Running NEC4 on the Cray at N.P.S.

B. Neta J. B. Knorr
Naval Postgraduate School Naval Postgraduate School
Monterey, California Monterey, California

September 19, 1996

NEC4 is the latest version of Numerical Electromagnetic Code developed at
Lawrence Livermore National Laboratory to analyze electromagnetic responses
of antennas and scaterrers. The code is based on the method of moments to
solve integral equations.

In order to run the program on a Cray computer one must modify the
subroutine PARSIT by replacing the two read statements by decode statements
as follows:

READ (BUFFER(1:LENGTH) , % ,ERR=9000) INTFLD(I)
by

DECODE (LENGTH, 9998 ,BUFFER) INTFLD(I)
9998 FORMAT(140)

and the statement
READ (BUFFER(1:LENGTH) ,*,ERR=9000) REFLD(I-MAXINT)
by

DECODE (LENGTH, 9997 ,BUFFER) REFLD(I-MAXINT)
9997 FORMAT(G40.0)

The subroutine SECOND must be replaced also since Cray has its own
SECOND function. We renamed the subroutine sSECOND.

Profiling a run on a Cray shows that for a case with 6931 segments, we have:

Subroutine percentage
SEGXCT (tests pair of segments for intersection) 31.0%
SEGCHK (calls SEGXCT to check) 30.8%
SQRT 20.0%
CONECT (sets up segment connection data) 14.8%
sort 1.7%
all others 1.7%

Table 1: Total run time on Sirius (8 processor Cray) is 11.9 hours

We have concluded that we can save time by avoiding the processing of
geometry. This is useful when one wants to run several cases for the same
geometry configuration. To this end we modified the subroutine DATAGN.

We have added in the beginning of the program the following statements:

¢ do we read geometry data from GW (and other) cards or from a file

write(*,100)
100 format(’ do we have geometry cards to process’/
& > or all cards were processed before’/
& > please answer y if geometry cards are to be processed’)
read(*,102,err=104) ny
102 format(a)
print *,’ ny ’,ny

c if(ny.eq.’y’) go to 110

c

c the answer is NO

c geometry cards were already processed

c ask for geometry file name

c
write(*,1086)

106 format(’ what is the geometry file name?’)
read(*,91,err=107) geom

91 format(a)
if(geom.ne.’ ’) open(unit=19,file=geom,status=’unknown’,err=335)
if(ny.eq.’y’) go to 110
go to 200

335 write(*,109)

109 format(’ open error for geometry file’)
stop 109

104
105

107
108

110

write (#,105) ny
format(’ read error y/n answer was ’,al)

stop 105

write(*,108) geom
format(’ error in reading name of geometry file '/
’ name was ’,a)

stop 107
continue

At the end we add the writing to the geometry file

70

71

375
72

200

write(19,70)
write(19,70)
write(19,70)
write(19,70)
write(19,70)
write(19,70)
write(19,70)
write(19,70)
write(19,70)
write(19,70)
write(19,70)
format (5f11.
write(19,71)
write(19,71)
write(19,71)
write(19,71)
write(19,71)
format (10i5)

WRITE(3,72)

X
y

z

si

bi

alp

bet

salp

t2x

t2y

t2z

5)

iconl

icon2

itag

iconx
ipsym,1d,ni,n2,n,np,ml,m2,m,mp,nwire,isct, iphd

format(bx,’error writing to file 19 geom’)

STOP

read previously processed geometry file

continue

read(19,70)
read(19,70)
read(19,70)
read(19,70)
read(19,70)
read(19,70)
read(19,70)

N <

bi
alp
bet

read(19,70)
read(19,70)
read(19,70)
read(19,70)
read(19,71)
read(19,71)
read(19,71)
read(19,71)
read(19,71)
return

salp

t2x

t2y

t2z

iconl

icon2

itag

iconx
ipsym,1d,ni,n2,n,np,ml,m2,m,mp,nwire,isct, iphd

The timing on the Jedi (4 processor Cray computer) is given in table 2.

Subroutine Create | Use | Do Not Check
| Geometry |
FACTR 68.10% 70.30% 69.90%
CMWW 6.08% 6.19% 6.14%
EKSCLR 4.57% 4.70% 4.65%
EKSCSZ 3.70% 4.00% 3.90%
EFLDSG 3.40% 3.40% 3.40%
all others 14.10% 11.40% 11.90%
Total Time (secs) 13548.20 | 13074.75 13184.75
Total Time (hours) 3.76 3.63 3.66

Table 2: Timing comparison for geometry check on Jedi

We conclude that we save 473 seconds by using previous geometry file and
360 second by not checking the geometry at all. This is not much in comparison
to almost 4 hours of run time.

As one can see in the previous table, the most time consuming routine is
FACTR. Thus, to save computer time we decided to parallelize the LU factor-
ization algorithm. The subroutine FACTR was replaced by a parallel algorithm
on the Cray. The results are given in table 3.

Subroutine 3 processors | 4 processors
FACTR 50.4% 50.0%
CMWW 10.5% 10.6%
EKSCLR 7.0% 7.1%
EKSCSZ 6.5% 6.7%
EFLDSG 5.5% 5.4%
all others 20.0% 20.2%
Total Time (secs) 8845.09 8844.86
Total Time (hours) 2.46 2.46

Table 3: Timing comparison for parallelization of LU factorization on Jedi

We save 1.2 hours (one third of the computer time) by factoring the matrix
in parallel. The next time consuming part of the code 1s the process to fill in the
matrix. In table 4, we give the time for fill-in and factor in serial and parallel
versions of NEC4. Remember that the only part we parallelized 1s FACTR
subroutine.

Subroutine Serial | 3 processors | 4 processors
fill-in 3866.87 4112.59 4103.92
factor 9191.70 4644.98 4653.19

Table 4: CPU time in seconds on Jedi

Notice that now the factorization in parallel takes as much time as the fill-in
process. Certainly the next step in parallelization is the fill-in.

Anyone interested in such a version can send a request to bneta@nps.navy.mil

attaching the routines PARSIT, SECOND, DATAGN and FACTR.

