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1. Introduction

A large number of high-order multipoint methods for a given nonlinear equation f(x) = 0 have been developed since
Traub [29] initiated the qualitative as well as the quantitative analyses of iterative methods in the 1960s. Petkovic et al.
[25] recently collected and updated the state of the art of multipoint methods. Other works on multipoint methods can
be found in [3-5,11,13,14,16,20,24,27]. The principal aim of this paper is to design a family of high-order methods costing
only two derivatives and two functions. Described below in (1.1) is the well-known two-point fourth-order double-Newton
method [15,29], which is a two-step Newton’s method utilizing two derivatives and two functions:

Yo =0 = F25,

(1.1)
Xoog =y, — fon)
n1 = Yn fom)

This method is only fourth-order. One can get fourth order methods requiring less information.
Among higher-order methods requiring only two derivatives and two functions, we find several three-point sixth-order
methods in [5,23,31,20], being respectively shown in (1.2)-(1.5) below.

— 2 f(xn)
Yn = Xn — 3 f(xn)
n 3 ! n ! n
Zy =X —Jy(Xn) - FEL Jy(xy) = L) (12)
Xny1 = Zn — f(en) aeR,

a(zn *Xn)(Zn*)’n)Jr%/f(Xn)f/(yn)*(] *glf(xn))f,(xn) ’
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— fxn)
In = Xn = )
—y )
Zn = Xn T T+ ) (1.3)
_ S )+ ) f(zn)
Xl = Zn = 30, F (x) P )
_ 2 f(xn)
Yn =Xn =3 [
_ 9-5s5 f(Xn) f,(.yn
Zn =Xn ~ i5-6; Fow® ST Fow (1.4)

_ 5 _ _atbs  [flm)
Xni1 = Zn c+ds+rs2  f(xy)?

where a = (5c+3d+71)/2,b=(r—3c—-d)/2,c+d+r+#0,a,b,c,d,reR.

yn:xn_%v

— 1+pu  fOn) fXn)
Zn*yn_%f (Xn) =Yn— G( )f/(();n)’ (15)
Xn+1 :Zn_11:3uu'j{:((inyl)~

— ) u(lpu)
where u =, Gr(U) = 7555, B € R

Definition 1.1 (Error equation, asymptotic error constant, order of convergence). Let Xg,X1,...,Xn, ... be a sequence of numbers
converging to o. Let e, = x, —aforn=0,1,2,....If constants p > 1, ¢ = 0 exist in such a way that e, ; = cel + O(eﬁ“) called
the error equation, then p and 5 = |c| are said to be the order of convergence and the asymptotic error constant, respectively. It
is easy to find ¢ = lim,_., <" “’"“ . Some authors call ¢ the asymptotic error constant.

Three-point methods (1.2)—(1.5) possess rather complicated structures, as compared with two-point methods like (1.1).
Among the existing methods requiring two derivatives and two functions, two-point methods of order higher than four are
rarely found. As a result, this rareness gives us a strong motivation to design less complicated higher-order two-point meth-
ods using two derivatives and two functions. In this paper, our special attention is paid to the development of a general class
of two-point higher-order extended double-Newton methods. To this end, by introducing a two-variable weighting function
in the second step of (1.1), we propose a higher-order family of two-point methods in the following form:

Yo = X0 =55
fn) (1.6)
Xni1 =Yn — Kf(sa u) 'f'(y';) s
where the weighting function K; : C*> — C is holomorphic[26] in a neighborhood of (1,0) with s =L =14 O(e,) and

f(xn)

:Jfggg = O(en). In view of the fact that s — 1 = O(e,),u = O(e,), Taylor series expansion of Ks(s,u) about (1,0) up to terms
of several order in each variable will play an essential role in designing two-point sixth-order methods costing two deriva-
tives and two functions.

Note that proposed scheme (1.6) requires four new function evaluations for f(x,),f¥,).f (%2),f (v,). In Section 2, meth-
odology and analysis is described for a new family of sixth-order methods with appropriate forms of K;. Section 3 investi-
gates some special cases of Ky(s,u), Section 4 discusses the extraneous fixed points, while Section 5 presents numerical
experiments and concluding remarks.

2. Method development and convergence analysis

This section deals with the main theorem and its proof describing the methodology and convergence behavior on iterative
scheme (1.6).
Theorem 2.1. Assume that f : C — C has a simple root o and is analytic [1] in a region containing o. Let A = f'(a) and ¢; = f,;)(“
forj=2,3,... Let xo be an initial guess chosen in a sufﬁczently small neighborhood of o. Let K : C? — C be holomorphic in a

neighborhood of (1,0). Let K; = ,,J,a‘s’f(;iu Kp(5,)|s-14—0) for 0 <i,j<4. If Koo =1,Ko1 = K10 = 0,Kz0 =252 Ky =1 + K,

Kip = %Km +2(Ky1 — 2K39 — 1) are satisfied, then iterative scheme (1.6) defines a family of two-point stxth-order methods
satisfying the error equation below: forn=0,1,2,...,

Cnat = {C%C4 - %ﬂczcﬁ +cc3 <2K2] — 8K30 — %1(03 - 9) + c§¢}e§ +0(el), (2.1)

where b= 8K31 + 2K13 — 4K7 — 16K 40 — Koy + 14.

Proof. Taylor series expansion of f(x,) about o up to 6th-order terms with f(«) = 0 leads us to:
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fxn) = Alen + 2€2 + 383 + cael + csed + coeb + 0(el)}. (2.2)
It follows that

F'(%0) = A{1 4 2c2e, + 3c3€2 + 4cqel + 5csed + 6ese 4 7c7ed + 0(el)}. (2.3)
For simplicity, we will denote e, by e from now on. With the aid of symbolic computation of Mathematica [32], we have:
Vo = Xn —;,(():(”)) =0+ e — 2(C2 — c3)€ + Yaet 4 Yse® + Yeeb + 0(e7), (2.4)

n

where Y4 = (4¢3 — 7cac3 + 3c4), Ys = —2(4cs — 10c3c3 + 3¢% + 5¢2c4 — 2¢5)  and  Yp = (16¢5 — 52¢3c3 + 33263 + 28¢3¢4 —

17c3¢4 — 1325 + 5¢6). In view of the fact that f'(y,) = f'(Xn)le, .y, »» We get:

f'(yn) = A1 +2¢2€% — 4cy(c2 — c3)€3 + Dae* + Z2 ,Die’ + 0(e7)), (2.5)
where Dy = ¢3(8¢3 — 11ca¢3 + 6¢4), D; = Di(c2, €3, ..., Cs) for 5 < i < 6. Hence we have:

s :?,g”i =1-2ce+3(2¢2 — c3)e® — 4(4C — 4cacs + ca)e + 22 Eie + 0(e7), (2.6)

n

where E; = Ei(cz,¢3, ..., C6) for 4 <i < 6. In view of the fact that f(y,) = f(Xn)le, (), We get:

Fn) = Alc2€® — 2(c2 — ¢3)€3 + (563 — 7cacs + 3ca)e* + 2P Fiel + 0(e”)], (2.7)
where F; = Fi(cy,¢3,...,Cs) for 5 < i< 6. Hence we have:

u SO _ coe — (3¢% — 2¢3)€? + (8¢5 — 10ca¢3 + 3cq)€® + X2 ,Gie' + 0(e”), (2.8)

f(xa)

where G; = Gj(c3,C3,...,C¢) for 4 <i<6.
By direct substitution of z,, f(xn),f(¥,).f (xn).f (v,) and Ky(s,u) in (1.6), we find

Xni1 = Yn — Kp(s,1) -f,(y”) = o+ (1 —Koo)e? + X% ;e + 0(e”), (2.9)
)
where T'; = T'i(cz, 3, ..., C6,Kjy, for 3 <i<6,0<j,0<4.
Noting that O(f(xs)) = O(s — 1) = O(u) = O(e) and O(f(y,)) = O(e?), Taylor expansion of K(s,u) about (1,0) up to
fourth-order terms in both variables yields after retaining up to fourth-order terms with K4 = K3 = K34 = K35 = K33 =
K34 = K41 = K42 = K43 = K44 =0:

Kf(S,ll) = Koo + Ko1u + Kozuz + K03U3 + K04u4 + (S - 1)(K10 + Kjju + K]zllz + I<13u3) + (S — 1)2(K20 + Kyju + Kzzuz)

+ (s = 1)* (K30 + K31) + Kao(s — 1)* + 0(e°). (2.10)
By setting Koo = 1 from (2.9) along with I'; = 0, we immediately solve for K¢; as
Ko :K%. (2.11)

By substituting Koo, K1o into I'y = 0, we find two independent relations below:
Ko1 =0, Ko —2K11 +4K30—-1=0. (2.12)
As a result, we find
1— Koz + 2K11

Kpn =0, Ky= 7 (2.13)
By substituting Koo, K10, Ko1, K20 into I's = 0, we find two independent relations below:
Kin =Koz —1=0, Kiz—2Ks +4K30 — %K(B +2=0. (2.14)
Solving (2.14) for Kq1, K, yields
Kin=1+Kp, K= %Ko3 +2(Ky —2K30 - 1). (2.15)
By substituting Koo, Ko1, K10, K20, K11, K12 into I's, we find:
Ts =c3cq — %ﬂczcﬁ +ccs (21(21 — 8K30 — %1(03 - 9) + 03¢ (2.16)

with ¢ = 8K3;1 + 2K3 — 4Ky, — 16K 49 — Kog + 14 describing (2.1). This completes the proof. O
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3. Case studies

This section describes some interesting case studies based on different forms of weighting functions Ky(s, u). Using rela-
tions (2.11), (2.13) and (2.15), the Taylor-polynomial form of K;(s,u) is easily given by

1
Ky(s,u) =1+, + K2)S? + K30S® + K4oS* + {(1 + K02)S + K S* + K3 S* Ju

1
+ {K()z + §K03 + 2(K21 — 2K39 — 1)5 + 1(2252}u2 + {K03 + 1(135}u3 + K04U4, (31)

where notations S = s — 1 are introduced for simplicity. Special cases of K;(s,u) are considered here. In each case, relevant
coefficients are determined based on relations (2.11)-(2.15), along with # as the asymptotic error constant.
Case 1:

Ki(s,u) = 14+ a;S* + (@S + a38%)u + (a4 + asS + a6S*)u?,
ay =1(as+3),a; =1+ a4,a5 = 2(as — 1); a3, as, as = free, (3.2)
0 = (14 — 4as)c3 + (2a3 — 9)c3cs — 1 (a4 + 3)c2c3 + c3cs.

In what follows, we consider three kinds of weighting functions as some interesting sub-cases with some choices of free

parameters as, a4, ds.
Sub-Case 1A:

Ke(s,u) =1+38” +S(1 +S)u, (3.3)

a3:1,a4:07a5:0. ’
Sub-Case 1B:

Ke(s,u) =14 5(S - 2)u — 3u?, (3.4)

(13:1,04:*3,05:0. ’
Sub-Case 1C:

Ke(s,u) =1+18* + S'u — 12, (3.5)

a3:1,a4:—1,a5:0. ’

Case 2:

Ki(s,u) = 14 a;S* + 4,5’ + asSu + aqu?,
a1 =4(as+3), a2 =3, a3 =1+as, as = free, (36)
0 =14c — (8a; +9)c3cs — 1 (as + 3)c2c3 + ciea.

In what follows, we consider two kinds of weighting functions as some interesting sub-cases with some choice of a free

parameter ay.
Sub-Case 2A:

_ 1¢2 _1¢3 _ 42
{1<f(s7?)_1+2]s 18—, (3.7)
=3, b=—3,03=0,a3=-1
Sub-Case 2B:
o 3¢2_1¢3
1<f(s,g)f1+4ls 1$* + Su, (3.8)
aq =7 azi—i, 03:1, (14:0.
Case 3:
To+T1 54752
Kr(s,u) = 250505 + au?,
ro=2+%, rn=-2r=2+% p,=1,a=—-1, p(# —2) = free, (3:9)
N =3¢, — 5c3c3 — 1003 + 263 (3 +ﬁ>-

In what follows, we consider four kinds of weighting functions as some interesting sub-cases with some choice of a free
parameter p;.

Sub-Case 3A:
_ 2(1-s+s?) 2
Ki(s,u) = T w (3.10)
ro=2+8,rn=-2,rn=2+8p,=1,a=-1,p, =0.
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Sub-Case 3B:

Ky(s,u) = — e — %, (3.11)
ro=2+8,rmn=-2,rn=2+8 p,=1 a=-1, p,=-4.
Sub-Case 3C:
_3s2-2543 _ 12
Kf(S,U) - (1+S)2 u ’ (312)
ro=2+%,1r=-2,rn=2+% p,=1,a=-1, p; =2
Sub-Case 3D:
_ (1 5)?
Ky(s,u) = — 55 —u?, (3.13)
ro=2+8,rn=-2,rn=2+8 p,=1 a=-1, p,=-6.

Case 4:

_ atb(s—1)+cu+m(s—1)*+g(s—u-+hu?
Ky(s,u) = T+B(s—1)+ CutM(s—1)2-+d(s—1)utHu2 °

(1:‘17 b:B:%(C+4), C:C, h:H—d+g—1, M:}l(d+4m—g—2), (314)
where m, g,c,d, H are free,
nN=1c{4ccs+c3(d—g—2)—4ci(d—H—4m+g+4)+2c3c3(c—2)}.

In the next section, we select free parameters m, g, c,d,H to position the extraneous fixed points on the imaginary axis
based on the dynamics of basins of attraction associated with this Kr. The dynamical idea behind basins of attraction was
initiated by Stewart [28] and followed by works of Chun et al.[6-8], Cordero et al. [10] and Neta et al.[21]. More recent
results on basins of attraction can be found in [2,18,19].

4. Extraneous fixed points

Multipoint iterative methods [17] solving a nonlinear equation of the form f(x) = 0 can be written as
Xni1 = R (Xn), (4.1)

where Ry is the iteration function whose fixed points are zeros of f(x) under consideration. The iteration function Ry,
however, might possess other fixed points that are not zeros of f. Such fixed points different from zeros of f are called the
extraneous fixed points [12,30] of the iteration function Ry. Extraneous fixed points may form attractive cycles and periodic
orbits to display chaotic dynamics of the basin of attraction under investigation. This motivates our technical selection of
appropriate parameters among free parameters m, g,c,d, H of K; in Case 4 of the preceding section via intensive analysis
of the extraneous fixed points under some constraints.

The proposed method (1.6) can be put in the form:

f(xn)

Xni1 = Rr(Xn) = Xy f,(xn)Hf(xn), (4.2)
where Hy(x,) = 1 +“K;(s,u) can be regarded as a weighting function of the classical Newton’s method. It is obvious that o is
a fixed point of Ry. The points ¢ # o for which Hy(¢) = 0 are extraneous fixed points of Ry. If we look at Hy in Case 1, it contains
one free parameter ag. Thus all of its listed three subcases with the same value of as = 0 are the same dynamically. If we look
at Hy in Case 2, it contains no free parameter. Thus all of its three subcases are the same dynamically. If we look at Hy in Case
3, it contains one free parameter p,. Thus all four subcases are dynamically different from each other. We pay a special atten-
tion to Case 4 with a bivariate second-order rational weighting function K;. Indeed, this case allows us to get Hy in the form of
a bivariate second-order rational function with some free parameters.

We are ready to impose some constraints on the extraneous fixed points to be determined from the zeros of Hy in
order to select free parameters m,g,c,d,H for a bivariate second-order rational weighting function K; under Case 4 in
Section 3. Chun et al. [9] imposed constraints on the extraneous fixed points all of which should lie on the imaginary
axis. It is also worth to observe the dynamic behavior near the extraneous fixed points on the imaginary axis which is
the boundary of two basins of two roots for the typical quadratic polynomial f(z) =z?> —1 as well as to observe the
dynamics of zeros of f in the basins of attraction under investigation. Closely following the approach of Chun et al.
[9], we would like to position all the extraneous fixed points on the imaginary axis. To this end, we first find the explicit
form of K; in (3.14):

K (s.11) = 14+ Q2+96—1)+au+ms—17+g6s—Nu+(g—d+H— 1 s
£(S; 1424965 -1 tau+i@m—g+d—2)(s— 1)’ +d(s— )u+H2 .
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We then construct Hy(x;) = 1+ 4K;(s,u) in (4.2) below:

u 1+(2+§)(s—1)+cu+m(s—1)2+g(s—1)u+(g—d+H—1)u2
s

Hp(x,) =1+ c 1 2 2"
1+2+5)6s-1)+cu+i(4m—-g+d—-2)(s—1)"+d(s—1)u+Hu

(4.4)

We now apply a quadratic polynomial f(z) = z2 — 1 to Hy(x,) and construct a complex rational weighting function H(z) in the
form of

F(2)

1= a2

F(z) = (3p—4)2° - 5(p +8)2* + (p — 20)2* + p, (4.5)
where T(z) =z4(p—1)-2(7+p)22+p—-1land p=d—H—-4m+g + 3.
It is interesting to investigate the complex dynamics of the rational iterative map R, of the form

P(zn)

7@ H(z,), (4.6)
in connection with the basins of attraction for a variety of polynomials p(z,). Indeed, R,(z) represents the classical Newton’s
method with weighing function H(z) and may possess its fixed points as zeros of p(z) or extraneous fixed points associated
with H(z). As a result, basins of attraction for the fixed points or the extraneous fixed points as well as their attracting peri-
odic orbits may make an impact on the complicated and chaotic complex dynamics whose visual description for various
polynomials will be shown in the latter part of Section 5.

To continue a further analysis on H(z), we observe that the coefficients of H(z) are expressed in terms of only a new single
parameter p(d,H, m,g) being independent of c. We wish to determine real values of p in (4.5) such that the all the roots
(other than zero o of f) of H lie on the imaginary axis. Once a real value of p is determined, then we can select three free
real parameters among four m, g, d, H to simplify the explicit form of K (s, u).

We now closely look at the numerator F(z) of H to position all the roots of H on the imaginary axis. Suppose that
all zeros ¢ of F(z) are written as ¢ =1i-4,i=+v—1,47# 0. Since F(¢) =0 yields the following sextic equation with real
coefficients:

Znp1 = Rp(zn) =2Zn —

—-Bp—-4)2°-5(p+8)\'—(p-20)2+p=0. 4.7
By letting t = /> > 0, Eq. (4.7) reduces to the following cubic equation:
(4-3p)t> —5(p +8)t> — (p —20)t + p = 0. (4.8)

Hence by taking two square roots of each of all three positive real roots of (4.8), we equivalently find all corresponding six
imaginary roots of F(z) in (4.5).

It still remains to investigate the conditions on p for (4.8) to have all distinct positive real roots. If p =0, then t =0 is a
root of (4.8). Therefore we restrict p # 0. If p # 0, divide both sides of (4.8) by p and simplify to obtain after rearrangement
with w = 1/p:

(3 —4w)t® +5(1 + 8w)t? + (1 = 20w)t = 1. (4.9)

Let y,(t) = (3 —4w)t3 +5(1 + 8w)t?> + (1 — 20w)t and y,(t) = 1. Then the problem of locating three distinct positive
real roots of (4.8) reduces to that of counting the number of positive crossing points of the cubic polynomial y, (t) with
the horizontal line y,(t) =1, as w varies. Suppose that the leading coefficient 3 — 4w <0 or w >3/4 in y,(t), then
¥1(—=1) =1+ 64w > 1. By the continuity of y, (), it must intersect the horizontal line y,(t) = 1 at a negative crossing point.
As a result, we must restrict « < 3/4 for (4.9) to possess three distinct positive real roots. A typical sketch of graphs for both
y1(t) and y,(t) is shown in Fig. 1. To find the extremal points, we set y; (t) = 3t>(3 — 4®) — 20w + 10t(1 + 8w) + 1 = 0 which
yields two extremal points t; and t,:

_ 5+40w +4D _ 5+40w —4D

h=Pae-3 27 330 -3 (4.10)
with D = V1 + 37w + 85w?, provided that 1 + 37w + 85w? > 0 yielding conditions on w:
< % ~ —0.406341 or % ~ —0.0289528 < v < % (4.11)

Since t; < t; for w < %, we find that y, (t) has a local maximum and minimum at t; and t,, respectively. We also require both
t; >0 and t, >0, which amounts to D> 0 and t; +t, = — 121439 5 g apd 1200 - . Consequently, we find that

3(3-4w) 3(3-4w)
w < %70@ ~ —0.406341 for positive extremal points. Finally, we require that y,(t;) <1 <y;(t;), which yields
11 0 2102 V105)"%) ~ — i
0 =;<7(-20 ot 21vios +(—2150 4+ 210v105) ") ~ —0.467119. Hence, we find the constraints

—2.14078101258 < p < 0 (4.12)
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i — ni®
out[1]= I — ()

L

Fig. 1. Three distinct positive crossing points.

for (4.8) to have all three distinct positive real roots. Via direct computation, we also check that these values of p in (4.12) do
not satisfy the zeros of T(z) in (4.5). If z = +i is a zero of F(z), then F(+i) = —8(2 + p) = 0 would hold. Hence, p = —2 would
yield (1 + z2) as a factor of F(z) and cause only four extraneous fixed points from the degeneracy of Hy(z) = % Since

p=d—H-4m+ g+ 3, we are free to choose 3 parameters among four parameters d, H, m, g, once p is properly chosen to
satisfy (4.12). Table 1 lists some interesting choices of parameters p,d,H,m,g for all purely imaginary extraneous fixed
points ¢ and simplified forms of Hy(z) as well as K¢(s, u).

At this point, we now wish to compare the dynamical behavior of (4.6) with that of another complex rational iterative
map associated with an existing method (1.5) suggested by Neta [20] in 1979. By repeating a similar analysis that we have
done so far, iterative method (1.5) can be put in the form:

f(xa)
Xni1 = Re(Xn) =Xn — 5 He(Xn), 4.13
vt = Rpln) = %o — T S x) (4.13)
where H;(x,) = 1 + Hl/j"z”) +410 7{(22) and z, =y, — "> 11;;"2”))
Like rational iterative map R, (4.6), the complex ratlonal iterative map R, associated with R; can be written as
Z
Znir = Rp(Zn) = 2o — g/((z';)) H(zn). (4.14)
In addition, the rational weighting function 7(z) associated with #;(x,) for f(z) = z> — 1 is found to be:
z
H(z) = 7@ 5 (4.15)
64z5(3 +22)[2 — B+ (B + 2)2?]
where ]—‘(z) —B? +222B(—4+5p)+ 2 (=16 + 72 — 51*) + 425(96 — 1488+ 63 8*) + 28 (1760 — 624 — 2794%) +z'°(1536 +

7288 —384%) +212(432 + 4245+ 107°).

We wish again to locate all the roots of H(z) on the imaginary axis. It is, however, expected that some roots may easily
escape from the imaginary axis, since all the coefficients of F(z) of degree 12 depend upon only a single parameter g. In fact,
if =0 or g =1, then H(z) degenerates to an eighth-order rational function due to a common divisor z* or (1 + 322)2; this
fact, however, yields only 2 imaginary roots +i/+/3 or +1.35684i, while remaining six roots are all complex. Thus we are not
interested in 8 = 0 or B = 1 and assume that 8 # 0 and B # 1. Consequently, our aim suffices to locate as many roots on the
imaginary axis as possible, based on an appropriate selection of parameter f. Suppose that all zeros ¢ of F(z) are written as
E=i-2,i=+—1,1%0. Since F(¢) = 0 yields the following polynomial equation of degree 12 with real coefficients:

Table 1
Extraneous fixed points & H(z) and K for selected parameters with p =d + g — H—4m + 3.
P d H m g c & H(z) Ky (s, u)
-2 -5 0 0 0 0 +0.32492i,+1.37638i 141022452 142(s—1)+4u?
(3+27)(1+32%) 1+2(5—1)—4(5—1)°—5(—1)u
_3 0 0 1 1 0 i i i (3+22)(1+1422 +172%) 142(s-1)+4(s-1)* +(s-1
2 3 ++/3i,+0.281085i, +0.862856i m + (sl+)2?5§(ls%(sil;(s Ju
-1 2 6 0 0 2 +0.228243i,+0.797473i, +2.07652i 14212243524725 143(s—1)+2u+3u?
4(1+22)(1+622+2%) T+3(5—1)12u+2(s—1)u+612
-1 % 1 % 2 +0.228243i,+0.797473i, +£2.07652i 1+21§2+352"Z—7z5 143(5-1)+(s—1)*+2ut+(s—u
A(1+23)(1+622+2%) T3(5— 1)+ (5= 1)+ 2u+5(5—1)u+ 32
— — g 0 0 +0.159947i, +0.755758i, +-2.49428i 1+4172 475744112 1+2(s—1)+§(s—1)

[NE

=

2(1+22)(3+2622+372%)

14+2(s—1)—H(s—Du+{u?
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— B —2B(—4 +5p))% + (—16 + 728 — 515%)1* — 4(96 — 1488 + 635%)2° + (1760 — 624 — 2795%):8
— (1536 + 728 — 38%)1'° + (432 + 4244 + 1076%))? = 0. (4.16)
Letting 22 = t > 0 in (4.16) leads us to the following sextic equation in 4 with real coefficients:
— P +t(d-5p)p+3(—16 + 728 — 51p%) — 4t3(96 — 148 + 63°) + t4(1760 — 6245 — 2795?)
+2t5(—768 — 364f + 194%) + t5(432 + 424p + 1074*) = 0. (4.17)

Let ¢(t) denote the left side of (4.17). Since ¢(—1) = 4096 > 0, (0) = —% < 0 and ¢(2) = 1359(p — 184)® 1 497664 -, q, there
exist a negative root t, satisfying —1 < t, < 0 and a positive root t; satisfying 0 < t; < 2 due to the continuity of ¢. Hence,
¢ has at most 5 positive roots including t;. We find that the highest-order term t°(432 + 424 + 107?) dominates ¢(t) for

sufficient large p, say, for || > 4 when t > 2 due to the large coefficient 432 + 4244 + 107> = 107(8 + %)2 + 1280 this tells
us that ¢ has no positive roots for t > 2.

To find further possible positive roots of ¢, we favorably rely on the graphical analysis by plotting ¢ for 0 < t < 2 with a
variety of selected parameters ranging 0 < |8| < 4. We especially pay attention to an interval 0 < f < 1 whose endpoints
degenerates H to an eighth-order polynomial equation. Indeed, we have found three positive roots in an interval
2< B <1 as shown in Fig. 2. Table 2 lists imaginary extraneous fixed points and H; for selected three values of parameter
B. In remaining intervals other than 0 < < 1, we have found at most one positive root. As another choice for 3, we list
the case for 0 < =3 —2v2 < 1 in Table 2 based on the analysis for the fourth-order King’s method done by Neta et al.
[22]. It turned out that most of corresponding extraneous fixed points with this § are located near the imaginary axis.

The latter part of the next section will discuss complex dynamics as well as chaotic behavior of both rational iterative
maps (4.6) and (4.14) when applied to various polynomials, based on visual description of their basins of attraction along
with comparison of their dynamic properties and characteristics.

5. Numerical experiments and concluding remarks

This first part of this section deals with computational characteristics of proposed method (1.6) for a variety of test
functions in comparison with other existing methods. In the second part we discuss the complex dynamics of two rational
iterative maps (4.6) and (4.14) along with concluding remarks.

400
200

— =1/
— B=25
— B=3/5
— =12
— B=34
— B=4/5

02 ~200

-400

—600

-800 -

-1000 [

Fig. 2. Three positive roots of ¢(t) for 0 < t < 2.

Table 2
Extraneous fixed points ¢, H(z) and Gy(u) for selected parameters f.
B ¢ H(z) Gy (u)
2 +0.325611i,+1.15557i,4+1.20827i —1-102%+292% +117226 1916128 +113822'0+ 38672'2 u(5+2u)
5 25676(3+22)(2+322) 5-8u
+0.304113,+0.156573 + 0.302977i
1 +0.341541i,+1.02013i,+1.28811i 1-622+297* 16042° +551328 +75622'° 1 26832'2 u(2+u)
2 6475(3+22)(3+522)° 2-3u
+0.318902,+0.203793 + 0.305548i
4 +0.424138i, +£0.794406i, +1.34307i —1+41474 11220+ 169128 +3272717+ 131221 u(5-+4u)
5 ' ' 1625 (3+22)(3+722)° 5-6u
+0.355921,+0.290282 + 0.295202i
3-2V2 +0.259813, +0.19545 + 1.24831i —0.0294373-1.0782172 —5.148052" +289.84725+ 1644.732° + 1659.792'°+507.8972' u(1+(3-2v2)u)

6426(—1.82843-2.1715722)% (3+22) 1+(1-2v2)u
+0.476847i,+0.0475696 + 0.190337i
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Table 3
Convergence for sample test functions F;(x) — Fg(x) with methods KY1 — KY3.
KY; F(xn) n Xn [F(%n)| en] en n
eu 1
KY1 Fq 0 -0.95 0.0524792 0.0500000
1 —0.999999864300288 1357 x 107 1357 x 1077 8.684781593 15.16666667
2 —1.00000000000000 9470 x 1074 9.470 x 1074 15.16664250
3 —1.00000000000000 0.0 x 107100 0.0 x 10100
F; 0 0.75 2.12413 0.136227
1 0.859748914260037 0.2002 0.02648 4142.930343 46.17549177
2 0.886226916675717 6.223 x 108 8.777 x 107° 2547041020
3 0.886226925452758 1.497 x 10746 2111 x 10°¥ 46.17548430
4 0.886226925452758 0.0 x 107100 0.0 x 1071
KY, F3 0 -0.95), 19.2659 0.0995374
2.15
1 —0.999997479564086 0.0006925 3.338 x 10~ 3.33848 2.154207065
2.23607016675128
2 —1.00000000000000 6.186 x 103! 2982 x 1033 2.154214741
2.23606797749979
3 —1.00000000000000 0.0 x 107 0.0x107%
2.23606797749979
Fa 0 0.1 0.400623 0.100000
1 6.812 x 10~ 11 2.725 x 10~ 10 6.813 x 10~ 11 0.00006812682743 0.0008102972659
2 -8.101 x 107% 3241 x10°% 8.101 x 107%° 0.0008102972653
3 0.0 x 107%% 0.0 x 107228 0.0 x 1072
KY3 Fs 0 0.91 0.889859 0.0645898
1 0.974590839309637 0.00001478 9.948 x 107 13.70124208 10.52644713
2 0.974589844487655 1516 x 10734 1.020 x 1073 10.52640383
3 0.974589844487655 0.0 x 107101 0.0x 10°%°
Fg 0 -1.48 0.344055 0.0907963
1 —1.57079632759000 2.942 x 10~° 7.951 x 10~ 10 0.001419094785 0.0009648572271
2 —1.57079632679490 9.021 x 1058 2438 x 1058 0.0009648572240
3 —1.57079632679490 0.0x 1079 0.0x10°%

2 (—095) )
<2_]5 )770.95+z.151.

In many real-life root-finding problems under normal circumstances of computations, it is quite common to find their
numerical results accurate up to approximately 6 or 7 significant decimal digits with second-order Newton-like methods
using common programming languages Fortran or C. In such programming languages, empirically 15 or 16 decimal work-
ing-precision digits are adopted for numerical results with 6 or 7 significant decimal digits. Likewise, about 48 decimal work-
ing-precision digits would be reasonable for approximately 21 significant decimal digits with sixth-order numerical

methods. Computing asymptotic error constants 7 = lim,_, ‘ e‘"e”l“p with several significant digits of accuracy would encounter
extreme calculations due to the indeterminate form of a small-number division near the root «. We, therefore, need to
increase the number of working-precision digits much more for numerical results with moderate number of significant dec-
imal digits.

During the current numerical experiments with programming language Mathematica (Version 7), all computations
have been done with 100 working-precision digits, which minimize round-off errors and let us clearly observe the
computed asymptotic error constants requiring small-number divisions. In addition, the error bound €=1x 107
was assigned. The initial guesses xo were selected close to o to guarantee the convergence of the iterative methods.
Only 15 significant digits of approximated roots x, are displayed in Tables 3-5 due to the limited paper space,
although 80 significant digits are available. When exact root is not available, it is best approximated with 150
digits of precision to hold sufficient number of significant digits of x, — o. Numerical experiments have been carried
out on a personal computer equipped with an AMD 3.1 Ghz dual-core processor and 64-bit Windows 7 operating
system.

Iterative methods (1.6) with (3.4), (3.8), (3.12) were respectively identified by KY1,KY2,KY3 and have shown successful
results for the following test functions:
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Method KY1 : Fy(x) =sin(x + 1) + (x + 1), o= —1.
Method KY1 : F(x) = sin(2x?) — log(1 + 4x> — 1) — 1,0 = \/7/4.
Method KY2 : F3(x) = X° + 2x% — 64x + 20 + 88iv/5, o= —1+iV5,i=v—1. (5.1)
Method KY2 : F4(x) = sin (x3) +2— (2x+ 1)log(e* + x?), a=0.
Method KY3 : F5(x) = x° +e>* 7, o~ 0.974589844487655.
) =

Method KY3 : Fs(x log(e2 +4x2 -+ +2, = —-1/2.

Methods KY1, KY2, KY3 in Table 3 clearly confirms sixth-order convergence based on results of \ g \ Table 3 lists iter-
ation indexes n, approximate zeros x,, residual errors |f(x,)|, errors |e,| = |x,

totic error constant #. The values of | £ | agree up to 9 significant digits with 7.
n-1

To further check the convergence behavior of proposed scheme (1.6), we list additional functions with roots and initial
guesses in Table 4.

For the purpose of comparison, we first identify methods (1.1), (1.2), (1.3), (1.4), (1.5) by DBN, CHU, PGU, WAN, NET with
(B= —%), respectively. Table 5 displays the values of |x, — | for methods DBN, CHU, PGU, WAN, NET, KY1, KY2, KY3. As can
be seen in Table 5, proposed methods show favorable or equivalent performance as compared with existing met hods DBN,
CHU, PGU, WAN and NET. It is well expected that method DBN displays the largest error of |x, — «| due to its lower order of
four, in comparison with the rest of the listed methods. In Table 5, italicized numbers refer to the least errors |x, — o within

Table 4
Additional test functions f;(x), roots o and initial guesses x,.
i fi(x) o Xo
1 sin(mx) + (x — 1)? 1 0.95
2 2cos(x2) — log(1 +4x% — ) — V2 VT4 1.0
3 cos(x? +X+3%) +4x+1-iV5 —14+id —0.45 4 0.5i
4 sin(x3) — 3 + (x + 1) log(e? + x?) 0 0.1
5 X0 4+ X2+ xe* —7 0.906962092165271 0.85
6 2% — T — 2 + log(e? + 4x% — m?) /2 15
7 x* 4+ x%e!* — 2 4 sin(2 +x3) 0.926429193234728 0.9

Here logz(z € C) represents a principal analytic branch with - < Im(logz) < &

Table 5
Comparison of |x, — | for f,(x) — f,(x) among listed methods.

f Xo [Xn — 0 DBN CHU PGU WAN NET KY1 KY2 KY3

fi 0.95 X1 —of 4.53e—8° 6.35e-9 8.25e-9 7.67e-9 6.39e-9 8.11e-10 3.89e-9 2.43e-9
X —of 1.36e-31 5.63e—-50 3.05e—49 3.07e—-49 5.88e—50 1.18e—55 1.17e-51 2.91e-53
X3 —of 0.0e—100 0.0e—100 0.0e—100 0.0e-100 0.0e-100 0.0e—100 0.0e—100 0.0e-100

fa 1.0 X1 —of 2.16e—4 9.54e—6 1.16e—4 4.51e-6 2.86e—5 4.43e—-6 1.31e-5 2.06e—5
X2 —of 1.33e-14 4.52e-29 7.70e-22 1.11e-30 9.18e-26 2.25e—31 1.078e-28 4.48e—-27
X3 —of 1.90e—55 0.0e—100 0.0e—100 0.0e—100 0.0e-100 0.0e—100 0.0e—100 0.0e—100
|xq — o 0.0e—100

f3 —0.45 X1 —of 8.69e—8 1.87e-9 2.518e-9 1.53e-9 1.91e-9 7.55e—10 1.38e-9 9.58e-10

+0.5i X2 — o 2.18e-31 5.64e—55 3.94e-54 1.87e-55 5.92e-55 1.40e—57 6.77e—56 5.24e-57

X3 —of 0.0e—100 0.0e—100 0.0e—100 0.0e—100 0.0e—100 0.0e—100 0.0e—100 0.0e—100

fa 0.1 X1 —of 1.25e-8 7.15e-9 1.19e-8 8.52e-9 1.07e-8 1.21e-9 8.31e-9 5.87e-9
X —of 1.12e-37 1.87e-52 7.38e—51 7.79e-52 3.04e-51 3.68e—59 5.07e—52 4.20e-53
X3 —of 7.68e—154 0.0e—151 0.0e—149 0.0e-150 0.0e-202 0.0e-218 0.0e-204 0.0e-206

fs 0.85 X1 —of 3.38e-5 4.11e-8 1.79e—7 8.16e—6 9.37e-8 3.21e-6 3.59e-6 1.38e—6
X2 — o 3.76e—18 7.03e—45 1.35e—40 3.28e—29 1.48e—42 6.33e—32 1.34e-31 2.03e—34
X3 —of 6.71e-70 0.0e—100 0.0e—100 0.0e—100 0.0e—100 0.0e—100 0.0e—100 0.0e—100
|x4 — o 0.0e—100

fs 1.5 X1 —of 4.32e-7 2.73e-10 2.60e-9 9.47e-10 1.69e—9 5.08e—10 3.16e-10 1.63e—10
X2 —of 5.08e-28 5.48e—61 5.07e-54 4.13e-57 2.17e-55 5.52e-59 1.99e-60 1.86e—62
X3 —of 0.0e—99 0.0e—99 0.0e—99 0.0e—99 0.0e—99 0.0e—99 0.0e—99 0.0e—99

f7 0.9 X1 —of 5.42e-8 1.40e—11 4.65e—10 1.72e-11 2.58e-10 9.64e—11 2.08e—11 2.88e-13
X —of 1.23e-30 1.44e—66 1.93e-56 2.20e—66 3.61e-58 2.20e—61 1.63e—65 7.37e-77
X3 —of 0.0e—100 0.0e—100 0.0e—100 0.0e—100 0.0e-100 0.0e—100 0.0e—100 0.0e—100

2 4.53e—8 denotes 4.53 x 1078,



Y.H. Geum et al./Applied Mathematics and Computation 254 (2015) 277-290 287

the prescribed error bound. The method DBN requires four iterations to meet the error criterion for test functions f, and f5,
unlike the rest of other listed methods requiring only three. Even with the same order of convergence, one should note that
the behavior of local convergence of |x, — «| is dependent on c¢j, namely f(x) and a.

Although limited to the test functions chosen in these numerical experiments, based on the results after 2 iterations, KY1
has shown best accuracy in f,,f,, f3,f4, while CHU in f5, and KY3 in fg, f,. Nevertheless, one should be aware that no iterative
method always shows best accuracy for all the test functions. It is not too much to emphasize that computational accuracy is
sensitively dependent on the structures of the iterative methods, the sought zeros and the test functions as well as good ini-
tial approximations. The corresponding efficiency index for the proposed family of methods (1.6) is found to be 6'/4, which is
better than 4'/* for the classical double-Newton method. The current analysis utilizing 2-point information will lead us to a
new development of another family of higher-order root-finders.

We now are ready to discuss the complex dynamics of rational iterative maps (4.6) and (4.14) applied to various polynomials.
To continue our discussion, let us first identify the three members of rational iterative map (4.6) by GKN6mOH6,GKN6m1H3
and GKN6m118HO respectively withm=0,H=6,m=1,H=3and m=11/8,H#=0,g =1,c =d = 0 in Table 1. In addition,
we identify one member of rational iterative map (4.14) by Neta6 with g = 3 — 2+/2 in Table 2. A variety of examples are shown
here. Basins of attraction for both rational iterative maps (4.6) and (4.14) are illustrated by closely following the technique
shown in [9].

Example 1. As a first example, we have taken a quadratic polynomial with all real roots:

@) =2-1. (5.2)
Basins of attraction for iterative maps GKN6mOH6, GKN6m1H3, GKN6m118HO and Neta6 with p,(z) =z — 1 are illus-
trated, respectively from left to right in Fig. 3. The darker a point of each basin gets, the slower it converges to a root. At a root
or an extraneous fixed point its color is white, while getting darker for more iterations required for convergence within the
iteration limit. At black points, we recognize that the corresponding iterative maps did not converge within the iteration
limit of 40 currently prescribed in this experiment. Based on displayed results, we find that iterative map Neta6 has per-
formed better. Indeed, Table 6 shows average numbers of iterations to converge within the given error bound per point.

Example 2. As a second example, we have taken a cubic polynomial with one real and two complex roots:

p2) =2 -1. (5.3)
Basins of attraction for GKN6mOH6, GKN6m1H3, GKN6m118HO0 and Neta6 with p,(z) = 23> — 1 are illustrated, respec-
tively from left to right in Fig. 4. Neta6 performed best as in Example 1, but now it has more black points than before.

“a 2 E] 0 1 2 3

Fig. 3. Comparison of basins of attraction for p,(z) = 2% — 1.

Table 6

Average numbers of iterations for convergence per point.
Examples p(2) GKNmOH6 GKNm1H3 GKN6m118HO Neta6
1 22 -1 4.1380 4.1380 4.1298 2.5744
2 22 -1 5.7572 5.6097 5.4912 3.4305
3 2B -z 5.1652 4.9327 5.0016 3.2130
4 2(Z2 +1)(2> +4) 5.5559 5.2736 5.2439 4.0200
5 (z+1/2-i)(z+1/2=2i)(z+1) 5.1273 5.1391 5.2274 3.2345
6 ps(2)? 9.8523 7.7598 6.6478 19.7674

Averages 7.1198 6.57058 6.34834 7.24796

a ps(Z) — 76 7%25 + 11(1+i)z4 _ (19:31’)23 + (11251‘)22 _ (114+i)z+%7 3i.
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3,
3

~3 2 - 0

1 2 a3 2 -1 0 1 2 3

Fig. 4. Comparison of basins of attraction for p,(z) = 2> — 1.

Example 3. As a third example, we have taken a cubic polynomial with one real roots 0, —1,1:

p3(2)=2 -z (5.4)

Basins of attraction for GKN6mOH6, GKN6m1H3, GKN6m118HO and Neta6 with p,(z) = 2> — z are illustrated, respec-

tively from left to right in Fig. 5. Even though Neta6 has less black points, the basin for the root oo = 0 is smaller. This means
that there are points closer to this root that converge to one of the other two.

Example 4. As a fourth example, we have taken a quintic polynomial with one real and four complex roots:

D4(2) =2(Z2 +1)(2% + 4). (5.5)

Basins of attraction for GKN6mOH6, GKN6m1H3, GKN6m118HO0 and Neta6 with p,(z) = z(z?> + 1)(z?> + 4) are illustrated,

respectively from left to right in Fig. 6. The phenomenon observed in the previous example is more pronounced here. Neta 6
has much larger basins for the roots +2i.

Example 5. As a fifth example, we have taken another cubic polynomial with one real and two complex roots that are not
complex conjugate to each other. The roots are —1 +i,—1+2i and —1:

Ds(2) = (z-i-%—i) (z+%—2i)(z+1). (5.6)

Basins of attraction for GKN6mOH6, GKN6m1H3, GKN6m118HO0 and Neta6 with (5.6) are illustrated, respectively from
left to right in Fig. 7. Notice that the basin for Neta6 for the root —1 + i is cut to two because points that should have been in
that basin has converged to —1 + 2i. This did not happen with the new methods.

Ta E] A n 1 2 a “a E) ] n 1 2 E]

Fig. 5. Comparison of basins of attraction for p;(z) = 2> — z.

Fig. 6. Comparison of basins of attraction for p,(z) = z(z% + 1)(z* + 4).
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Fig. 8. Comparison of basins of attraction for pg(z) = 28 — 125 + 10t z4 (198073 | A1) 2 (Ledz 4 3 34

Example 6. As a sixth example, we have taken a sextic polynomial with real and complex roots —1 + 2i,—1 — 1i, —1.5i,i,1
and 1 —i:

ps(2) =2° —%25 + “(14+ D (19;:31)23 + (11 I M 2 _ (“4+ 1)z+%— 3i. (5.7)

Basins of attraction for GKN6mOH6, GKN6m1H3, GKN6m118HO and Neta6 with (5.7) are illustrated, respectively from
left to right in Fig. 8. Now Neta6 has large black regions and in fact the average number of iterations per point is very large as
can be seen in Table 6. The difference between this example and the previous one is that the coefficients are no longer real. It

is possible that this is the reason for the large number of points from which the method did not converge.

Even though in the first 3 examples Neta6 performed batter than our new methods, the last 3 examples shows the robust-
ness of our new methods relative to Neta6. The last example was the toughest for all methods, but was worse for Neta6 as
can be seen in Table 6.

We have shown a technique of selecting parameters of the weighting function of a proposed iterative method. One such
technique is given by positioning the extraneous fixed points of the corresponding rational iterative map applied to a well-
known quadratic polynomial p(z) = z2 — 1 on the imaginary axis to get better basins of attraction. In view of the fact that the
imaginary axis is the boundary of basins of attraction for classical Newton’s method when applied to the polynomial
p(2) = 7% — 1, it is worth to position the extraneous fixed points on the imaginary axis for improving chance of obtaining bet-
ter basins of attraction. In our future work for the development of a new family of iterative methods, our current approach
will play an important role in selecting parameters of the relevant weight functions to enhance basins of attraction of the
corresponding rational iterative map arising from the proposed iterative method.
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