, B, C, D, F, G,
H, I, J to those 10 combinations in order.

For each case, we should let H(z) have all purely imaginary extraneous fixed points. To do so, we further require that all
the roots of g(t) should be negative. Let g(t) = g0 + g1t + g2t2 and µ(t) = p0 + p1t + p2t2 + p3t3 + p4t4 + p5t5 + p6t6. Then
the roots of g(t) = 0 would contribute to the desired extraneous fixed points. In view of the fact that γ1 + γ2 + γ3 = 5, the
forms of (5.11) would require a set of five constraints

0 = G(0) = G′(0) = · · ·G(γ1−1)(0) = G(−1) = G′(−1) = · · ·G(γ2−1)(−1) = G(−
1
3
) = G′(−

1
3
) = · · ·G(γ3−1)(−

1
3
) (5.13)

Since G(−1) = 128(32+8r1 −4r7 −2r8 − r9), Ω(−1) = −64(32+8r1 −4r7 −2r8 − r9), we find that G(−1) = −2Ω(−1),
from which G(−1) = 0 implies Ω(−1) = 0. Consequently, we find µ(t)=(1 + t)w(t) with w(t) = d0 + d1t + d2t2 + d3t3 +

d4t4 + d5t5 provided that G(−1) = 0. For any of cases, we can solve these 5 constraints for 5 parameters q9, r1, r3, r4, r7 in
terms of at most 2 remaining parameters r8 and r9. If we substitute these 5 parameters back into G(t) and Ω(t) in (5.11),
the explicit forms of g(t) and w(t) with their coefficients in terms of at most 2 remaining parameters r8, r9 for a given
combination of (γ1, γ2, γ3). If a new parameter λ = r8 + r9 is conveniently introduced, then for all 10 Cases A, B,. . . , J, we
can express 6 parameters q9, r1, r3, r4, r7, r8 ∈ R in terms of two parameters λ and r9. After a tedious algebra, the resulting
parameters for all 10 cases are already described at the end of Section 3. The following proposition plays an important role
in analyzing both computational and dynamical aspects of proposed family of methods (3.1) .

Proposition 5.1. For each case, all coefficients of g(t) and w(t) can be expressed as an affine combination of λ.

Proof. Since one proof is similar to another, it suffices to consider a typical caseAwith (γ1, γ2, γ3) = (0, 2, 3) and λ = r8+r9.
Solving the 6 constraints, we obtain q9 = −

3
5 (4 + λ), r1 =

1
5 (−29 − λ), r3 = −9 − 2λ, r4 =

1
20 (68 − 5r9 + 22λ), r7 =

1
20 (5r9 − 18(4 + λ)), r8 = −r9 + λ. Substituting these coefficients into G(t) and Ω(t), we find:⎧⎪⎨⎪⎩

g(t) =
4
5
[11 + 4λ + t(54 − 4λ) + 15t2]

w(t) =
2
5
[34 + 11λ + t(258 + 37λ) + 78t2(14 + λ) − 6t3(9λ − 334) + t4(1498 − 73λ) + t5(234 + λ)],

completing the proof. □

We now seek the possible extraneous fixed points from the roots of the quadratic equation

g(t) = g0 + g1t + g2t2 (5.14)

with gi = gi(λ), (0 ≤ i ≤ 2), being dependent on parameter λ. Let D be the discriminant of g(t) to be expressed in terms of
parameter λ. We denote a set

∆ = {λ ∈ R : D ≥ 0}. (5.15)

We further denote a set

P = {λ ∈ R : g0g1 > 0 and g0g2 > 0} (5.16)

whose elements make all three coefficients g0, g1, g2 have the same sign. We now use Lemma 5.1 to locate all two negative
roots of g(t) = 0 for purely imaginary extraneous fixed points. After a lengthy algebra, we are able to find the desired sets
∆, P and ∆ ∩ P containing λ-values for which purely imaginary extraneous fixed points can be located.

Notice that extraneous fixed point zeros ξ = 0 (being considered as purely imaginary) may be found on the boundary
of P. Let P̄ denote the closure of P. According to interesting values of λ ∈ ∆ ∩ P̄, we classify the subcases of each case from
Cases A, B, . . . , J by appending sequential Arabic numerals such as Cases A1, A2, . . . , B1, B2, . . . , J1, J2, . . . .

Presented below are values of (γ1, γ2, γ3), λ, g(t), ∆, P and ∆ ∩ P for each case under consideration with λ = r8 + r9.
Case A: (γ1, γ2, γ3) = (0, 2, 3).

(1) g(t) = 11 + 4λ + t(54 − 4λ) + 15t2.
(2) ∆ = {λ : λ ≤ 21 − 10

√
3 or λ ≥ 21 + 10

√
3}, P = {λ : −

11
4 < λ < 27

2 }.
(3) ∆ ∩ P = {λ : −

11
4 < λ < 21 − 10

√
3}.

The five subcases A1, A2, . . . , A5 are identified with λ ∈ {−
11
4 , −2, − 3

2 , 1, 2} in order.
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Case B: (γ1, γ2, γ3) = (0, 3, 2).
(1) g(t) = −1 + λ − 2t(λ − 8) + t2(1 + λ).
(2) ∆ = {λ : λ ≤

65
16 }, P = {λ : 1 < λ < 8}.

(3) ∆ ∩ P = {λ : 1 < λ ≤
65
16 }.

The five subcases B1, B2, . . . , B5 are identified with λ ∈ {1, 3
2 , 2, 4,

65
16 } in order.

Case C: (γ1, γ2, γ3) = (0, 4, 1).
(1) g(t) = −7 + λ + t(10 − 6λ) + 5t2(λ − 7).
(2) ∆ = {λ : λ ≤ −5 − 4

√
5 or λ ≥ −5 + 4

√
5}, P = {λ :

5
3 < λ < 7}.

(3) ∆ ∩ P = {λ : −5 + 4
√
5 ≤ λ < 7}.

The five subcases C1, C2, . . . , C5 are identified with λ ∈ {4, 17
3 , 6, 125

18 , 7} in order.
Case D: (γ1, γ2, γ3) = (0, 5, 0).

(1) g(t) = −3 + t(2 − 6λ) + t2(6λ − 71).
(2) ∆ = {λ : λ ≤

1
3 (−2 − 6

√
6) or λ ≥

1
3 (−2 + 6

√
6)}, P = {λ :

1
3 < λ < 71

6 }.

(3) ∆ ∩ P = {λ :
1
3 (−2 + 6

√
6) ≤ λ < 71

6 }.
The five subcases D1, D2, . . . , D5 are identified with λ ∈ {5, 22

3 , 9, 670
57 , 71

6 } in order.
Case E: (γ1, γ2, γ3) = (1, 2, 2).

(1) g(t) = −3(6 + λ) + 2t(λ − 13) + t2(λ − 4).
(2) ∆ = R, P = {λ : −6 < λ < 4}.
(3) ∆ ∩ P = {λ : −6 < λ < 4}.
The seven subcases E1, E2, . . . , E7 are identified with λ ∈ {−6, −5, −3, −1, 1, 27

7 , 4} in order.
Case F: (γ1, γ2, γ3) = (1, 3, 1).

(1) g(t) = −11 − 3λ + 2t(λ − 23) + t2(λ − 7).
(2) ∆ = R, P = {λ : −

11
3 < λ < 7}.

(3) ∆ ∩ P = {λ : −
11
3 < λ < 7}.

The six subcases F1, F2, . . . , F6 are identified with λ ∈ {−
11
3 , −3, 1, 3, 47

7 , 7} in order.
Case G: (γ1, γ2, γ3) = (1, 4, 0).

(1) g(t) = 1 − λ − 18t + t2(λ − 7).
(2) ∆ = R, P = {λ : 1 < λ < 7}.
(3) ∆ ∩ P = {λ : 1 < λ < 7}.
The five subcases G1, G2, . . . , G5 are identified with λ ∈ {1, 2, 4, 130

19 , 7} in order.
Case H: (γ1, γ2, γ3) = (2, 2, 1).

(1) g(t) = −73 − 9λ + t(6λ − 26) + 3t2(1 + λ).
(2) ∆ = R, P = {λ : −

73
9 < λ < −1}.

(3) ∆ ∩ P = {λ : −
73
9 < λ < −1}.

The seven subcases H1, H2, . . . , H7 are identified with λ ∈ {−
73
9 , −6, −5, −3, −2, − 15

14 , −1} in order.
Case I: (γ1, γ2, γ3) = (2, 3, 0).

(1) g(t) = 19 + 2λ − 2t(λ − 15) + 7t2.
(2) ∆ = {λ : λ ≤ 22 − 14

√
2 or λ ≥ 22 + 14

√
2}, P = {λ : −

19
2 < λ < 15}.

(3) ∆ ∩ P = {λ : −
19
2 < λ ≤ 22 − 14

√
2}.

The five subcases I1, I2, . . . , I5 are identified with λ ∈ {−
19
2 , −7, −6, −1, 1} in order.

Case J: (γ1, γ2, γ3) = (3, 2, 0).
(1) g(t) = −7(7 + λ) + t(58 + 4λ) + t2(31 + 3λ).
(2) ∆ = R, P = {λ : −

31
3 < λ < −7}.

(3) ∆ ∩ P = {λ : −
31
3 < λ < −7}.

The five subcases J1, J2, . . . , J5 are identified with λ ∈ {−
31
3 , − 2334

227 , −9, − 26
3 , −7} in order.

Although rich subcases are available as considered thus far, in Table 1, we preferably present 32 sub-subcases A3Z,
A4X, . . . , I5Z, J4X, J5Y based on simplified forms of their corresponding weight functions Kf (s, u) along with parameter
values of q9, r1, r3, r4, r7, r8, r9, λ and H(z). The sub-subcase numbers ending in letters X, Y, Z correspond to the values
of r4 = 0, r7 = 0, r9 = 0, respectively. Indeed, Table 2 lists the extraneous fixed points for the specially selected 18 sub-
subcases.

The analysis done so far and a thorough inspection of Table 1 yield the following useful remark.

Remark 5.2. (i) Once λ is chosen, we have freedom to select parameter r9. Note that H(z) can be obtained without
specifying parameter values of r9 for all selected cases. (ii) Three cases (A3X, B3Z, E2Y) (highlighted in yellow) give the
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Table 1
H(z) for the selected values of λ and q9, r1, r3, r4, r7, r8, r9 .

same H(z) =
2(1+3t)2(1+12t+3t2)

7+60t+210t2+204t3+31t4
, four cases (B2X, C3Z, F2X, F2Y) (highlighted in light gray) give the same H(z) =

2(1+t)(1+3t)(1+26t+5t2)
9+100t+238t2+148t3+17t4

, three cases (C5X, F6Y, G5Z) (highlighted in green) give the same H(z) =
64t(1+t)(1+3t)

5+123t+370t2+406t3+121t4−t5
,

two cases (C2Z, G2X) (highlighted in magenta) give the same H(z) =
8(1+t)2(1+18t+5t2)

31+220t+322t2+172t3+23t4
, three cases (G3X, I3X,

I3Y) (highlighted in violet) give the same H(z) =
16t(1+t)(1+6t+t2)

(1+3t)(1+33t+27t2+3t3)
, two cases (H3Y, J4X) (highlighted in light green)

give the same H(z) =
32t2(7+14t+3t2)

−1+28t+322t2+364t3+55t4
, and two cases (E5X, F3Y) (highlighted in gray) give the same H(z) =

2t(1+t)(7+t)(1+3t)2

1+30t+134t2+224t3+113t4+10t5
.
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5.2. Stability of extraneous fixed points

After locating the roots of H(z) investigated thus far for f (z) = (z2 − 1)m, we list in Table 2 the desired purely imaginary
extraneous fixed points in typical subcases. By computing the absolute values of multipliers R′

f (ξ ) for iterative map (5.2)
with f (z) = (z2 − 1)m, we claim that all of the purely imaginary extraneous fixed points ξ of H in each of the listed cases in
Table 2 are indifferent except for extraneous fixed point double 0. The extraneous fixed point double 0 for each of Cases G3X
and I3X is found to be repulsive and highlighted by a framed-value. Interestingly attractive extraneous fixed points have not
been found in any of the selected cases. Stabilities of themultipliers for all cases A, B, . . . , J are well described in the following
proposition.

Proposition 5.3. Let ξ be the extraneous fixed points obtained from the expression H(z)with t = z2 in (5.12) and let λ = r8 + r9
be as described earlier in Section 5.1. Then stabilities of the possible extraneous fixed points ξ for the 10 cases A, B, . . . , J are
characterized by the following:

(1) The nonzero extraneous fixed points for the 10 cases are all found to be indifferent.
(2) The multipliers of the extraneous fixed point double 0 for cases E, F and G are respectively given by −

(36+5λ)
(6+λ) and −

(32+3λ)
(8+λ) .

They are found to be repulsive respectively for −7 < λ ≤ −3(λ ̸= −6) and −10 < λ < −
14
3 (λ ̸= −8).

(3) The extraneous fixed point (quadruple, sextuple, octuple) 0 is found to be indifferent for cases E–J.

Proof. (1): It suffices to show for Case A for the nonzero extraneous fixed points. Proofs for the remaining cases can be
similarly treated.

The corresponding H(z) for Case A found to be:

H(z) =
(1 + 3t)3(11 + 4λ + t(54 − 4λ) + 15t2)

34 + 11λ + t(258 + 37λ) + 78t2(14 + λ) − 6t3(−334 + 9λ) + t4(1498 − 73λ) + t5(234 + λ)
, (5.17)

where t = z2. Hence the extraneous fixed points ξ are given by ±
i

√
3
(triple) and ±τ with t = τ 2 for which 11+4λ+ t(54−

4λ) + 15t2 = 0. Besides, the corresponding derivative of the iterative map Rf in (5.2) is given by

R′

f (z) =
(t − 1)[11 + 4λ + t(107 + 18λ) + t2(542 + 48λ) + t3(1046 − 36λ) + t4(791 − 36λ) + t5(63 + 2λ)]
2t[34 + 11λ + t(258 + 37λ) + 78t2(14 + λ) − 6t3(−334 + 9λ) + t4(1498 − 73λ) + t5(234 + λ)]

. (5.18)

By direct substitution of the extraneous fixed points z = ±
i

√
3
(triple), i.e., t = −

1
3 into R′

f (z), we immediately find
R′

f (±
i

√
3
) = 1. We now let the extraneous fixed points ±τ satisfy

11 + 4λ + t(54 − 4λ) + 15t2 = 0

with t = τ 2. For brevity, we first denote the left side of the above equation by dλ(t) = 11 + 4λ + t(54 − 4λ) + 15t2. Then
the second factors of the numerator and the denominator of (5.18) are respectively given by

11 + 4λ + t(107 + 18λ) + t2(542 + 48λ) + t3(1046 − 36λ) + t4(791 − 36λ) + t5(63 + 2λ)

= q1λ(t) · dλ(t) + r1λ(t) = r1λ(t),

34 + 11λ + t(258 + 37λ) + 78t2(14 + λ) − 6t3(−334 + 9λ) + t4(1498 − 73λ) + t5(234 + λ)

= q2λ(t) · dλ(t) + r2λ(t) = r2λ(t),

where

q1λ(t) =
δ0 + 15t(−232047 + 43026λ − 2136λ2

+ 32λ3) + 225t2(8463 − 396λ + 8λ2) + 3375t3(63 + 2λ)
50625

,

q2λ(t) =
δ1 + 15t(−118746 + 24483λ − 1128λ2

+ 16λ3) + 225t2(9834 − 213λ + 4λ2) + 3375t3(234 + λ)
50625

,

r1λ(t) =
128[δ3 + t(−5127489 + 1955610λ − 258525λ2

+ 15180λ3
− 405λ4

+ 4λ5)]
50625

,

and

r2λ(t) =
256[δ4 + t(−1660176 + 592380λ − 73710λ2

+ 4110λ3
− 105λ4

+ λ5)]
50625

,

with δ0 = 12963393−3532032λ+309888λ2
−10752λ3

+128λ4, δ1 = 8475174−2088711λ+170964λ2
−5616λ3

+64λ4,
δ3 = −1109691−99990λ+83745λ2

−8760λ3
+325λ4

−4λ5, and δ4 = −357444−40500λ+25290λ2
−2430λ3

+85λ4
−λ5.

Hence (5.18) at this extraneous fixed points ±τ with t = τ 2 becomes

R′

f (z) =
(t − 1)r1λ(t)
2t r2λ(t)

. (5.19)
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Since (t−1)r1λ(t)−2t r2λ(t) = dλ(t)·(100881−27594λ+2421λ2
−84λ3

+λ4) = 0 in view of the fact dλ(t) = 0, we find that
R′

f (±τ ) = 1. Further, in case of λ =
3
2 , dλ(t) reduces to a degenerated first-degree polynomial equation. The corresponding

extraneous fixed points τ are found to be ±
i

√
7
and R′

f (±
i

√
7
) = 1. The proofs for all other remaining cases can be similarly

made.
By direct substitution of the extraneous fixed points z = 0 (double), i.e., t = 0 into R′

f (z), we immediately find R′

f (0) = −7,
implying repulsive fixed points 0.

(2)(i): Case E for extraneous fixed points 0 (double).
The corresponding H(z) and R′

f (z) are found to be:⎧⎪⎪⎨⎪⎪⎩
H(z) = −

4t(1 + 3t)2[−3(6 + λ) + 2t(λ − 13) + t2(λ − 4)]
5 + λ + t(157 + 23λ) + t2(730 + 74λ) + 14t3(95 + λ) + t4(769 − 91λ) + t5(81 − 21λ)

,

R′

f (z) = −
(t − 1)[−31 − 5λ − 2t(89 + 10λ) − 6t2(60 + λ) + 2t3(−95 + 14λ) + 3t4(−3 + λ)]

5 + λ + t(157 + 23λ) + t2(730 + 74λ) + 14t3(95 + λ) + t4(769 − 91λ) + t5(81 − 21λ)
.

(5.20)

By direct substitution of the extraneous fixed points 0 (double), i.e., t = 0, into R′

f (z), we immediately find R′

f (0) =

−
(31+5λ)
(5+λ) . Thus the extraneous fixed points 0 are repulsive for −6 < λ ≤ 4(λ ̸= −5).
(ii): Case F for extraneous fixed points 0 (double).
The corresponding H(z) and R′

f (z) are found to be:⎧⎪⎪⎨⎪⎪⎩
H(z) =

4t(1 + t)(1 + 3t)[−11 − 3λ + 2t(λ − 23) + t2(λ − 7)]
−3 − λ − 3t(33 + 7λ) − 2t2(251 + 17λ) + 14t3(−65 + λ) + t4(−487 + 35λ) + t5(−47 + 7λ)

,

R′

f (z) =
(t − 1)[−19 − 5λ − 2t(61 + 5λ) + 4t2(λ − 62) + 2t3(5λ − 59) + t4(λ − 5)]

−3 − λ − 3t(33 + 7λ) − 2t2(251 + 17λ) + 14t3(λ − 65) + t4(35λ − 487) + t5(7λ − 47)
.

(5.21)

By direct substitution of the extraneous fixed points 0 (double), i.e., t = 0, into R′

f (z), we immediately find R′

f (0) =

−
(19+5λ)
(3+λ) . Thus the extraneous fixed points 0 are repulsive for −

11
3 < λ ≤ 7(λ ̸= −3).

(iii): Case G for extraneous fixed points 0 (double).
The corresponding H(z) and R′

f (z) are found to be:⎧⎪⎪⎨⎪⎪⎩
H(z) =

32t(1 + t)2[1 − λ − 18t + t2(−7 + λ)]
6 − 3λ − t(26 + 49λ) − 2t2(394 + 23λ) + 14t3(λ − 94) + t4(65λ − 818) + t5(19λ − 130)

,

R′

f (z) =
(t − 1)[10 − 13λ − 12t(17 + λ) + 2t2(λ − 172) + 4t3(5λ − 53) + 3t4(λ − 6)]

6 − 3λ − t(26 + 49λ) − 2t2(394 + 23λ) + 14t3(λ − 94) + t4(65λ − 818) + t5(19λ − 130)
.

(5.22)

By direct substitution of the extraneous fixed points 0 (double), i.e., t = 0, into R′

f (z), we immediately find R′

f (0) =
10−13λ
3(λ−2) .

Thus the extraneous fixed points 0 are repulsive for 1 < λ ≤ 7(λ ̸= 2).
(3) Cases E–J for extraneous fixed points 0.
The corresponding H(z) for each of cases H–J is found to be:

H(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

8t2(1 + 3t)[−73 − 9λ + t(6λ − 26) + 3t2(1 + λ)]
1 − t(55 + 6λ) − 2t2(503 + 60λ) − 14t3(125 + 6λ) + t4(−307 + 168λ) + t5(45 + 42λ)

for case H,

64t2(1 + t)(19 + 2λ − 2t(λ − 15) + 7t2)
−6 − λ + 7t(22 + 3λ) + 2t2(906 + 67λ) + t3(3108 − 70λ) + t4(1842 − 85λ) + t5(258 + λ)

for case I,

128t3[−7(7 + λ) + t(58 + 4λ) + t2(31 + 3λ)]
−26 − 3λ + t(262 + 31λ) − 14t2(134 + 17λ) − 14t3(254 + 47λ) + t4(7982 + 641λ) + t5(2334 + 227λ)

for case J.

(5.23)

In addition, subcases E1X–E1Z, F1X–F1Z, G1X–G1Z possess extraneous fixed points 0 (quadruple), i.e., each H(z) of them
contains a factor t2whose explicit expression is not shown here. Note that each H(z) of the selected cases E–J has the factor
tk for k ≥ 2 in the numerator for some λ. Hence, we find that the corresponding fixed points 0 are found from the repeated
roots of tk, stating R′

f (0) = 1. □

In case that f (z) is a generic polynomial rather than (z2 − 1)m, it would be certainly interesting to investigate the
dynamics underlying the relevant extraneous fixed points. However, due to the increased algebraic complexity, we resort to
an effective way of exploring such dynamics through a variety of basins of attraction under iterative map (5.2) with f (z) as
a generic polynomial. We will illustrate the basins of attraction to explore the dynamics of the iterative map Rp of the form

zn+1 = Rp(zn) = zn −
p(zn)
p′(zn)

Hp(zn), (5.24)

for a generic polynomial p(zn) and a weight function Hp(zn). In fact, basins of attraction for the fixed points or the extraneous
fixed points will be illustrated throughout various polynomials in the latter part of Section 6.

We now prefix the iterative maps in Table 2 corresponding to cases A3Z, A4X, B2X, B3Y, B4Z, C2Z, C3Z, D2Z, E2Y, F2X,
G1X, G2X, G3X, H2X, H3Y, I3X, J4X, J5X with W for later use in describing their relevant dynamics. In addition, we identify
map GKN6A and GKN6B, respectively for methods (2.1) and (2.2).
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Table 2
Extraneous fixed points ξ and their stability for selected cases.

Case ξ No. of ξ

A3Z ±i/
√
3(double), ± 1.9786i, ± 0.291798i 8

A4X ±
√
3i, ± i/

√
3(quadruple) 10

B2X ±i, ± i/
√
3, ± 2.27184i, ± 0.196851i 8

B3Y ±i/
√
3(double), ± 1.9786i, ± 0.291798i 8

B4Z ±i(double), ± i/
√
3(double), ± 0.774597i 10

C2Z ±i(double), ± 0.237572i, ± 1.88243i 8
C3Z ±i, ± i/

√
3, ± 0.196851i, ± 2.27184i 8

D2Z ±i(triple), ± 0.273951i, ± 1.21676i 10
E2Y ±i/

√
3(double), ± 0.291798i, ± 1.9786i 8

F2X ±i, ± i/
√
3, ± 0.196851i, ± 2.27184i 8

G1X 0(quadruple), ± i(double), ±
√
3i 10

G2X ±i(double), ± 0.237572i, ± 1.88243i 8
G3X 0(double), ± i, ± 0.414214i, ± 2.41421i 8
H2X 0(quadruple), ± i/

√
3(double), ± 1.94936i 10

H3Y 0(quadruple), ± 0.754652i, ± 2.02415i 8
I3X 0(double), ± i, ±2.41421i, ± 414214i 8
J4X 0(quadruple), ± 2.02415i, ± 0.754652i 8
J5X 0(octuple), ±

√
3i 10

In the above table, all nonzero extraneous fixed points are indifferent, while
boxed-values of zero extraneous fixed points are repulsive. Interestingly, no
attractive extraneous fixed points exist for the selected cases.

6. Numerical experiments and complex dynamics

We first analyze computational aspects of proposed family of methods (3.1) for a number of test functions along
with existing sixth-order methods GKN6A given by (2.1) and GKN6B given by (2.2); then we investigate the dynamics
underlying purely imaginary extraneous fixed points based on iterative maps (5.24) through their illustrative basins of
attraction. In Section 5, we were able to find extraneous fixed points using λ-values without specifying parameters r8, r9.
For numerical experiments in both computational and dynamical aspects, we need to provide the required 7 coefficients
q9, r1, r3, r4, r7, r8, r9 of Kf (s, u) for a given λ. Table 3 shows the desired parameter values and Kf (s, u) for the 18 selected
cases A3Z, A4X, B2X, B3Y, B4Z, C2Z, C3Z, D2Z, E2Y, F2X, G1X, G2X, G3X, H2X, H3Y, I3X, J4X, J5X. Each case has been
implemented to verify the theoretical convergence. Later on in this section, we will explore the complex dynamics with
the use of illustrated basins of attraction of selected rational iterative maps WA3Z through WJ5X and existing sixth-order
methods GKN6A and GKN6B.

Numerical experiments have been implemented by Mathematica programming with 160 digits of minimum number of
precision, via Mathematica command $MinPrecision = 160.

Definition 2 (Computational Convergence Order). Assume that theoretical asymptotic error constant η = limn→∞
|en|

|en−1|p and
convergence order p ≥ 1 are known. Define pn =

log|en/η|

log|en−1|
as the computational convergence order. Note that limn→∞pn = p.

Remark 6.1. Note that pn requires knowledge at two points xn, xn−1, while the usual COC (computational order of

convergence) log(|xn−xn−1|/|xn−1−xn−2|)
log(|xn−1−xn−2|/|xn−2−xn−3|)does require knowledge at four points xn, xn−1, xn−2, xn−3. Hence pn can be handled

with a less number of working precision digits than the usual COC whose number of working precision digits is at least p
times as large as that of pn.

Computed values of xn are accurate with up to $MinPrecision significant digits. If α has the same accuracy of $MinPrecision
as that of xn, then en = xn − α would be nearly zero and hence computing |en+1|/|en|p would unfavorably break down. In
case that α is not exact, we employ the approximate α found with more precision digits of Φ + $MinPrecision. To supply
such an approximate α, a set of following Mathematica commands are used:

sol = FindRoot[f (x), {x, x0}, PrecisionGoal → Φ + $MinPrecision,
WorkingPrecision → 2 ∗ $MinPrecision];
α = sol[[1, 2]].

In the current experiment, we assign Φ = 16. As a result, the numbers of significant digits of xn and α are found to be 160
and 176, respectively. Nonetheless, we list both of them with up to 15 significant digits for proper readability. The error
bound ϵ =

1
2 × 10−128 is assigned to satisfy |xn − α| < ϵ.
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Table 3
Parameter values of λ, A6, A7, A8, B2, B3, B4, B5, B6, d1, d2 , and Kf (s, u) for selected cases.

Table 4
Convergence for test functions F1(x) − F3(x) with typically selected methods AX2, BX1, DY7.

MT F n xn |F (xn)| |xn − α| |en/e8n−1| η pn
0 −2.2 0.220278 0.165263
1 −2.03473702902612 1.411 × 10−37 1.027 × 10−8 0.01846758266 0.06316552009 8.68311

WA3Z F1 2 −2.03473701875034 3.678 × 10−323 7.852 × 10−66 0.06316551487 8.00000
3 −2.03473701875034 7.260 × 10−866 1.145 × 10−174

0 1.4 0.0160177 0.0634181
1 1.46341814023295 1.666 × 10−28 1.458 × 10−10 0.5574998039 0.8530972576 8.15425

WB2X F2 2 1.46341814037882 2.869 × 10−235 1.748 × 10−79 0.8530972568 8.00000
3 1.46341814037882 0.0 × 10−812 5.406 × 10−174

0 1.1 0.205800 0.0585181
1 1.04148187080088 2.406 × 10−18 2.165 × 10−10 1.574812549 1.400174304 7.95859

WH3Y F2 2 1.04148187058433 2.351 × 10−153 6.770 × 10−78 1.400174305 8.00000
3 1.04148187058433 3.678 × 10−345 0.0 × 10−159

MT = method, ( 1.97
−0.36)

∗
= 1.96 − 0.36i, i =

√
−1.

Typical methodsWA3Z, WB2X, WH3Y have been successfully implemented with test functions F1 − F3 below:⎧⎪⎪⎨⎪⎪⎩
WA3Z : F1(x) = (cos(

2π
x

) + x2 − π )5, α ≈ −2.03473701875034, m = 5.

WB2X : F2(x) = [1 + cos(x2 + 1) − x log(x2 − π + 2)]2(x2 + 1 − π ), α =
√

π − 1, m = 3.

WH3Y : F3(x) = [sin(x − 1)−1
+ ex

2
− 3]2, α ≈ 1.04148187058433, m = 2.

Table 4 well verifies eighth-order convergence. The values of computational asymptotic error constant agree up to 9
significant digits with η. Table 5 lists additional test functions to further confirm the convergence behavior of proposed
scheme (3.1).

In Table 6, we compare numerical errors |xn − α| of proposed methods WA3Z through WJ5X with those of methods
GKN6A and GKN6B. The least errors within the prescribed error bound are highlighted in bold face. Although we are limited
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Table 5
Additional test functions fi(x) with zeros α, initial guesses x0 , and multiplicity m.

i fi(x) α x0 m

1 x2[x3 − log(1 + x2)]2 0 −0.05 m = 6
2 [3 + sin x − x3 + 2x]2 1.99124467662365 2.15 m = 2
3 [2x − π + cos x log(x2 + 1)]4 π/2 1.5 m = 4
4 [2x3 + e−x

+ sin(x2) − 2]7 0.784656783178930 0.8 m = 7
5 [x − x3 cos( πx

3 ) +
1

x2+1
−

301
10 ](x − 3)4 3 2.87 m = 5

6 exp
{ [(x− 1

2 )2+3]2

x5+cos[(x− 1
2 )2+3]

}
− 1 0.5 +

√
3i 0.495 + 1.72i m = 2

7 (x − 1)(x log x −
√
x + x4)2 1 1.05 m = 3

Here log z (z ∈ C) represents a principal analytic branch with −π ≤ Im(log z) < π .

to the selected current experiments, within two iterations, a strict comparison shows that Method WB2X displays slightly
better convergence for three test functions f2, f4, f6 and methodWF2X for two test functions f3, f7, while methodWG1X for
two test functions f1 and f5.

In view of a close inspection of the asymptotic error constant η(θi, Lf , Kf ) =
|xn+1−α|

|xn−α|8
, we should be aware that the local

convergence is dependent on the function f (x), an initial value x0, the zero α itself as well as the weight functions Lf and Kf .
Hence, we should not expect that for all given set of test functions, the convergence of one method is always better than the
others.

The efficiency index [22] abbreviated by EI is found to be 81/4
≈ 1.68179 for the proposed family of methods (3.1), being

better than classical Newton’s method and any other known method for multiple roots.
Selection of good initial guesses is crucial to guarantee the convergence behavior of Newton-like iterative map (5.24)

with a weight function Hp(z). It is, however, not a simple task since the initial guesses need to be close to zero α and are
sensitive to computational precision, error bound and the given function f (x) under consideration.

We now introduce the notion of the basin of attraction that is the set of initial guesses leading to long-time behavior
approaching the attractors (e.g., periodic, quasi-periodic or chaotic behaviors of different types) under the action of the
iterative function. Hence, one effective way of selecting stable initial guesses would be directly using visual basins of
attraction. Since the area of convergence can be seen on the basins of attraction, it would be reasonable to say that a method
having a larger area of convergence implies amore robust method. A quantitative analysis is clearly necessary for measuring
the size of area of convergence. Conveniently, convergence behavior of global character can be clearly observed on the basin
of attraction. The basic topological structure of such a basin of attraction as a region can vary greatly from system to system
with various forms of weight functions.

To show the performance of the listed methods, we present Tables 7–9 featuring a statistical data giving the average
number of iterations per point, CPU time (in seconds) andnumber of points requiring 40 iterations. In the following examples,
we take a 6 by 6 square centered at the origin and containing all the zeros of the given functions. We then take 601 × 601
equally spaced points in the square as initial points for the iterative methods. We color the point based on the root it
converged to. This way we can figure out if the method converged within the maximum number of iteration allowed and if
it converged to the root closer to the initial point.

We now are ready to discuss the complex dynamics of selected iterative maps in Table 2 for A3Z, A4X, B2X, B3Y, B4Z,
C2Z, C3Z, D2Z, E2Y, F2X, G1X, G2X, G3X, H2X, H3Y, I3X, J4X, J5X and existing sixth-order multiple-zeros finders GKN6A
and GKN6B, when applied to various polynomials pk(z), (1 ≤ k ≤ 6).

Example 1. As a first example, we have taken a quadratic polynomial raised to the power of 2 with all real roots:

p1(z) = (z2 − 1)2. (6.1)

Clearly the roots are±1. Basins of attraction forWA3Z –WJ5X, GKN6A and GKN6B are given in Fig. 1. Consulting Tables 7–9,
we find that themethodWG3X uses the least number (2.84) of iterations per point on average (ANIP) followed byWI3Xwith
2.86 ANIP. The fastest method isWI3Xwith 528.952 s followed closely byWG3Xwith 529.467 s. The slowest areWB2X and
WJ4X with 923.494 and 826.213 s, respectively. GKN6A has the lowest number of black points and WJ5X has the highest
such number (7479).

Example 2. As a second example, we have taken the same quadratic polynomial now raised to the power of 5:

p2(z) = (z2 − 1)5. (6.2)

The basins for the best methods are plotted in Fig. 2. The worst are WB2X, WB4Z, and WJ5X. In terms of ANIP, the best
is WG3X (3.70) and the worst are WB2X (7.23) and WJ4X (6.41). The fastest is WG3X using 1622.051 s followed by WI3X



Y.H. Geum et al. / Journal of Computational and Applied Mathematics 333 (2018) 131–156 147

(1) WA3Z. (2) WA4X. (3) WB2X. (4) WB3Y.

(5) WB4Z. (6) WC2Z. (7) WC3Z. (8) WD2Z.

(9) WE2Y. (10) WF2X. (11) WG1X. (12) WG2X.

(13) WG3X. (14) WH2X. (15) WH3Y. (16) WI3X.

(17) WJ4X. (18) WJ5X. (19) GKN6A. (20) GKN6B.

Fig. 1. The top row forWA3Z (left),WA4X (center left),WB2X (center right) andWB3Y (right). The second row forWB4Z (left),WC2Z (center left),WC3Z
(center right) andWD2Z (right). The third row forWE2Y (left),WF2X (center left),WG1X(center right) andWG2X (right). The fourth row forWG3X (left),
WH2X (center left), WH3Y (center right) and WI3X (right). The bottom row for WJ4X (left), WJ5X (center left), GKN6A (center right) and GKN6B (right),
for the roots of the polynomial (z2 − 1)2 .
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Table 6
Comparison of |xn − α| for selected methods applied to various test functions.

Method |xn − α| f (x); x0
f1; − 0.05 f2; 2.15 f3; 1.5 f4; 0.8 f5; 2.87 f6; 0.495 = 1.72i f7; 1.05

WA3Z |x1 − α| 3.41e−13a 8.16e−9 1.13e−9 6.65e−15 8.55e−14 5.11e−16 2.30e−11
|x2 − α| 2.37e−102 7.34e−67 7.70e−72 9.43e−114 2.32e−110 3.75e−62 6.07e−86

WA4X |x1 − α| 7.92e−13 1.08e−8 1.37e−9 1.26e−14 9.91e−14 2.14e−16 2.39e−11
|x2 − α| 5.01e−99 9.98e−66 4.34e−71 3.11e−111 1.05e−109 8.64e−47 8.78e−86

WB2X |x1 − α| 3.75e−13 9.55e−10 6.44e−11 1.04e−15 8.79e−14 8.72e−17 9.45e−13
|x2 − α| 5.69e−102 2.68e−75 2.29e−30 5.14e−121 3.09e−110 3.38e−130 2.16e−98

WB3Y |x1 − α| 7.90e−13 1.02e−9 2.45e−10 4.57e−15 1.01e−13 7.42e−16 5.69e−12
|x2 − α| 4.83e−99 7.25e−75 1.69e−28 3.16e−115 1.24e−109 3.57e−45 1.06e−33

WB4Z |x1 − α| 4.55e−13 3.30e−8 5.18e−9 2.79e−14 8.47e−14 1.70e−15 9.58e−11
|x2 − α| 3.37e−101 2.16e−61 6.70e−66 3.81e−108 2.13e−110 4.62e−60 2.25e−80

WC2Z |x1 − α| 1.51e−13 1.10e−8 1.66e−9 6.69e−15 7.93e−14 9.83e−16 3.31e−11
|x2 − α| 1.35e−105 9.79e−66 2.31e−70 9.97e−114 1.05e−110 5.15e−61 1.52e−84

WC3Z |x1 − α| 8.93e−14 5.80e−9 8.63e−10 2.36e−15 7.82e−14 8.45e−16 1.97e−11
|x2 − α| 9.22e−108 3.03e−68 6.30e−73 8.79e−118 9.07e−111 2.80e−61 1.43e−86

WD2Z |x1 − α| 2.79e−13 1.82e−8 2.78e−9 1.34e−14 8.20e−14 1.13e−15 5.22e−11
|x2 − α| 3.88e−103 9.32e−64 2.36e−68 5.38e−111 1.51e−110 9.01e−61 9.29e−83

WE2Y |x1 − α| 3.20e−13 8.35e−9 1.17e−9 6.74e−15 8.47e−14 5.71e−16 2.41e−11
|x2 − α| 1.31e−102 9.17e−67 1.08e−71 1.07e−113 2.11e−110 5.86e−62 9.30e−86

WF2X |x1 − α| 2.41e−13 5.13e−9 6.25e−10 2.03e−15 8.31e−14 4.45e−16 1.24e−11
|x2 − α| 9.59e−104 6.58e−69 2.14e−74 1.81e−118 1.72e−110 2.17e−62 1.91e−88

WF2Y |x1 − α| 3.73e−13 1.13e−9 3.31e−11 1.05e−15 8.78e−14 9.00e−17 1.34e−12
|x2 − α| 5.45e−102 1.08e−74 4.19e−31 5.58e−121 3.09e−110 4.36e−130 3.73e−97

WG1X |x1 − α| 8.32e−14 1.30e−8 2.14e−9 1.00e−14 7.66e−14 1.38e−15 4.60e−11
|x2 − α| 6.15e−108 5.92e−65 2.75e−69 4.05e−112 7.25e−111 2.02e−60 3.23e−83

WG2X |x1 − α| 9.32e−14 9.11e−9 1.47e−9 6.49e−15 7.77e−14 1.11e−15 3.31e−11
|x2 − α| 1.67e−107 2.30e−66 9.49e−71 8.05e−114 8.41e−111 8.55e−61 1.66e−84

WG3X |x1 − α| 7.30e−13 7.98e−8 1.26e−8 6.32e−14 8.64e−14 3.47e−15 2.20e−10
|x2 − α| 2.49e−99 5.51e−58 1.81e−62 5.91e−105 2.64e−110 8.03e−59 3.87e−77

WH2X |x1 − α| 5.04e−13 8.64e−9 1.11e−9 7.85e−15 9.06e−14 1.89e−16 2.05e−11
|x2 − α| 8.27e−101 1.12e−66 5.94e−72 4.12e−113 4.23e−110 7.03e−64 2.06e−86

WH3Y |x1 − α| 2.91e−13 6.45e−9 9.11e−10 5.71e−15 8.41e−14 5.71e−16 2.07e−11
|x2 − α| 5.77e−103 1.06e−67 1.29e−72 2.50e−114 1.97e−110 5.89e−62 2.59e−86

WI3X |x1 − α| 3.17e−13 4.27e−10 1.75e−10 1.05e−15 8.63e−14 1.14e−16 2.48-12
|x2 − α| 1.19e−102 7.76e−78 6.18e−29 1.12e−44 2.55e−110 3.84e−129 8.90e−35

WJ4X |x1 − α| 5.88e−13 9.42e−11 2.40e−10 3.84e−15 9.47e−14 2.91e−16 9.91e−13
|x2 − α| 3.50e−100 2.61e−30 1.59e−28 7.79e−116 6.71e−110 2.17e−46 5.62e−36

WJ5X |x1 − α| 9.46e−13 1.83e−8 2.77e−9 2.59e−14 1.02e−13 4.42e−16 5.70e−11
|x2 − α| 2.63e−98 1.67e−63 3.47e−68 2.15e−108 1.44e−109 2.10e−62 2.67e−82

GKN6A |x1 − α| 4.47e−9 1.32e−5 3.16e−6 9.21e−10 1.03e−10 9.56e−11 2.10e−7
|x2 − α| 4.21e−51 1.35e−29 6.67e−32 6.14e−53 3.09e−64 1.64e−59 2.07e−39

GKN6B |x1 − α| 6.34e−10 4.74e−7 8.48e−8 1.64e−11 6.88e−10 3.06e−8 3.32e−9
|x2 − α| 3.61e−57 5.10e−40 3.06e−43 2.74e−65 4.78e−59 3.93e−15 3.48e−52

a 3.41e−13 ≡ 3.41 × 10−13 .

using 1633.018 s and the slowest is GKN6A (5183.446) preceded byWB2X (3128.849 s). GKN6A has only 7 black points. The
highest number is for WB4Z (14 659) preceded by WJ5X with 14493 and WB2X with 10513 black points. We will remove
these 3 methods from further consideration.

Example 3. In our third example, we have taken a cubic polynomial raised to the power of 3:

p2(z) = (z3 + 4z2 − 10)3. (6.3)

Basins of attraction are given in Fig. 3. The worst is WJ4X. In terms of ANIP, the best isWI3X (3.42) followed byWF2X (3.68)
and the worst are GKN6A (7.78) andWJ4X (6.77). The fastest isWI3X using 1722.109 s followed byWF2X using 1852.684 s
and the slowest isWJ4X (3408.965 s). There are 2 methods with less than 10 black points. The highest number is forWA4X
(7143) preceded byWB3Y (1036) andWE2Y (1010).
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(1) WA3Z. (2) WA4X. (3) WB2X. (4) WB3Y.

(5) WB4Z. (6) WC2Z. (7) WC3Z. (8) WD2Z.

(9) WE2Y. (10) WF2X. (11) WG1X. (12) WG2X.

(13) WG3X. (14) WH2X. (15) WH3Y. (16) WI3X.

(17) WJ4X. (18) WJ5X. (19) GKN6A. (20) GKN6B.

Fig. 2. The top row forWA3Z (left),WA4X (center left),WB2X (center right) andWB3Y (right). The second row forWB4Z (left),WC2Z (center left),WC3Z
(center right) andWD2Z (right). The third row forWE2Y (left),WF2X (center left),WG1X(center right) andWG2X (right). The fourth row forWG3X (left),
WH2X (center left), WH3Y (center right) and WI3X (right). The bottom row for J4X (left), WJ5X (center left), GKN6A (center right) and GKN6B (right), for
the roots of the polynomial (z2 − 1)5 .
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(1) WA3Z. (2) WA4X. (3) WB3Y. (4) WC2Z.

(5) WC3Z. (6) WD2Z. (7) WE2Y. (8) WF2X.

(9) WG1X. (10) WG2X. (11) WG3X. (12) WH2X.

(13) WH3Y. (14) WI3X. (15) WJ4X. (16) GKN6A.

(17) GKN6B.

Fig. 3. The top row forWA3Z (left),WA4X (center left),WB3Y (center right) andWC2Z (right). The second row forWC3Z (left),WD2Z (center left),WE2Y
(center right) andWF2X (right). The third row forWG1X (left),WG2X (center left),WG3X(center right) andWH2X (right). The fourth row forWH3Y (left),
WI3X (center left),WJ4X (center right) and GKN6A (right). The bottom row for GKN6B (center), for the roots of the polynomial (z3 + 4z2 − 10)3 .
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Table 7
Average number of iterations per point for each example (1–6).

Example 4. As a fourth example, we have taken a different cubic polynomial raised to the power of 4:

p4(z) = (z3 − z)4. (6.4)

The basins are given in Fig. 4. We now see that WJ4X is the worst followed by WB3Y. In terms of ANIP, WB3Y is the best
(4.18) followed by WF2X (4.29) and the worst are GKN6A (8.86) and WJ4X (6.85). The fastest is WB3Y (1961.51 s) and the
slowest is GKN6A (3520.849 s) preceded by WJ4X (3204.385 s). Seven methods have no black point, namely WC3Z, WD2Z,
WF2X,WG2X,WH3Y,WJ4X andGKN6A,WG3x has 4 black points and theworst beingWA4Xwith 9786 points. Even though
WJ4X has no black points, we should exclude it because of the chaotic basins. AlsoWB3Y does prefer the non zero roots and
should be excluded. This is a reason why we need to view the basins as well as consulting the quantitative results. We will
determine these exclusions based on the results of dynamics for remaining experiments.

Example 5. As a fifth example, we have taken a quintic polynomial raised to the power of 3:

p3(z) = (z5 − 1)3. (6.5)

The basins for the best methods left are plotted in Fig. 5. The worst isWJ4X followed byWG1X, WH2X andWG3X. In terms
of ANIP, the best isWI3X (4.17) followed byWA4X (4.65) and the worst areWJ4X (15.46) and GKN6A (10.00). The fastest is
WI3X using 2066.639 s followed byWA4X using 2346.224 s and the slowest isWJ4X (7460.030 s). There are 3methods with
less than 10 black points, namely WI3X (1), WC3Z (7) and WF2X (9). The highest number is for WJ4X (68594) preceded by
WG1Xwith 33592 black points. We will eliminateWJ4X from further consideration.

Example 6. As a sixth example, we have taken a quartic polynomial raised to the power of 5:

p6(z) = (z4 − 1)5. (6.6)

The basins for the bestmethods left are plotted in Fig. 6. It seems thatmost of themethods left are good exceptWG1X,WG3X
andWH2X. Based on Table 7 we find thatWI3X has the lowest ANIP (5.42) followed byWH3Y (5.67). The fastest method is
WI3X (2644.966 s) followed by WH3Y (2793.229 s). The slowest is WB3Y (8107.528 s). The lowest number of black points
is for GKN6A (817) and the highest number is forWB3Ywith 129797 black points.

In summary, we find that there is no method which is best overall. The worst in terms of the number of black points
is WB3Y and in ANIP and CPU time is GKN6A. Of course this is excluding the methods eliminated along the way, namely
WB2X, WB4Z, WJ4X and WJ5X. To summarize the results of the 6 examples, we have averaged the results in Tables 7–9
across examples. Based on Table 7we find thatWI3X uses the least number of iterations per point (4.01 on average) followed
closely byWF2X (4.29) andWH3Y (4.31). All other methods use more than 4.4 iterations per point on average. The method
requiring the highest number of iterations per point is GKN6A (10.48). The fastest method is WI3X (1779.93 s) followed by
WF2X (1938.79 s). The slowest is GKN6A (3743.14 s). As for the number of black points (see Table 9) we find that GKN6A
has the lowest number (425 points) followed closely by WF2X (447 points), WH3Y (449 points), and WC3Z (450 points).
The method with the most black points is WB3Y (22835 points). It is clear that WF2X came close second in all 3 categories
andWI3X came first in two out of the 3 categories. It is worth to observe that the existing sixth-order methods GKN6A and
GKN6B are not quite comparable to many members of the proposed family in view of all 3 categories.
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(1) WA3Z. (2) WA4X. (3) WB3Y. (4) WC2Z.

(5) WC3Z. (6) WD2Z. (7) WE2Y. (8) WF2X.

(9) WG1X. (10) WG2X. (11) WG3X. (12) WH2X.

(13) WH3Y. (14) WI3X. (15) WJ4X. (16) GKN6A.

(17) GKN6B.

Fig. 4. The top row forWA3Z (left),WA4X (center left),WB3Y (center right) andWC2Z (right). The second row forWC3Z (left),WD2Z (center left),WE2Y
(center right) andWF2X (right). The third row forWG1X (left),WG2X (center left),WG3X(center right) andWH2X (right). The fourth row forWH3Y (left),
WI3X (center left),WJ4X (center right) and GKN6A (right). The bottom row for GKN6B (center), for the roots of the polynomial (z3 − z)4 .
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(1) WA3Z. (2) WA4X. (3) WB3Y. (4) WC2Z.

(5) WC3Z. (6) WD2Z. (7) WE2Y. (8) WF2X.

(9) WG1X. (10) WG2X. (11) WG3X. (12) WH2X.

(13) WH3Y. (14) WI3X. (15) WJ4X. (16) GKN6A.

(17) GKN6B.

Fig. 5. The top row forWA3Z (left),WA4X (center left),WB3Y (center right) andWC2Z (right). The second row forWC3Z (left),WD2Z (center left),WE2Y
(center right) andWF2X (right). The third row forWG1X (left),WG2X (center left),WG3X(center right) andWH2X (right). The fourth row forWH3Y (left),
WI3X (center left),WJ4X (center right) andGKN6A (right). The bottom row forGKN6B (center),WJ5X (center left),GKN6A (center right) andGKN6B (right),
for the roots of the polynomial (z5 − 1)3 .
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(1) WA3Z. (2) WA4X. (3) WB3Y. (4) WC2Z.

(5) WC3Z. (6) WD2Z. (7) WE2Y. (8) WF2X.

(9) WG1X. (10) WG2X. (11) WG3X. (12) WH2X.

(13) WH3Y. (14) WI3X. (15) GKN6A. (16) GKN6B.

Fig. 6. The top row forWA3Z (left),WA4X (center left),WB3Y (center right) andWC2Z (right). The second row forWC3Z (left),WD2Z (center left),WE2Y
(center right) andWF2X (right). The third row forWG1X (left),WG2X (center left),WG3X(center right) andWH2X (right). The bottom row forWH3Y (left),
WI3X (center left), GKN6A (center right) and GKN6B (right), for the roots of the polynomial (z4 − 1)5 .

Wenow conclude our current study as follows. Given the knownmultiplicitym of a zero to be sought, we have developed
Theorem 3.1 to achieve optimal eighth-order convergence of proposed family of methods (3.1) by means of modified
Newton-type multiple-zero finders with simple fifth-order multivariate rational weight functions. Computational aspects
investigated through a number of test equations well support the developed theory underlying the convergence order as
well as asymptotic error constants. We have also investigated the dynamical aspects through their basins of attraction not
only with a qualitative stability analysis on purely imaginary extraneous fixed points for a prototype quadratic polynomial
f (z) = (z2 − 1)m motivated by the earlier work of Vrscay and Gilbert [25], but also with a quantitative statistical analysis for
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Table 8
CPU time (in seconds) required for each example (1–6) using a Dell
Multiplex-990.

Table 9
Number of points requiring 40 iterations for each example (1–6).

various polynomials pk(z). The better members of the proposed family of methods (3.1) with better convergence behavior
can be directly observed from the illustrative basins of attraction.

As our future work, we will pursue an extended approach enhancing the dynamical characteristics associated with the
purely imaginary extraneous fixed points of a higher-order family of simple- or multiple-zero finders by considering other
types of weight functions.
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