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Abstract

An existence and uniqueness theory is developed for the energy dependent, steady
state neutron diffusion equation with inhomogeneous oblique boundary conditions im-
posed. Also, a convergence theory is developed for the Galerkin Spectral Synthesis
Approximations which arise when trial functions depending only on energy are uti-
lized. The diffusion coefficient, the total and scattering cross-sectional data are all
assumed to be both spatially and energy dependent. Interior interfaces defined by spa-
tial discontinuities in the cross-section data are assumed present. Our estimates are in
a Sobolev-type norm, and our results show that the spectral synthesis approximations
are optimal in the sense of being of the same order as the error generated by the best
approximation to the actual solution from the subspace to which the spectral synthesis
approximations belong.

Subject Classification: 35J, 35Q, 65J
Keyword: Spectral synthesis, Neutron diffusion, Galerkin, Sobolev space

1 Introduction

As indicated in the survey article by C. H. Adams [1], synthesis methods in general
have been utilized quite satisfactorily to obtain computational results for the neutron
diffusion approximation to nuclear reactor problems. Such methods consist of all tech-
niques in which an approximate solution is sought in the form

N∑
i=1

ωi(x)ψi(x, y)

where x is a subset of the independent variables, y represents the remaining inde-
pendent variables; the ψi are the known trial functions, and ωi(x) are the combining
coefficients. The basic idea of synthesis methods is to substitute the approximation
into the governing diffusion equation, take the inner product over y of the resulting ex-
pressions with test functions ξi(x, y), and then to determine the combining coefficients
ωi(x) by solving the resulting linear system. Galerkin synthesis method result when
the spaces of test and trial functions are the same.

Unfortunately, however, the theoretical underpinnings of synthesis methods seem to
be lacking. The research toward constructing a convergence theory for synthesis meth-
ods seems to consist of the work by Meyer and Nelson [8] and [9]. They considered the
special case of Galerkin spectral synthesis approximations in which ξi = ψi = ψi(E),
where E represents energy. In [9], these authors considered the convergence question
of Galerkin spectral synthesis approximations to the continuous energy diffusion equa-
tions, in which the diffusion coefficient and the total cross-section are both spatially
dependent. The convergence of the spectral synthesis approximations was strictly in an
L2-setting for functions of both space and energy, and was obtained by using operator-
theoretic results of Polskij [12] concerning projection methods. In [8], on the other
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hand, spatially dependent cross-sections and diffusion coefficients were present, and
the techniques employed to prove convergence were similar to those utilized in analyz-
ing the convergence of finite element methods in approximating elliptic boundary-value
problems [4, 13]. The Hilbert space for the analysis was chosen to be an L2 space of
Sobolev space valued functions. The elements of this Hilbert space are L2 mappings
of the energy domain (0,∞) into the Sobolev space H1

0 (Ω), where Ω is the spatial
domain. In working with a variational form of the diffusion equation, the authors
imposed conditions on the total and scattering cross-sections which guarantee a sub-
multiplying diffusion process in order to exploit the Lax-Milgram lemma [5] to obtain
a unique weak solution to the diffusion problem. The boundary conditions were homo-
geneous Dirichlet conditions (in the spatial variable). The convergence of the spectral
synthesis approximations to the weak solution is optimal in the sense that the errors
are of the same order as the errors predicted by the best approximation to the weak
solution from the subspaces where the spectral synthesis approximations occur. Neta
[10] relaxed the stringent conditions imposed on the scattering cross-section data by
Meyer and Nelson to guarantee convergence of the spectral synthesis approximants,
but, unfortunately, the convergence results in this more genral setting were not shown
to be of the “optimal type” as those of Meyer and Nelson ([8], pp. 907-908). In all of
the aforementioned works, the weak solution of the diffusion problem was not shown
to be classical once smoothnes assumptions on the source and cross-section data were
stipulated. It is appropriate to remark here that a survey of theoretical and numeri-
cal questions in obtaining a rigorous convergence theory for synthesis methods can be
found in Neta and Victory [11].

The present work considers spectral schemes with Galerkin weighting, and applies
techniques used in studying projection methods [16] to examine the convergence ques-
tion. As in [8], we too allow for spatial discontinuities in the diffusion coefficient and
underlying cross-section data. Our work, however, extends that of Meyer and Nelson
in the sense that more general boundary conditions (i.e., oblique boundary conditions)
for the diffusion equation are treated. The coercivity assumption in ([8], (2.13)), in-
volving the total and scattering cross-section data, will be weakened by observing that
the scattering operator will provide a compact mapping from its domain space to its
dual. We will apply the results of Witsch concerning projection methods for operators
compactly perturbed ([16], pp. 343-344).

In Section 2, assumptions about the cross-section data and the diffusion coefficient
are formally stated, and the existence and uniqueness questions for both classical and
weak solutions to interface diffusion problems are treated. The spectral synthesis ap-
proximations are formulated in Section 3, and the existence of these approximations
is settled. In Section 4, we present our convergence results, which indicate that our
spectral synthesis approximations to the diffusion solution are of the same order as
the best approximation to the diffusion solution from the subspaces to which the spec-
tral synthesis solutions belong. Section 5 treats the convergence of the multigroup
approximations to the diffusion equation.
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2 The Energy-Dependent Neutron Diffusion

Problem

Let D(x,E) be the diffusion coefficient, Σ(x,E) the total cross-section, S(x,E) the
spontaneous source, and k(x,E,E′) the scattering kernel with x an element of the
spatial domain Ω ⊂ Rn and the energy variable E an element of the interval (0,∞).
We also assume that D and Σ can be viewed as piecewise continuous mappings of Ω to
L∞((0,∞)) which is the Banach space of functions essentially bounded in energy, with
norm ||f ||∞ = ess sup

E ε (0,∞)
|f(E)|; moreover, as a function of two variables, D(x,E) is

bounded below by a positive constant c1. Our scattering kernel will be viewed as a
piecewise continuous mapping from Ω to L2((0,∞) × (0,∞)). The region Ω is taken
to be bounded and open. Further, we assume that Ω is possibly divided into a finite
number of subdomains Ωi, each with boundary ∂Ωi. Also, we assume these boundaries
are sufficiently well behaved so that integration by parts may be performed. Clearly,
portions of ∂Ωi will make up the interfaces and the rest will make up the boundary
∂Ω of Ω.

The underlying diffusion problem we consider is

Aφ = Kφ + S(x,E), x εΩ, E ε (0,∞) (2.1)

αφ(x,E) + D(x,E)
∂φ(x,E)
∂n

= γ, α ≥ 0, x εΩ, E ε (0,∞) (2.2)

where both φ(x,E) and D(x,E)
∂φ(x,E)
∂n

are continuous across interfaces, and where
the operator K is defined by

Kφ =
∫ ∞

0
k(x,E,E′)Σ(x,E′)φ(x,E′) dE′, (2.3a)

and the operator A is defined by

Aφ = −∇ · (D(x,E)∇φ(x,E)) + Σ(x,E)φ(x,E). (2.3b)

Note that if the term containing
∂φ

∂n
in (2.2) is not present, i.e. the boundary

conditions are of Dirichlet type, the integrals over the boundary in (2.7) and (2.8b) will
not be present, and the test functions must vanish on the boundary. If the boundary
conditions are of Neumann type (α = 0), then we have a boundary integral only in
(2.7).

Let us introduce inner products and norms:

(u, v) =
∫ ∞

0

∫
Ω
u(x,E)v(x,E) dxdE (2.4a)

< u, v >= (u, v) +
∫ ∞

0

∫
Ω
∇u(x,E) · ∇v(x,E) dxdE (2.4b)
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(u, v)∂Ω =
∫ ∞

0

∫
∂Ω

u(x,E)v(x,E) dxdE (2.4c)

||u||0 = (u, u)1/2, (2.4d)

u = (u, u)1/2
∂Ω , (2.4e)

||u||1 =< u, u >1/2 . (2.4f)

Our analysis will primarily utilize the space L2((0,∞);H1
0 (Ω)), equipped with the

norm (2.4f). It is easily seen that this particular space is the function space of primary
importance in [8] and [10]. Also L2(Ω×(0,∞)) will denote the Hilbert space of functions
square-integrable with respect to the position and energy variables equipped with the
norm described in (2.4d).

From our initial assumptions, we see that

(Dux, ux) ≥ c1||ux||20, (2.5a)

and

(Dux, vx) + (Σu, v) ≤ c2||u||1 ||v||1. (2.5b)

Concerning the scattering kernel k, we assume further that

sup
Ω

∫ ∞

0

∫ ∞

0
k2(x,E,E′)Σ2(x,E′) dE′dE <∞, (2.5c)

sup
Ω

∫ ∞

0

∫ ∞

0
|k(x+h,E+t, E′)Σ(x+h,E′)− k(x,E,E′)Σ(x,E′)|2 dE′dE → 0, (2.5d)

as |h| + |t| → 0 where k ≡ 0 outside Ω × (0,∞) × (0,∞);

sup
Ω

∫ ∞

s

∫ ∞

0
k2(x,E,E′)Σ2(x,E′) dE′dE → 0, as s→ ∞. (2.5e)

The mapping properties of the operator K defined by (2.3a) are described in the
following lemma the proof of which appears in Appendix A.

Lemma 1. The operator K is a compact mapping of L2((0,∞);H1(Ω)) to L2(Ω ×
(0,∞)).

We now turn to the formulation of a weak version of the problem (2.1)-(2.2). To
this end we need the following trace properties to hold, see Lions [7] and Adams ([2],
pp.184-191).

Lemma 2. Assuming ∂Ω is smooth enough there is a trace operator γ0
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γ0v = v

∣∣∣∣
∂Ω×(0,∞)

(2.6)

which is linear and continuous from L2((0,∞);H1(Ω)) into L2((0,∞);H1/2(∂Ω)).

Remark: We will use v instead of γ0v on ∂Ω.

Weak Formulation: Find u εL2((0,∞);H1(Ω)) such that

B(u, v) = (S, v) + (γ, v)∂Ω, for all v εL2((0,∞);H1(Ω)), (2.7)

where
B(u, v) = a(u, v) − (Ku, v), (2.8a)

a(u, v) =
∫ ∞

0

∫
Ω
{D(x,E)∇u(x,E) · ∇v(x,E) + Σ(x,E)u(x,E)v(x,E)} dxdE

+ α

∫ ∞

0

∫
∂Ω

u(x,E)v(x,E)dxdE,

(2.8b)
and

γ εL2((0,∞);H−1/2(∂Ω)), S ε L2(Ω × (0,∞)). (2.8c)

Clearly the last integral in (2.8b) is on the boundary ∂Ω and thus u, v are the
restrictions of these functions to ∂Ω (see Lemma 2).

Because a(u, v) is a continuous bilinear form (the boundary term is continuous as a
result of Lemma 2), we can consider A a continuous linear mapping of L2((0,∞);H1(Ω))
to its dual, by virtue of the duality mapping

a(u, v) = (Au, v). (2.9)

By the continuity of the bilinear form, the operator A can be extended to all elements
of L2((0,∞);H1(Ω)) and have range in the dual of L2((0,∞);H1(Ω)).

Theorem 3. Under subcritical conditions (in which 1 is not in the spectrum of K
relative to A), the weak formulation of the classical diffusion problem described by
(2.7) has a unique solution u εL2((0,∞);H1(Ω)).

Proof. Since Σ(x,E) is positive, one obtains using (2.8b), (2.4) and Lemma 2 that

a(u, u) ≥ c1||ux||20 + σ||u||20 + α u 2 ≥ c3||u||21, (2.10)

a(u, v) ≤ c2||u||1 ||v||1 + α u v ≤ c4||u||1 ||v||1. (2.11)

Since K is compact, one obtains by the Riesz-Fredholm alternative ([4], Theorem 1-15,
p. 62) that since 1 is not in the spectrum of K relative to A there exists a unique
solution u of (2.7).

In our next theorem we show the “equivalence” between the weak and classical
solution which will yield, using the Lax-Milgram theorem, the existence and uniqueness
to the classical problem.
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Theorem 4. The interface problem (2.1)-(2.2) is equivalent to the weak formulation
(2.7) in the sense that every solution of (2.1)-(2.2) is a solution of (2.7) and every
sufficiently differentiable solution of (2.7) is a solution of (2.1)-(2.2).

Proof. Multiply (2.1) by ψ(x,E) and integrate over Ω× (0,∞) one has after applying
Green’s formula

∫ ∞

0

∫
Ω
D(x,E)∇φ(x,E) · ∇ψ(x,E)dxdE +

∫ ∞

0

∫
Ω

Σ(x,E)φ(x,E)ψ(x,E)dxdE

−
∫ ∞

0

∫
∂Ω

D(x,E)∇φ(x,E) · nψ(x,E)dxdE =
∫ ∞

0

∫
Ω

Kφ(x,E)ψ(x,E)dxdE

+
∫ ∞

0

∫
Ω
S(x,E)ψ(x,E)dxdE.

Using (2.2) one obtains (2.7)

B(φ,ψ) = (S,ψ) +
∫ ∞

0

∫
∂Ω

γψ(x,E)dxdE.

Conversely, let φ be a solution of (2.7) then∫ ∞

0

∫
Ω
D(x,E)∇φ(x,E) · ∇ψ(x,E)dxdE +

∫ ∞

0

∫
Ω

Σ(x,E)φ(x,E)ψ(x,E)dxdE

+α
∫ ∞

0

∫
∂Ω

φ(x,E)ψ(x,E)dxdE −
∫ ∞

0

∫
Ω

Kφψ(x,E)dxdE

=
∫ ∞

0

∫
Ω
S(x,E)ψ(x,E)dxdE +

∫ ∞

0

∫
∂Ω

γψ(x,E)dxdE, ∀ψ εL2((0,∞);H1(Ω)).

Inetgration by parts yields∫ ∞

0

∫
Ω
{−∇ · [D(x,E)∇φ(x,E)] + Σ(x,E)φ(x,E) − Kφ− S(x,E)}ψ(x,E)dxdE

+
∫ ∞

0

∫
∂Ω

{−γ + αφ(x,E) +D(x,E)∇φ(x,E) · n}ψ(x,E)dxdE = 0.

(2.12)
If ψ vanishes everywhere on ∂Ω then the boundary integral is zero and one has (2.1).
Returning to (2.12) one now has∫ ∞

0

∫
∂Ω

{αφ(x,E) +D(x,E)∇φ(x,E) · n− γ}ψ(x,E)dxdE = 0

which yields (2.2).

As a result of the equivalence theorem, we can use the Lax-Milgram theorem to
prove existence and uniqueness of the solutions, assuming

(D
∂φ

∂n
, φ)∂Ω ≥ 0 for any φ εL2((0,∞);H1/2(∂Ω)), (2.13)

see Aubin ([4] p. 172).
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3 Spectral Synthesis Approximation

To specify the synthesis method, we first prescribe a set of functions

{ξi(E) : E ε (0,∞), i = 1, 2, . . . , n}
in L2((0,∞)). These functions define a subspace Wn ⊂ L2((0,∞);H1(Ω)) given by

Wn =

{
Ψ ε L2((0,∞);H1(Ω)) : Ψ(x,E) =

n∑
i=1

ωi(x)ξi(E), ωi εH
1(Ω), i = 1, 2, . . . , n

}
.

(3.1)

Clearly, with respect to the topology of L2((0,∞);H1(Ω)), Wn is closed in
L2((0,∞);H1(Ω)), and is thus a Hilbert space.

We seek a solution Ψ in Wn of the form

Ψ(x,E) =
n∑

i=1

ωi(x)ξi(E). (3.2)

The weights ωi(x) are determined by substituting (3.2) into the following weak analog
of (2.7). Find a Ψ εWn such that

B(Ψ, ζ) = (S, ζ) + (γ, ζ)∂Ω, for all ζ εWn. (3.3)

Theorem 5. The approximate problem (3.3) has a unique solution Ψ εWn.

Proof. Since Wn is a subspace of L2((0,∞);H1(Ω)), we can follow the steps of the
proof of Theorem 3 to get the existence and uniqueness of solutions of the approximate
problem.

To get another proof of uniqueness, we reformulate (3.3) as

((A − K)Ψ, ζ) = (S, ζ) + (γ, ζ)∂Ω, for all ζ εWn. (3.4)

where the operator A is given by (2.9). It is easy to see, from Lemma 1, that the
operator A−1K will be indeed a compact operator on L2((0,∞);H1(Ω)).

We now show that the spectral synthesis approximations for B = A − K effects a
projection method in the sense of Witsch [16]. Indeed, from (2.10), we have that A is
L2((0,∞);H1(Ω))-elliptic, i.e.

(Au, u) ≥ c3||u||21.
Hence, not only A is a bounded mapping from L2((0,∞);H1(Ω)) to its dual, but, to
each u εWn, there corresponds a v εWn, namely v = u, such that

(Au, u) ≥ c3||u||21.
Therefore the projection method for A satisfies the criterion

u εWn, (Au, v) = 0 for all v εWn implies u = 0. (3.5)
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Since K is a compact operator and 1 is not in the spectrum of K relative to A we
have a similar result for B = A− K, i.e.

u εWn, (Bu, v) = 0 for all v εWn implies u = 0.

We can use this as an alternative proof of uniqueness. Now suppose the problem doesn’t
have a unique solution, i.e. we have two solutions w1 and w2. Let u = w1 − w2, then
(3.5) applied to the operator B implies that u = 0 or w1 = w2, and thus the solution
is unique.

4 Convergence Results

In this section we show that under the assumptions in Section 2, the spectral synthesis
approximations to the diffusion problem are of the same order as the best approxima-
tion to the diffusion solution from the subspaces Wn.

Theorem 6. Let u be the solution of (2.7) and φn be the solution of (3.3). Let φ̂n be
the best approximation of the solution u from the subspaces Wn. Then

||u− φn||1 ≤ M ||u− φ̂n||1. (4.1)

Proof. Using (3.5) we can conclude (see Witsch [16]) that there will be a projection
operator associated with Wn, which we shall denote Πn. So our problem becomes
equivalent to

un εWn, Πn(Bun − S) = 0,

and
un = A−1 (PnS) = Qn

(
A−1S

)
= Qnu

with

Pn =

(
Πn

∣∣∣∣
A(Wn)

)−1

Πn, Qn =

(
ΠnA

∣∣∣∣
Wn

)−1

ΠnA

See the diagram in Section 2.1 of Witsch [16]. The projections Pn are especially adapted
for investigations concerning the convergence of the residual Aun−S (consistency) and
the Qn are for the convergence of un to u. We apply Theorem 2.2 of Witsch [16] to
conclude that we have consistency and convergence.

The question now is, can we prove the same for the operator B. From Theorem 2.6
of Witsch [16], we know that the Qn for (A−K) are defined for sufficiently large n, and
are uniformly bounded. Hence we get that φn, given by the spectral synthesis method,
will converge to u in the topology of L2((0,∞);H1(Ω)), and moreover, φn = Qnu Now
to the error estimate

||u− φn||1 ≤ ||u− φ̂n||1 + ||φ̂n − φn||1

≤ ||u− φ̂n||1 + ||Qn(φ̂n − u)||1

≤ (1 + ||Qn||1) ||u− φ̂n||1

(4.2)
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The norm of Qn can be estimated by

||Qn|| ≤ ||QnB−1|| ||B|| ≤ sup
x ε Wn

inf
y∗ ε Wn

||y∗|| ||x||
|(y∗,Bx)| ||B||

≤ sup
x ε Wn

||x||2
c3||x||2 ||B|| ≤ ||B||

c3
.

Using this estimate in (4.2), we have

||u− φn||1 ≤ (1 +
||B||
c3

) ||u− φ̂n||1 (4.3)

5 The Multigroup Method

The multigroup method is perhaps the most widely used technique for approximately
determining the energy distribution of particles in a system modeled by linear transport
[14]. It is usually assumed that the solutions of the multigroup equations approximate
the corresponding solution of the exact transport equation in which the energy variable
is not discretized. In spite of the wide usage, there does seem to be a dearth of work
concerned with studies of how the multigroup solutions approximate the exact solution
and with an evaluation of the sources of the errors incurred in using the method
[14, 15]. One of the authors [14] has discussed the convergence of the multigroup
approximation fo multidimensional media. Here we are only interested in the spectral
synthesis approximation.

In the multigroup method, the flux is assumed to be separable into a product of a
known function dependent on energy and position and a function dependent on position
and direction over each of the specified energy intervals. This approach leads to a set of
coupled multigroup transport equations that describe the behavior of the multigroup
fluxes as functions of position and direction, see Allen et al [3]. In this case the operator
K is

Kφ =
∫ Emax

E0

k(x,E,E′)Σ(x,E′)φ(x,E′) dE′,

Let ΠG be a partition of [E0, Emax] ⊂ (0,∞) specified by

0 = E0 < E1 < . . . < EG = Emax,

with E0 and Emax, respectively, denoting the minimum and maximum energies attain-
able by a particle, and G is the number of energy groups. Let {ψg(E), g = 1, 2, . . . , G}
be a set of functions in L2((0,∞)) satisfying

ψg(E) =

{
1 E ε [Eg−1, Eg)
0 otherwise

, g = 1, 2, . . . , G. (5.1)

Let WG be the space of functions defined by

WG =
{
v εL2((0,∞);H1(Ω)) ; v(x,E) = wg(x,E)ψg(E), 1 ≤ g ≤ G

}
. (5.2)
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We now define our multigroup solution η(x,E) εWG and require that η(x,E) satisfies
the following system of G equations for all v εWG

∫ EG

E0

∫
Ω
{−∇ · [D(x,E)∇η(x,E)] + Σ(x,E)η(x,E) − Kη}wg(x,E)ψg(E)dxdE

=
∫ EG

E0

∫
Ω
S(x,E)wg(x,E)ψg(E)dxdE, 1 ≤ g ≤ G.

(5.3)
As a result of (5.1), we can rewrite the above system as follows:

∫ Eg

Eg−1

∫
Ω
{−∇ · [D(x,E)∇η(x,E)] + Σ(x,E)η(x,E) − Kη}wg(x,E)dxdE

=
∫ Eg

Eg−1

∫
Ω
S(x,E)wg(x,E)dxdE, 1 ≤ g ≤ G.

(5.4)
It is clear that (5.4) is equivalent to

B(η, ψg) = (S,ψg) + (γ, ψg)∂Ω, g = 1, 2, . . . , G, (5.5)

where now the integration is on a finite energy interval. For our spectral synthesis
method we seek a solution Ψ(x,E) εWn,G ⊂WG of the form

n∑
i=1

G∑
g=1

wig(x)ψig(E), (5.6)

where we let

Wn,G =

⎧⎨
⎩ψ εL2((0,∞);H1(Ω)) ; ψ(x,E) =

n∑
i=1

G∑
g=1

wig(x)ψig(E)

⎫⎬
⎭ . (5.7)

The wig(x) are determined by substituting (5.6) into (2.1) and then projecting onto
the space spanned by the functions ψig(E). Thus Ψ must satisfy

B(Ψ, ψg) = (S,ψg) + (γ, ψg)∂Ω, for all ψg εWn,G and g = 1, 2, . . . , G. (5.8)

Note the similarity between (5.5), (5.8) and (2.7), (3.3) respectively. The only difference
is that the energy integration is on a finite interval. Therefore one obtains results similar
to theorems 5 and 6.

Theorem 7. The approximate system (5.8) has a unique solution in Wn,G.

Theorem 8. Let η be the solution of (5.5) and φ be the solution of (5.8). Let φ̂ be
the best approximation of the solution η from the subspaces Wn,G. Then

||η − φ||1 ≤ M ||η − φ̂||1.
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Appendix A

Proof of Lemma 1
Condition(2.5d) assures us that the mapping K will be a bounded mapping of

L2((0,∞);H1(Ω)) to L2(Ω × (0,∞)). From the Frechet-Kolmogorv theorem ([6], p.
97), we see that we must show, for all u εB ≡

{
u εL2((0,∞);H1(Ω)) : ||u||1 ≤ 1

}

(a) sup
B

∫
Ω

∫ ∞

0
|Ku(y,E)|2 dEdy < ∞;

(b)
∫
Ω

∫ ∞

0
|Kũ(y + x,E + t) − Kũ(y,E)|2 dEdy → 0,

uniformly for u εB as |x| + |t| → 0, where ũ is the extension of u to all of Rn+1 which
has the value zero outside the set Ω × (0,∞),

(c) lim
α→∞

∫
Ω

∫ ∞

α
|Ku(y,E)|2 dEdy = 0,

uniformly for u εB.

To prove (a), we use the Schwarz inequality, and obtain
∫
Ω

∫ ∞

0

∣∣∣∣
∫ ∞

0
k(y,E,E′)Σ(y,E′)u(y,E′) dE′

∣∣∣∣ dEdy ≤
∫
Ω

∫ ∞

0

[{∫ ∞

0
k2(y,E,E′)Σ2(y,E′) dE′

}{∫ ∞

0
u2(y,E′) dE′

}]
dEdy ≤

sup
Ω

[ ∫ ∞

0

∫ ∞

0
k2(y,E,E′)Σ2(y,E′) dE′dE

]
||u||21.

(A.1)

In order to prove (b), we must extend u εL2((0,∞);H1(Ω)) to a function belonging
to L2((0,∞);H1(Rn)). We say that Γ is an extension operator with respect to Ω
provided there exists a constant ν such that for every u εL2((0,∞);H1(Ω))

(i) Γu(x,E) = u(x,E), x εΩ;

(ii) ||Γu||1,Rn ≤ ν||u||1
where || · ||1,Rn is the norm in L2((0,∞);H1(Rn)) given by (2.4d). Also, we note that
the results in ([2], pp.84-94) concerning the extension operators for Sobolev spaces
of real- or complex-valued functions, with domain Ω ⊂ Rn possessing the uniform
cone property ([2], pp.65-70), can be modified to produce the existence of extension
operators for Sobolev spaces of Banach space- or Hilbert space-valued functions defined
on similar domains. In particular, the Calderon Extension theorem ([2], pp.91-94)
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can be generalized in a straightforward manner to prove the existence of extension
operators with respect to general Ω ⊂ Rn for functions in L2((0,∞);Hp,m(Ω)), where

Hp,m(Ω) =
{
f εLp(Ω) : f (i) ε Lp(Ω), i = 0, 1, . . . ,m

}
.

More precisely, we have

The Calderon Extension theorem: Let Ω be a domain in Rn having the uniform
cone property ([2], p. 66) modified as follows:

1. The open cover {Uj} of the boundary of Ω is required to be finite, and

2. The sets Uj are not required to be bounded.

Then for any m, and any p, 1 < p < ∞, there exists an extension operator Γ =
Γ(m, p) with respect to Ω for functions in L2((0,∞);Hp,m(Ω)).

Henceforth we shall let ū(x,E) = Γu(x,E), (x,E) εRn × (0,∞). To show (b),
we have with k1(x,E,E′) = k(x,E,E′)Σ(x,E′),

∫
Ω

∫ ∞

0

∣∣∣∣Kũ(x+ y,E + t) − Kũ(y,E)
∣∣∣∣2 dEdy ≤

2
∫

Ω

∫ ∞

0

∣∣∣∣
∫ ∞

0
k̃1(x+ y,E + t, E′)

[
ū(x+ y,E′) − ū(y,E′)

]
dE′

∣∣∣∣2 dEdy+

2
∫

Ω

∫ ∞

0

∣∣∣∣
∫ ∞

0

[
k̃1(x+ y,E + t, E′) − k̃(y,E,E′)

]
u(y,E′)dE′

∣∣∣∣2 dEdy ≤

2
∫

Ω

{∫ ∞

0

∫ ∞

0

∣∣∣∣k̃1(x+ y,E + t, E′)
∣∣∣∣2 dE′dE

}
·

{∫ ∞

0

∣∣∣∣ū(x+ y,E′) − u(y,E′)
∣∣∣∣2dE′

}
dy+

2
∫

Ω

∫ ∞

0

{∫ ∞

0

∣∣∣∣k̃1(x+ y,E + t, E′) − k1(y,E,E′)
∣∣∣∣2 dE′

}
·

{∫ ∞

0

∣∣∣∣u(y,E′)
∣∣∣∣2dE′

}
dEdy.

(A.2)

To ascertain that∫
Ω

∫ ∞

0
|ū(x+ y,E′) − u(y,E′)|2dE′dy → 0 (A.3)

uniformly in u εB, as |x| → 0, we estimate this integral. If u εL2((0,∞);C∞
0 (Rn)), we

can deduce ([2], p. 186), by virtue of the absolute continuity of u as a mapping of Rn
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to L2((0,∞)):

∫
Ω

∫ ∞

0

∣∣∣∣u(x+ y,E′) − u(y,E′)
∣∣∣∣2dE′dy =

∫
Ω

∫ ∞

0

∣∣∣∣
∫ 1

0

∂

∂t
u(y + tx,E′) dt

∣∣∣∣2dE′dy =

∫
Ω

∫ ∞

0

∣∣∣∣
∫ 1

0

∂

∂y
u(y + tx,E′)x dt

∣∣∣∣2dE′dy ≤

∫
Ω

∫ ∞

0

∫ 1

0
|x|
∣∣∣∣ ∂∂yu(y + tx,E′)

∣∣∣∣2 dtdE′dy ≤

|x|
∫ 1

0
dt

∫
Rn

dy

∫ ∞

0

∣∣∣∣ ∂∂yu(y,E′)
∣∣∣∣2dE′ ≤ |x| ||u||1,Rn .

(A.4)

Because L2((0,∞);C∞
0 (Rn)) is dense in L2((0,∞);H1(Rn)), we have the above in-

equality holding for any u εL2((0,∞);H1(Rn)) so, for |x| → 0 and u εB, we deduce by
virtue of the Calderon Extension theorem,

∫
Ω

∫ ∞

0

∣∣∣∣ū(x+ y,E′) − u(y,E′)
∣∣∣∣2dE′dy → 0

uniformly as |x| → 0.

Finally (c) follows from the inequalities,

∫
Ω

∫ ∞

α

∣∣∣∣
∫ ∞

0
k(x,E,E′)Σ(x,E′)u(x,E′) dE′

∣∣∣∣2 dEdx ≤
∫ ∞

α

∫
Ω

{∫ ∞

0
k2(x,E,E′)Σ2(x,E′) dE′

} {∫ ∞

0
u2(x,E′)dE′

}
dxdE ≤

(
sup
Ω

∫ ∞

α

∫ ∞

0
k2(x,E,E′)Σ2(x,E′)dE′

)
||u||1.

(A.5)

We can deduce that the mapping K is compact.
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