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sical double-Newton method. Their theoretical and computational properties are fully
investigated along with a main theorem describing the order of convergence and the
asymptotic error constant as well as proper choices of special cases. A variety of concrete
numerical examples and relevant results are extensively treated to verify the underlying
theoretical development. In addition, this paper investigates the dynamics of rational iter-
ative maps associated with the proposed method and an existing method based on illus-
trated description of basins of attraction for various polynomials.
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1. Introduction

A large number of high-order multipoint methods for a given nonlinear equation f ðxÞ ¼ 0 have been developed since
Traub [29] initiated the qualitative as well as the quantitative analyses of iterative methods in the 1960s. Petković et al.
[25] recently collected and updated the state of the art of multipoint methods. Other works on multipoint methods can
be found in [3–5,11,13,14,16,20,24,27]. The principal aim of this paper is to design a family of high-order methods costing
only two derivatives and two functions. Described below in (1.1) is the well-known two-point fourth-order double-Newton
method [15,29], which is a two-step Newton’s method utilizing two derivatives and two functions:
yn ¼ xn � f ðxnÞ
f 0 ðxnÞ

;

xnþ1 ¼ yn � f ðynÞ
f 0 ðynÞ

:

8<
: ð1:1Þ
This method is only fourth-order. One can get fourth order methods requiring less information.
Among higher-order methods requiring only two derivatives and two functions, we find several three-point sixth-order

methods in [5,23,31,20], being respectively shown in (1.2)–(1.5) below.
yn ¼ xn � 2
3

f ðxnÞ
f 0ðxnÞ

;

zn ¼ xn � Jf ðxnÞ � f ðxnÞ
f 0ðxnÞ

; Jf ðxnÞ ¼ 3f 0 ðynÞþf 0ðxnÞ
6f 0ðynÞ�2f 0ðxnÞ

;

xnþ1 ¼ zn � f ðznÞ
aðzn�xnÞðzn�ynÞþ3

2Jf ðxnÞf 0 ðynÞþð1�3
2Jf ðxnÞÞf 0ðxnÞ

; a 2 R;

8>>><
>>>:

ð1:2Þ
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yn ¼ xn � f ðxnÞ
f 0 ðxnÞ

;

zn ¼ xn � 2f ðxnÞ
f 0 ðxnÞþf 0 ðynÞ

;

xnþ1 ¼ zn � f 0 ðxnÞþf 0ðynÞ
3f 0 ðynÞ�f 0ðxnÞ

� f ðznÞ
f 0 ðxnÞ

;

8>>><
>>>:

ð1:3Þ

yn ¼ xn � 2
3

f ðxnÞ
f 0ðxnÞ

;

zn ¼ xn � 9�5s
10�6s

f ðxnÞ
f 0ðynÞ

; s ¼ f 0 ðynÞ
f 0 ðxnÞ

;

xnþ1 ¼ zn � aþbs
cþdsþrs2 � f ðznÞ

f 0ðxnÞ
;

8>>><
>>>:

ð1:4Þ
where a ¼ ð5c þ 3dþ rÞ=2; b ¼ ðr � 3c � dÞ=2; c þ dþ r – 0; a; b; c; d; r 2 R.
yn ¼ xn � f ðxnÞ
f 0 ðxnÞ

;

zn ¼ yn � 1þbu
1þðb�2Þu

f ðynÞ
f 0ðxnÞ
¼ yn � Gf ðuÞ f ðxnÞ

f 0 ðxnÞ
;

xnþ1 ¼ zn � 1�u
1�3u �

f ðznÞ
f 0ðxnÞ

:

8>>><
>>>:

ð1:5Þ
where u ¼ f ðynÞ
f ðxnÞ ;Gf ðuÞ ¼ uð1þbuÞ

1þðb�2Þu ; b 2 R.

Definition 1.1 (Error equation, asymptotic error constant, order of convergence). Let x0; x1; . . . ; xn; . . . be a sequence of numbers

converging to a. Let en ¼ xn � a for n ¼ 0;1;2; . . .. If constants p P 1; c – 0 exist in such a way that enþ1 ¼ cep
n þ Oðepþ1

n Þ called
the error equation, then p and g ¼ jcj are said to be the order of convergence and the asymptotic error constant, respectively. It
is easy to find c ¼ limn!1

enþ1

ep
n

. Some authors call c the asymptotic error constant.

Three-point methods (1.2)–(1.5) possess rather complicated structures, as compared with two-point methods like (1.1).
Among the existing methods requiring two derivatives and two functions, two-point methods of order higher than four are
rarely found. As a result, this rareness gives us a strong motivation to design less complicated higher-order two-point meth-
ods using two derivatives and two functions. In this paper, our special attention is paid to the development of a general class
of two-point higher-order extended double-Newton methods. To this end, by introducing a two-variable weighting function
in the second step of (1.1), we propose a higher-order family of two-point methods in the following form:
yn ¼ xn � f ðxnÞ
f 0 ðxnÞ

;

xnþ1 ¼ yn � Kf ðs; uÞ � f ðynÞ
f 0 ðynÞ

;

8<
: ð1:6Þ
where the weighting function Kf : C2 ! C is holomorphic[26] in a neighborhood of ð1;0Þ with s ¼ f 0 ðynÞ
f 0 ðxnÞ
¼ 1þ OðenÞ and

u ¼ f ðynÞ
f ðxnÞ ¼ OðenÞ. In view of the fact that s� 1 ¼ OðenÞ;u ¼ OðenÞ, Taylor series expansion of Kf ðs;uÞ about ð1;0Þ up to terms

of several order in each variable will play an essential role in designing two-point sixth-order methods costing two deriva-
tives and two functions.

Note that proposed scheme (1.6) requires four new function evaluations for f ðxnÞ; f ðynÞ; f
0ðxnÞ; f 0ðynÞ. In Section 2, meth-

odology and analysis is described for a new family of sixth-order methods with appropriate forms of Kf . Section 3 investi-
gates some special cases of Kf ðs;uÞ, Section 4 discusses the extraneous fixed points, while Section 5 presents numerical
experiments and concluding remarks.

2. Method development and convergence analysis

This section deals with the main theorem and its proof describing the methodology and convergence behavior on iterative
scheme (1.6).

Theorem 2.1. Assume that f : C! C has a simple root a and is analytic [1] in a region containing a. Let D ¼ f 0ðaÞ and cj ¼ f ðjÞðaÞ
j!f 0 ðaÞ

for j ¼ 2;3; . . .. Let x0 be an initial guess chosen in a sufficiently small neighborhood of a. Let Kf : C2 ! C be holomorphic in a

neighborhood of ð1;0Þ. Let Kij ¼ 1
i!j!

@iþj

@si@uj Kf ðs;uÞjðs¼1;u¼0Þ for 0 6 i; j 6 4. If K00 ¼ 1;K01 ¼ K10 ¼ 0;K20 ¼ 3þK02
4 ;K11 ¼ 1þ K02;

K12 ¼ 1
2 K03 þ 2ðK21 � 2K30 � 1Þ are satisfied, then iterative scheme (1.6) defines a family of two-point sixth-order methods

satisfying the error equation below: for n ¼ 0;1;2; . . .,
enþ1 ¼ c2
2c4 �

ð3þ K02Þ
4

c2c2
3 þ c3

2c3 2K21 � 8K30 �
1
2

K03 � 9
� �

þ c5
2/

� �
e6

n þ Oðe7
nÞ; ð2:1Þ
where / ¼ 8K31 þ 2K13 � 4K22 � 16K40 � K04 þ 14.
Proof. Taylor series expansion of f ðxnÞ about a up to 6th-order terms with f ðaÞ ¼ 0 leads us to:
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f ðxnÞ ¼ Dfen þ c2e2
n þ c3e3

n þ c4e4
n þ c5e5

n þ c6e6
n þ Oðe7

nÞg: ð2:2Þ
It follows that
f 0ðxnÞ ¼ Df1þ 2c2en þ 3c3e2
n þ 4c4e3

n þ 5c5e4
n þ 6c6e5

n þ 7c7e6
n þ Oðe7

nÞg: ð2:3Þ
For simplicity, we will denote en by e from now on. With the aid of symbolic computation of Mathematica [32], we have:
yn ¼ xn �
f ðxnÞ
f 0ðxnÞ

¼ aþ c2e2 � 2ðc2
2 � c3Þe3 þ Y4e4 þ Y5e5 þ Y6e6

n þ Oðe7Þ; ð2:4Þ
where Y4 ¼ ð4c3
2 � 7c2c3 þ 3c4Þ;Y5 ¼ �2ð4c4

2 � 10c2
2c3 þ 3c2

3 þ 5c2c4 � 2c5Þ and Y6 ¼ ð16c5
2 � 52c3

2c3 þ 33c2c2
3 þ 28c2

2c4�
17c3c4 � 13c2c5 þ 5c6Þ. In view of the fact that f 0ðynÞ ¼ f 0ðxnÞjen!ðyn�aÞ, we get:
f 0ðynÞ ¼ D½1þ 2c2
2e2 � 4c2ðc2

2 � c3Þe3 þ D4e4 þ R6
i¼4Diei þ Oðe7Þ�; ð2:5Þ
where D4 ¼ c2ð8c3
2 � 11c2c3 þ 6c4Þ;Di ¼ Diðc2; c3; . . . ; c6Þ for 5 6 i 6 6. Hence we have:
s ¼ f 0ðynÞ
f 0ðxnÞ

¼ 1� 2c2eþ 3ð2c2
2 � c3Þe2 � 4ð4c3

2 � 4c2c3 þ c4Þe3 þ R6
i¼4Eiei þ Oðe7Þ; ð2:6Þ
where Ei ¼ Eiðc2; c3; . . . ; c6Þ for 4 6 i 6 6. In view of the fact that f ðynÞ ¼ f ðxnÞjen!ðyn�aÞ, we get:
f ðynÞ ¼ D½c2e2 � 2ðc2
2 � c3Þe3 þ ð5c3

2 � 7c2c3 þ 3c4Þe4 þ R6
i¼5Fiei þ Oðe7Þ�; ð2:7Þ
where Fi ¼ Fiðc2; c3; . . . ; c6Þ for 5 6 i 6 6. Hence we have:
u ¼ f ðynÞ
f ðxnÞ

¼ c2e� ð3c2
2 � 2c3Þe2 þ ð8c3

2 � 10c2c3 þ 3c4Þe3 þ R6
i¼4Giei þ Oðe7Þ; ð2:8Þ
where Gi ¼ Giðc2; c3; . . . ; c6Þ for 4 6 i 6 6.
By direct substitution of zn; f ðxnÞ; f ðynÞ; f

0ðxnÞ; f 0ðynÞ and Kf ðs;uÞ in (1.6), we find
xnþ1 ¼ yn � Kf ðs;uÞ �
f ðynÞ
f 0ðynÞ

¼ aþ ð1� K00Þe2 þ R6
i¼3Ciei þ Oðe7Þ; ð2:9Þ
where Ci ¼ Ciðc2; c3; . . . ; c6;Kj‘, for 3 6 i 6 6;0 6 j; ‘ 6 4.
Noting that Oðf ðxnÞÞ ¼ Oðs� 1Þ ¼ OðuÞ ¼ OðeÞ and Oðf ðynÞÞ ¼ Oðe2Þ, Taylor expansion of Kf ðs;uÞ about ð1;0Þ up to

fourth-order terms in both variables yields after retaining up to fourth-order terms with K14 ¼ K23 ¼ K24 ¼ K32 ¼ K33 ¼
K34 ¼ K41 ¼ K42 ¼ K43 ¼ K44 ¼ 0:
Kf ðs;uÞ ¼ K00 þ K01uþ K02u2 þ K03u3 þ K04u4 þ ðs� 1ÞðK10 þ K11uþ K12u2 þ K13u3Þ þ ðs� 1Þ2ðK20 þ K21uþ K22u2Þ
þ ðs� 1Þ3ðK30 þ K31uÞ þ K40ðs� 1Þ4 þ Oðe5Þ: ð2:10Þ
By setting K00 ¼ 1 from (2.9) along with C3 ¼ 0, we immediately solve for K01 as
K10 ¼
K01

2
: ð2:11Þ
By substituting K00;K10 into C4 ¼ 0, we find two independent relations below:
K01 ¼ 0; K02 � 2K11 þ 4K20 � 1 ¼ 0: ð2:12Þ
As a result, we find
K01 ¼ 0; K20 ¼
1� K02 þ 2K11

4
: ð2:13Þ
By substituting K00;K10;K01;K20 into C5 ¼ 0, we find two independent relations below:
K11 � K02 � 1 ¼ 0; K12 � 2K21 þ 4K30 �
1
2

K03 þ 2 ¼ 0: ð2:14Þ
Solving (2.14) for K11;K12 yields
K11 ¼ 1þ K02; K12 ¼
1
2

K03 þ 2ðK21 � 2K30 � 1Þ: ð2:15Þ
By substituting K00;K01;K10;K20;K11;K12 into C6, we find:
C6 ¼ c2
2c4 �

ð3þ K02Þ
4

c2c2
3 þ c3

2c3 2K21 � 8K30 �
1
2

K03 � 9
� �

þ c5
2/ ð2:16Þ
with / ¼ 8K31 þ 2K13 � 4K22 � 16K40 � K04 þ 14 describing (2.1). This completes the proof. h
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3. Case studies

This section describes some interesting case studies based on different forms of weighting functions Kf ðs;uÞ. Using rela-
tions (2.11), (2.13) and (2.15), the Taylor-polynomial form of Kf ðs;uÞ is easily given by
Kf ðs;uÞ ¼ 1þ 1
4
ð3þ K02ÞS2 þ K30S3 þ K40S4 þ fð1þ K02ÞSþ K21S2 þ K31S3gu

þ fK02 þ
1
2

K03 þ 2ðK21 � 2K30 � 1ÞSþ K22S2gu2 þ fK03 þ K13Sgu3 þ K04u4; ð3:1Þ
where notations S ¼ s� 1 are introduced for simplicity. Special cases of Kf ðs;uÞ are considered here. In each case, relevant
coefficients are determined based on relations (2.11)–(2.15), along with g as the asymptotic error constant.

Case 1:
Kf ðs;uÞ ¼ 1þ a1S2 þ ða2Sþ a3S2Þuþ ða4 þ a5Sþ a6S2Þu2;

a1 ¼ 1
4 ða4 þ 3Þ; a2 ¼ 1þ a4; a5 ¼ 2ða3 � 1Þ; a3; a4; a6 ¼ free;

g ¼ ð14� 4a6Þc5
2 þ ð2a3 � 9Þc3

2c3 � 1
4 ða4 þ 3Þc2c2

3 þ c2
2c4:

8><
>: ð3:2Þ
In what follows, we consider three kinds of weighting functions as some interesting sub-cases with some choices of free
parameters a3; a4; a6.

Sub-Case 1A:
Kf ðs;uÞ ¼ 1þ 3
4 S2 þ Sð1þ SÞu;

a3 ¼ 1; a4 ¼ 0; a6 ¼ 0:

(
ð3:3Þ
Sub-Case 1B:
Kf ðs;uÞ ¼ 1þ SðS� 2Þu� 3u2;

a3 ¼ 1; a4 ¼ �3; a6 ¼ 0:

(
ð3:4Þ
Sub-Case 1C:
Kf ðs;uÞ ¼ 1þ 1
2 S2 þ S2u� u2;

a3 ¼ 1; a4 ¼ �1; a6 ¼ 0:

(
ð3:5Þ
Case 2:
Kf ðs;uÞ ¼ 1þ a1S2 þ a2S3 þ a3Suþ a4u2;

a1 ¼ 1
4 ða4 þ 3Þ; a2 ¼ � 1

2 ; a3 ¼ 1þ a4; a4 ¼ free;

g ¼ 14c5
2 � ð8a2 þ 9Þc3

2c3 � 1
4 ða4 þ 3Þc2c2

3 þ c2
2c4:

8><
>: ð3:6Þ
In what follows, we consider two kinds of weighting functions as some interesting sub-cases with some choice of a free
parameter a4.

Sub-Case 2A:
Kf ðs;uÞ ¼ 1þ 1
2 S2 � 1

2 S3 � u2;

a1 ¼ 1
2 ; a2 ¼ � 1

2 ; a3 ¼ 0; a4 ¼ �1:

(
ð3:7Þ
Sub-Case 2B:
Kf ðs;uÞ ¼ 1þ 3
4 S2 � 1

2 S3 þ Su;

a1 ¼ 3
4 ; a2 ¼ � 1

2 ; a3 ¼ 1; a4 ¼ 0:

(
ð3:8Þ
Case 3:
Kf ðs;uÞ ¼ r0þr1sþr2s2

1þp1sþp2s2 þ au2;

r0 ¼ 2þ p1
2 ; r1 ¼ �2; r2 ¼ 2þ p1

2 ; p2 ¼ 1; a ¼ �1; p1ð – � 2Þ ¼ free;

g ¼ c2
2c4 � 5c3

2c3 � 1
2 c2c2

3 þ 2c5
2 3þ 4

p1þ2

� �
:

8>>><
>>>:

ð3:9Þ
In what follows, we consider four kinds of weighting functions as some interesting sub-cases with some choice of a free
parameter p1.

Sub-Case 3A:
Kf ðs;uÞ ¼ 2ð1�sþs2Þ
ð1þs2Þ � u2;

r0 ¼ 2þ p1
2 ; r1 ¼ �2; r2 ¼ 2þ p1

2 ; p2 ¼ 1; a ¼ �1; p1 ¼ 0:

(
ð3:10Þ
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Sub-Case 3B:
Kf ðs;uÞ ¼ � 2s
ð1�4sþs2Þ � u2;

r0 ¼ 2þ p1
2 ; r1 ¼ �2; r2 ¼ 2þ p1

2 ; p2 ¼ 1; a ¼ �1; p1 ¼ �4:

(
ð3:11Þ
Sub-Case 3C:
Kf ðs;uÞ ¼ 3s2�2sþ3
ð1þsÞ2

� u2;

r0 ¼ 2þ p1
2 ; r1 ¼ �2; r2 ¼ 2þ p1

2 ; p2 ¼ 1; a ¼ �1; p1 ¼ 2:

(
ð3:12Þ
Sub-Case 3D:
Kf ðs;uÞ ¼ � ð1þsÞ2
ð1�6sþs2Þ � u2;

r0 ¼ 2þ p1
2 ; r1 ¼ �2; r2 ¼ 2þ p1

2 ; p2 ¼ 1; a ¼ �1; p1 ¼ �6:

(
ð3:13Þ
Case 4:
Kf ðs;uÞ ¼ aþbðs�1Þþcuþmðs�1Þ2þgðs�1Þuþhu2

1þBðs�1ÞþCuþMðs�1Þ2þdðs�1ÞuþHu2 ;

a ¼ 1; b ¼ B ¼ 1
2 ðc þ 4Þ; C ¼ c; h ¼ H� dþ g � 1; M ¼ 1

4 ðdþ 4m� g � 2Þ;
where m; g; c; d; H are free;
g ¼ 1

4 c2 4c2c4 þ c2
3ðd� g � 2Þ � 4c4

2ðd� H� 4mþ g þ 4Þ þ 2c2
2c3ðc � 2Þ

� 	
:

8>>>>><
>>>>>:

ð3:14Þ
In the next section, we select free parameters m; g; c; d;H to position the extraneous fixed points on the imaginary axis
based on the dynamics of basins of attraction associated with this Kf . The dynamical idea behind basins of attraction was
initiated by Stewart [28] and followed by works of Chun et al.[6–8], Cordero et al. [10] and Neta et al.[21]. More recent
results on basins of attraction can be found in [2,18,19].
4. Extraneous fixed points

Multipoint iterative methods [17] solving a nonlinear equation of the form f ðxÞ ¼ 0 can be written as
xnþ1 ¼ Rf ðxnÞ; ð4:1Þ
where Rf is the iteration function whose fixed points are zeros of f ðxÞ under consideration. The iteration function Rf ,
however, might possess other fixed points that are not zeros of f. Such fixed points different from zeros of f are called the
extraneous fixed points [12,30] of the iteration function Rf . Extraneous fixed points may form attractive cycles and periodic
orbits to display chaotic dynamics of the basin of attraction under investigation. This motivates our technical selection of
appropriate parameters among free parameters m; g; c; d;H of Kf in Case 4 of the preceding section via intensive analysis
of the extraneous fixed points under some constraints.

The proposed method (1.6) can be put in the form:
xnþ1 ¼ Rf ðxnÞ ¼ xn �
f ðxnÞ
f 0ðxnÞ

Hf ðxnÞ; ð4:2Þ
where Hf ðxnÞ ¼ 1þ u
s Kf ðs;uÞ can be regarded as a weighting function of the classical Newton’s method. It is obvious that a is

a fixed point of Rf . The points n – a for which Hf ðnÞ ¼ 0 are extraneous fixed points of Rf . If we look at Hf in Case 1, it contains
one free parameter a6. Thus all of its listed three subcases with the same value of a6 ¼ 0 are the same dynamically. If we look
at Hf in Case 2, it contains no free parameter. Thus all of its three subcases are the same dynamically. If we look at Hf in Case
3, it contains one free parameter p1. Thus all four subcases are dynamically different from each other. We pay a special atten-
tion to Case 4 with a bivariate second-order rational weighting function Kf . Indeed, this case allows us to get Hf in the form of
a bivariate second-order rational function with some free parameters.

We are ready to impose some constraints on the extraneous fixed points to be determined from the zeros of Hf in
order to select free parameters m; g; c; d;H for a bivariate second-order rational weighting function Kf under Case 4 in
Section 3. Chun et al. [9] imposed constraints on the extraneous fixed points all of which should lie on the imaginary
axis. It is also worth to observe the dynamic behavior near the extraneous fixed points on the imaginary axis which is
the boundary of two basins of two roots for the typical quadratic polynomial f ðzÞ ¼ z2 � 1 as well as to observe the
dynamics of zeros of f in the basins of attraction under investigation. Closely following the approach of Chun et al.
[9], we would like to position all the extraneous fixed points on the imaginary axis. To this end, we first find the explicit
form of Kf in (3.14):
Kf ðs;uÞ ¼
1þ ð2þ c

2Þðs� 1Þ þ cuþmðs� 1Þ2 þ gðs� 1Þuþ ðg � dþ H� 1Þu2

1þ ð2þ c
2Þðs� 1Þ þ cuþ 1

4 ð4m� g þ d� 2Þðs� 1Þ2 þ dðs� 1Þuþ Hu2
: ð4:3Þ
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We then construct Hf ðxnÞ ¼ 1þ u
s Kf ðs; uÞ in (4.2) below:
Hf ðxnÞ ¼ 1þ u
s
�

1þ ð2þ c
2Þðs� 1Þ þ cuþmðs� 1Þ2 þ gðs� 1Þuþ ðg � dþ H� 1Þu2

1þ ð2þ c
2Þðs� 1Þ þ cuþ 1

4 ð4m� g þ d� 2Þðs� 1Þ2 þ dðs� 1Þuþ Hu2
: ð4:4Þ
We now apply a quadratic polynomial f ðzÞ ¼ z2 � 1 to Hf ðxnÞ and construct a complex rational weighting function HðzÞ in the
form of
HðzÞ ¼ FðzÞ
2ð1þ z2ÞTðzÞ ; FðzÞ ¼ ð3q� 4Þz6 � 5ðqþ 8Þz4 þ ðq� 20Þz2 þ q; ð4:5Þ
where TðzÞ ¼ z4ðq� 1Þ � 2ð7þ qÞz2 þ q� 1 and q ¼ d� H� 4mþ g þ 3.
It is interesting to investigate the complex dynamics of the rational iterative map Rp of the form
znþ1 ¼ RpðznÞ ¼ zn �
pðznÞ
p0ðznÞ

HðznÞ; ð4:6Þ
in connection with the basins of attraction for a variety of polynomials pðznÞ. Indeed, RpðzÞ represents the classical Newton’s
method with weighing function HðzÞ and may possess its fixed points as zeros of pðzÞ or extraneous fixed points associated
with HðzÞ. As a result, basins of attraction for the fixed points or the extraneous fixed points as well as their attracting peri-
odic orbits may make an impact on the complicated and chaotic complex dynamics whose visual description for various
polynomials will be shown in the latter part of Section 5.

To continue a further analysis on HðzÞ, we observe that the coefficients of HðzÞ are expressed in terms of only a new single
parameter qðd;H;m; gÞ being independent of c. We wish to determine real values of q in (4.5) such that the all the roots
(other than zero a of f) of H lie on the imaginary axis. Once a real value of q is determined, then we can select three free
real parameters among four m; g; d;H to simplify the explicit form of Kf ðs;uÞ.

We now closely look at the numerator FðzÞ of H to position all the roots of H on the imaginary axis. Suppose that
all zeros n of FðzÞ are written as n ¼ i � k; i ¼

ffiffiffiffiffiffiffi
�1
p

; k – 0. Since FðnÞ ¼ 0 yields the following sextic equation with real
coefficients:
�ð3q� 4Þk6 � 5ðqþ 8Þk4 � ðq� 20Þk2 þ q ¼ 0: ð4:7Þ
By letting t ¼ k2 > 0, Eq. (4.7) reduces to the following cubic equation:
ð4� 3qÞt3 � 5ðqþ 8Þt2 � ðq� 20Þt þ q ¼ 0: ð4:8Þ
Hence by taking two square roots of each of all three positive real roots of (4.8), we equivalently find all corresponding six
imaginary roots of FðzÞ in (4.5).

It still remains to investigate the conditions on q for (4.8) to have all distinct positive real roots. If q ¼ 0, then t ¼ 0 is a
root of (4.8). Therefore we restrict q – 0. If q – 0, divide both sides of (4.8) by q and simplify to obtain after rearrangement
with x ¼ 1=q:
ð3� 4xÞt3 þ 5ð1þ 8xÞt2 þ ð1� 20xÞt ¼ 1: ð4:9Þ
Let y1ðtÞ ¼ ð3� 4xÞt3 þ 5ð1þ 8xÞt2 þ ð1� 20xÞt and y2ðtÞ ¼ 1. Then the problem of locating three distinct positive
real roots of (4.8) reduces to that of counting the number of positive crossing points of the cubic polynomial y1ðtÞ with
the horizontal line y2ðtÞ ¼ 1, as x varies. Suppose that the leading coefficient 3� 4x < 0 or x > 3=4 in y1ðtÞ, then
y1ð�1Þ ¼ 1þ 64x > 1. By the continuity of y1ðtÞ, it must intersect the horizontal line y2ðtÞ ¼ 1 at a negative crossing point.
As a result, we must restrict x < 3=4 for (4.9) to possess three distinct positive real roots. A typical sketch of graphs for both
y1ðtÞ and y2ðtÞ is shown in Fig. 1. To find the extremal points, we set y01ðtÞ ¼ 3t2ð3� 4xÞ � 20xþ 10tð1þ 8xÞ þ 1 ¼ 0 which
yields two extremal points t1 and t2:
t1 ¼
5þ 40xþ 4D

3ð4x� 3Þ ; t2 ¼
5þ 40x� 4D

3ð4x� 3Þ ð4:10Þ
with D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 37xþ 85x2
p

, provided that 1þ 37xþ 85x2 > 0 yielding conditions on x:
x <
ð�37� 7

ffiffiffiffiffiffi
21
p
Þ

170
� �0:406341 or

ð�37þ 7
ffiffiffiffiffiffi
21
p
Þ

170
� �0:0289528 < x <

3
4
: ð4:11Þ
Since t1 < t2 for x < 3
4, we find that y1ðtÞ has a local maximum and minimum at t1 and t2, respectively. We also require both

t1 > 0 and t2 > 0, which amounts to D > 0 and t1 þ t2 ¼ � 10ð1þ8xÞ
3ð3�4xÞ > 0 and 1�20x

3ð3�4xÞ > 0. Consequently, we find that

x < ð�37�7
ffiffiffiffi
21
p
Þ

170 � �0:406341 for positive extremal points. Finally, we require that y1ðt2Þ < 1 < y1ðt1Þ, which yields

x ¼ 1
q <

1
75 ð�20� 2�102=3

ð�215þ21
ffiffiffiffiffiffi
105
p

Þ1=3 þ ð�2150þ 210
ffiffiffiffiffiffiffiffiffi
105
p

Þ1=3Þ � �0:467119. Hence, we find the constraints
�2:14078101258 < q < 0 ð4:12Þ



Fig. 1. Three distinct positive crossing points.
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for (4.8) to have all three distinct positive real roots. Via direct computation, we also check that these values of q in (4.12) do
not satisfy the zeros of TðzÞ in (4.5). If z ¼ �i is a zero of FðzÞ, then Fð�iÞ ¼ �8ð2þ qÞ ¼ 0 would hold. Hence, q ¼ �2 would
yield ð1þ z2Þ as a factor of FðzÞ and cause only four extraneous fixed points from the degeneracy of Hf ðzÞ ¼ 1þ10z2þ5z4

ð3þz2Þð1þ3z2Þ. Since

q ¼ d� H� 4mþ g þ 3, we are free to choose 3 parameters among four parameters d;H;m; g, once q is properly chosen to
satisfy (4.12). Table 1 lists some interesting choices of parameters q; d;H;m; g for all purely imaginary extraneous fixed
points n and simplified forms of Hf ðzÞ as well as Kf ðs;uÞ.

At this point, we now wish to compare the dynamical behavior of (4.6) with that of another complex rational iterative
map associated with an existing method (1.5) suggested by Neta [20] in 1979. By repeating a similar analysis that we have
done so far, iterative method (1.5) can be put in the form:
Table 1
Extrane

q

�2

� 3
2

�1

�1

� 1
2

xnþ1 ¼ Rf ðxnÞ ¼ xn �
f ðxnÞ
f 0ðxnÞ

Hf ðxnÞ; ð4:13Þ
where Hf ðxnÞ ¼ 1þ uð1þbuÞ
1þðb�2Þuþ

vð1�uÞ
1�3u ;v ¼

f ðznÞ
f ðxnÞ and zn ¼ yn � f ðxnÞ

f 0 ðxnÞ
uð1þbuÞ

1þðb�2Þu.
Like rational iterative map Rp (4.6), the complex rational iterative map Rp associated with Rf can be written as
znþ1 ¼ RpðznÞ ¼ zn �
pðznÞ
p0ðznÞ

HðznÞ: ð4:14Þ
In addition, the rational weighting function HðzÞ associated with Hf ðxnÞ for f ðzÞ ¼ z2 � 1 is found to be:
HðzÞ ¼ FðzÞ
64z6ð3þ z2Þ½2� bþ ðbþ 2Þz2�2

; ð4:15Þ
where FðzÞ ¼ �b2þ2z2bð�4þ5bÞþ z4ð�16þ72b�51b2Þþ4z6ð96�148bþ63b2Þþ z8ð1760�624b�279b2Þþ z10ð1536þ
728b�38b2Þþ z12ð432þ424bþ107b2Þ.

We wish again to locate all the roots of HðzÞ on the imaginary axis. It is, however, expected that some roots may easily
escape from the imaginary axis, since all the coefficients of FðzÞ of degree 12 depend upon only a single parameter b. In fact,
if b ¼ 0 or b ¼ 1, then HðzÞ degenerates to an eighth-order rational function due to a common divisor z4 or ð1þ 3z2Þ2; this
fact, however, yields only 2 imaginary roots �i=

ffiffiffi
3
p

or �1:35684i, while remaining six roots are all complex. Thus we are not
interested in b ¼ 0 or b ¼ 1 and assume that b – 0 and b – 1. Consequently, our aim suffices to locate as many roots on the
imaginary axis as possible, based on an appropriate selection of parameter b. Suppose that all zeros n of FðzÞ are written as
n ¼ i � k; i ¼

ffiffiffiffiffiffiffi
�1
p

; k – 0. Since FðnÞ ¼ 0 yields the following polynomial equation of degree 12 with real coefficients:
ous fixed points n;HðzÞ and Kf for selected parameters with q ¼ dþ g � H� 4mþ 3.

d H m g c n HðzÞ Kf ðs;uÞ

�5 0 0 0 0 �0:32492i;�1:37638i 1þ10z2þ5z4

ð3þz2Þð1þ3z2Þ
1þ2ðs�1Þþ4u2

1þ2ðs�1Þ�7
4ðs�1Þ2�5ðs�1Þu

0 0 11
8

1 0 �
ffiffiffi
3
p

i;�0:281085i;�0:862856i ð3þz2Þð1þ14z2þ17z4Þ
2ð1þz2Þð5þ22z2þ5z4Þ

1þ2ðs�1Þþ11
8 ðs�1Þ2þðs�1Þu

1þ2ðs�15
8ðs�1Þ2

2 6 0 0 2 �0:228243i;�0:797473i;�2:07652i 1þ21z2þ35z4þ7z6

4ð1þz2Þð1þ6z2þz4Þ
1þ3ðs�1Þþ2uþ3u2

1þ3ðs�1Þþ2uþ2ðs�1Þuþ6u2

5
2

3 1 1
2

2 �0:228243i;�0:797473i;�2:07652i 1þ21z2þ35z4þ7z6

4ð1þz2Þð1þ6z2þz4Þ
1þ3ðs�1Þþðs�1Þ2þ2uþ1

2ðs�1Þu
1þ3ðs�1Þþðs�1Þ2þ2uþ5

2ðs�1Þuþ3u2

� 1
2

1
2

5
8

0 0 �0:159947i;�0:755758i;�2:49428i 1þ41z2þ75z4þ11z6

2ð1þz2Þð3þ26z2þ3z4Þ
1þ2ðs�1Þþ5

8ðs�1Þ2

1þ2ðs�1Þ�1
2ðs�1Þuþ1

2u2



Table 2
Extrane

b

2
5

1
2

4
5

3� 2
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� b2 � 2bð�4þ 5bÞk2 þ ð�16þ 72b� 51b2Þk4 � 4ð96� 148bþ 63b2Þk6 þ ð1760� 624b� 279b2Þk8

� ð1536þ 728b� 38b2Þk10 þ ð432þ 424bþ 107b2Þk12 ¼ 0: ð4:16Þ
Letting k2 ¼ t > 0 in (4.16) leads us to the following sextic equation in k with real coefficients:
� b2 þ tð4� 5bÞbþ t2ð�16þ 72b� 51b2Þ � 4t3ð96� 148bþ 63b2Þ þ t4ð1760� 624b� 279b2Þ
þ 2t5ð�768� 364bþ 19b2Þ þ t6ð432þ 424bþ 107b2Þ ¼ 0: ð4:17Þ
Let /ðtÞ denote the left side of (4.17). Since /ð�1Þ ¼ 4096 > 0;/ð0Þ ¼ �b2 < 0 and /ð2Þ ¼ 1359ðb� 184
453Þ

2 þ 497664
151 > 0, there

exist a negative root t0 satisfying �1 < t0 < 0 and a positive root t1 satisfying 0 < t1 < 2 due to the continuity of /. Hence,
/ has at most 5 positive roots including t1. We find that the highest-order term t6ð432þ 424bþ 107b2Þ dominates /ðtÞ for

sufficient large b, say, for jbj > 4 when t > 2 due to the large coefficient 432þ 424bþ 107b2 ¼ 107ðbþ 212
107Þ

2 þ 1280
107 ; this tells

us that / has no positive roots for t P 2.
To find further possible positive roots of /, we favorably rely on the graphical analysis by plotting / for 0 < t < 2 with a

variety of selected parameters ranging 0 < jbj 6 4. We especially pay attention to an interval 0 < b < 1 whose endpoints
degenerates H to an eighth-order polynomial equation. Indeed, we have found three positive roots in an interval
2
5 6 b < 1 as shown in Fig. 2. Table 2 lists imaginary extraneous fixed points and Hf for selected three values of parameter
b. In remaining intervals other than 0 < b < 1, we have found at most one positive root. As another choice for b, we list
the case for 0 < b ¼ 3� 2

ffiffiffi
2
p

< 1 in Table 2 based on the analysis for the fourth-order King’s method done by Neta et al.
[22]. It turned out that most of corresponding extraneous fixed points with this b are located near the imaginary axis.

The latter part of the next section will discuss complex dynamics as well as chaotic behavior of both rational iterative
maps (4.6) and (4.14) when applied to various polynomials, based on visual description of their basins of attraction along
with comparison of their dynamic properties and characteristics.

5. Numerical experiments and concluding remarks

This first part of this section deals with computational characteristics of proposed method (1.6) for a variety of test
functions in comparison with other existing methods. In the second part we discuss the complex dynamics of two rational
iterative maps (4.6) and (4.14) along with concluding remarks.
Fig. 2. Three positive roots of /ðtÞ for 0 < t < 2.

ous fixed points n;HðzÞ and Gf ðuÞ for selected parameters b.

n HðzÞ Gf ðuÞ

�0:325611i;�1:15557i;�1:20827i �1�10Z2þ29z4þ1172z6þ9161z8þ11382z10þ3867z12

256z6ð3þz2Þð2þ3z2Þ2
uð5þ2uÞ

5�8u

�0:304113;�0:156573� 0:302977i

�0:341541i;�1:02013i;�1:28811i �1�6z2þ29z4þ604z6þ5513z8þ7562z10þ2683z12

64z6ð3þz2Þð3þ5z2Þ2
uð2þuÞ
2�3u

�0:318902;�0:203793� 0:305548i

�0:424138i;�0:794406i;�1:34307i �1þ14z4þ112z6þ1691z8þ3272z10þ1312z12

16z6ð3þz2Þð3þ7z2Þ2
uð5þ4uÞ

5�6u

�0:355921;�0:290282� 0:295202iffiffiffi
2
p �0:259813;�0:19545� 1:24831i �0:0294373�1:07821z2�5:14805z4þ289:847z6þ1644:73z8þ1659:79z10þ507:897z12

64z6ð�1:82843�2:17157z2Þ2ð3þz2Þ
uð1þð3�2

ffiffi
2
p
ÞuÞ

1þð1�2
ffiffi
2
p
Þu

�0:476847i;�0:0475696� 0:190337i



Table 3
Convergence for sample test functions F1ðxÞ � F6ðxÞ with methods KY1� KY3.

KYi FðxnÞ n xn jFðxnÞj jenj en
e6

n�1

��� ��� g

KY1 F1 0 �0.95 0.0524792 0.0500000
1 �0.999999864300288 1:357� 10�7 1:357� 10�7 8.684781593 15.16666667

2 �1.00000000000000 9:470� 10�41 9:470� 10�41 15.16664250

3 �1.00000000000000 0:0� 10�100 0:0� 10100

F2 0 0.75 2.12413 0.136227
1 0.859748914260037 0.2002 0.02648 4142.930343 46.17549177
2 0.886226916675717 6:223� 10�8 8:777� 10�9 25.47041020

3 0.886226925452758 1:497� 10�46 2:111� 10�47 46.17548430

4 0.886226925452758 0:0� 10�100 0:0� 10�100

KY2 F3 0 �0:95
2:15

� �
a 19.2659 0.0995374

1 �0:999997479564086
2:23607016675128

� �
0.0006925 3:338� 10�6 3.33848 2.154207065

2 �1:00000000000000
2:23606797749979

� �
6:186� 10�31 2:982� 10�33 2.154214741

3 �1:00000000000000
2:23606797749979

� �
0:0� 10�97 0:0� 10�99

F4 0 0.1 0.400623 0.100000
1 6:812� 10�11 2:725� 10�10 6:813� 10�11 0.00006812682743 0.0008102972659

2 �8:101� 10�65 3:241� 10�64 8:101� 10�65 0.0008102972653

3 0:0� 10�229 0:0� 10�228 0:0� 10�229

KY3 F5 0 0.91 0.889859 0.0645898
1 0.974590839309637 0.00001478 9:948� 10�7 13.70124208 10.52644713

2 0.974589844487655 1:516� 10�34 1:020� 10�35 10.52640383

3 0.974589844487655 0:0� 10�101 0:0� 10�99

F6 0 �1.48 0.344055 0.0907963
1 �1.57079632759000 2:942� 10�9 7:951� 10�10 0.001419094785 0.0009648572271

2 �1.57079632679490 9:021� 10�58 2:438� 10�58 0.0009648572240

3 �1.57079632679490 0:0� 10�99 0:0� 10�99

a �0:95
2:15

� �
¼ �0:95þ 2:15i.
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In many real-life root-finding problems under normal circumstances of computations, it is quite common to find their
numerical results accurate up to approximately 6 or 7 significant decimal digits with second-order Newton-like methods
using common programming languages Fortran or C. In such programming languages, empirically 15 or 16 decimal work-
ing-precision digits are adopted for numerical results with 6 or 7 significant decimal digits. Likewise, about 48 decimal work-
ing-precision digits would be reasonable for approximately 21 significant decimal digits with sixth-order numerical
methods. Computing asymptotic error constants g ¼ limn!1

jen j
jen�1 jp

with several significant digits of accuracy would encounter

extreme calculations due to the indeterminate form of a small-number division near the root a. We, therefore, need to
increase the number of working-precision digits much more for numerical results with moderate number of significant dec-
imal digits.

During the current numerical experiments with programming language Mathematica (Version 7), all computations
have been done with 100 working-precision digits, which minimize round-off errors and let us clearly observe the
computed asymptotic error constants requiring small-number divisions. In addition, the error bound � ¼ 1

2� 10�80

was assigned. The initial guesses x0 were selected close to a to guarantee the convergence of the iterative methods.
Only 15 significant digits of approximated roots xn are displayed in Tables 3–5 due to the limited paper space,
although 80 significant digits are available. When exact root is not available, it is best approximated with 150
digits of precision to hold sufficient number of significant digits of xn � a. Numerical experiments have been carried
out on a personal computer equipped with an AMD 3.1 Ghz dual-core processor and 64-bit Windows 7 operating
system.

Iterative methods (1.6) with (3.4), (3.8), (3.12) were respectively identified by KY1;KY2;KY3 and have shown successful
results for the following test functions:



Table 5
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f

f 1

f 2

f 3

f 4

f 5

f 6

f 7

a 4.5

Table 4
Additio

i

1

2

3

4
5
6
7

Here lo
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Method KY1 : F1ðxÞ ¼ sinðxþ 1Þ þ ðxþ 1Þ2; a ¼ �1:
Method KY1 : F2ðxÞ ¼ sinð2x2Þ � logð1þ 4x2 � pÞ � 1;a ¼

ffiffiffiffiffiffiffiffiffi
p=4

p
:

Method KY2 : F3ðxÞ ¼ x5 þ 2x2 � 64xþ 20þ 88i
ffiffiffi
5
p

; a ¼ �1þ i
ffiffiffi
5
p

; i ¼
ffiffiffiffiffiffiffi
�1
p

:

Method KY2 : F4ðxÞ ¼ sinðx3Þ þ 2� ð2xþ 1Þ logðe2 þ x2Þ; a ¼ 0:
Method KY3 : F5ðxÞ ¼ x5 � x4 þ e2x � 7; a � 0:974589844487655:
Method KY3 : F6ðxÞ ¼ 2x� logðe2 þ 4x2 � p2Þ þ pþ 2; a ¼ �p=2:

8>>>>>>>>><
>>>>>>>>>:

ð5:1Þ
Methods KY1, KY2, KY3 in Table 3 clearly confirms sixth-order convergence based on results of j en
e6

n�1
j. Table 3 lists iter-

ation indexes n, approximate zeros xn, residual errors jf ðxnÞj, errors jenj ¼ jxn � aj and j en
e6

n�1
j as well as the theoretical asymp-

totic error constant g. The values of j en
e6

n�1
j agree up to 9 significant digits with g.

To further check the convergence behavior of proposed scheme (1.6), we list additional functions with roots and initial
guesses in Table 4.

For the purpose of comparison, we first identify methods (1.1), (1.2), (1.3), (1.4), (1.5) by DBN, CHU, PGU, WAN, NET with
(b ¼ � 1

2), respectively. Table 5 displays the values of jxn � aj for methods DBN, CHU, PGU, WAN, NET, KY1, KY2, KY3. As can
be seen in Table 5, proposed methods show favorable or equivalent performance as compared with existing met hods DBN,
CHU, PGU, WAN and NET. It is well expected that method DBN displays the largest error of jxn � aj due to its lower order of
four, in comparison with the rest of the listed methods. In Table 5, italicized numbers refer to the least errors jxn � aj within
ison of jxn � aj for f 1ðxÞ � f 7ðxÞ among listed methods.

x0 jxn � aj DBN CHU PGU WAN NET KY1 KY2 KY3

0.95 jx1 � aj 4.53e�8a 6.35e�9 8.25e�9 7.67e�9 6.39e�9 8.11e�10 3.89e�9 2.43e�9
jx2 � aj 1.36e�31 5.63e�50 3.05e�49 3.07e�49 5.88e�50 1.18e�55 1.17e�51 2.91e�53
jx3 � aj 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100

1.0 jx1 � aj 2.16e�4 9.54e�6 1.16e�4 4.51e�6 2.86e�5 4.43e�6 1.31e�5 2.06e�5
jx2 � aj 1.33e�14 4.52e�29 7.70e�22 1.11e�30 9.18e�26 2.25e�31 1.078e�28 4.48e�27
jx3 � aj 1.90e�55 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100
jx4 � aj 0.0e�100

�0:45 jx1 � aj 8.69e�8 1.87e�9 2.518e�9 1.53e�9 1.91e�9 7.55e�10 1.38e�9 9.58e�10
+0:5i jx2 � aj 2.18e�31 5.64e�55 3.94e�54 1.87e�55 5.92e�55 1.40e�57 6.77e�56 5.24e�57

jx3 � aj 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100

0.1 jx1 � aj 1.25e�8 7.15e�9 1.19e�8 8.52e�9 1.07e�8 1.21e�9 8.31e�9 5.87e�9
jx2 � aj 1.12e�37 1.87e�52 7.38e�51 7.79e�52 3.04e�51 3.68e�59 5.07e�52 4.20e�53
jx3 � aj 7.68e�154 0.0e�151 0.0e�149 0.0e�150 0.0e�202 0.0e�218 0.0e�204 0.0e�206

0.85 jx1 � aj 3.38e�5 4.11e�8 1.79e�7 8.16e�6 9.37e�8 3.21e�6 3.59e�6 1.38e�6
jx2 � aj 3.76e�18 7.03e�45 1.35e�40 3.28e�29 1.48e�42 6.33e�32 1.34e�31 2.03e�34
jx3 � aj 6.71e�70 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100
jx4 � aj 0.0e�100

1.5 jx1 � aj 4.32e�7 2.73e�10 2.60e�9 9.47e�10 1.69e�9 5.08e�10 3.16e�10 1.63e�10
jx2 � aj 5.08e�28 5.48e�61 5.07e�54 4.13e�57 2.17e�55 5.52e�59 1.99e�60 1.86e�62
jx3 � aj 0.0e�99 0.0e�99 0.0e�99 0.0e�99 0.0e�99 0.0e�99 0.0e�99 0.0e�99

0.9 jx1 � aj 5.42e�8 1.40e�11 4.65e�10 1.72e�11 2.58e�10 9.64e�11 2.08e�11 2.88e�13
jx2 � aj 1.23e�30 1.44e�66 1.93e�56 2.20e�66 3.61e�58 2.20e�61 1.63e�65 7.37e�77
jx3 � aj 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100 0.0e�100

3e�8 denotes 4:53� 10�8.

nal test functions f iðxÞ, roots a and initial guesses x0.

f iðxÞ a x0

sinðpxÞ þ ðx� 1Þ2 1 0.95

2 cosðx2Þ � logð1þ 4x2 � pÞ �
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffi

p=4
p

1.0

cosðx2 þ xþ 9
16Þ þ 4xþ 1� i

ffiffiffi
5
p

� 1
2þ i

ffiffi
5
p

4
�0:45þ 0:5i

sinðx3Þ � 3þ ðxþ 1Þ logðe3 þ x2Þ 0 0.1

x5 þ x2 þ xe2x � 7 0.906962092165271 0.85

2x� p� 2þ logðe2 þ 4x2 � p2Þ p=2 1.5

x4 þ x2e1�x � 2þ sinð2þ x3Þ 0.926429193234728 0.9

g zðz 2 CÞ represents a principal analytic branch with �p 6 Imðlog zÞ < p.
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the prescribed error bound. The method DBN requires four iterations to meet the error criterion for test functions f 2 and f 5,
unlike the rest of other listed methods requiring only three. Even with the same order of convergence, one should note that
the behavior of local convergence of jxn � aj is dependent on cj, namely f ðxÞ and a.

Although limited to the test functions chosen in these numerical experiments, based on the results after 2 iterations, KY1
has shown best accuracy in f 1; f 2; f 3; f 4, while CHU in f 5, and KY3 in f 6; f 7. Nevertheless, one should be aware that no iterative
method always shows best accuracy for all the test functions. It is not too much to emphasize that computational accuracy is
sensitively dependent on the structures of the iterative methods, the sought zeros and the test functions as well as good ini-
tial approximations. The corresponding efficiency index for the proposed family of methods (1.6) is found to be 61=4, which is
better than 41=4 for the classical double-Newton method. The current analysis utilizing 2-point information will lead us to a
new development of another family of higher-order root-finders.

We now are ready to discuss the complex dynamics of rational iterative maps (4.6) and (4.14) applied to various polynomials.
To continue our discussion, let us first identify the three members of rational iterative map (4.6) by GKN6m0H6,GKN6m1H3
and GKN6m118H0 respectively with m ¼ 0;H ¼ 6;m ¼ 1;H ¼ 3 and m ¼ 11=8;H ¼ 0; g ¼ 1; c ¼ d ¼ 0 in Table 1. In addition,
we identify one member of rational iterative map (4.14) by Neta6 with b ¼ 3� 2

ffiffiffi
2
p

in Table 2. A variety of examples are shown
here. Basins of attraction for both rational iterative maps (4.6) and (4.14) are illustrated by closely following the technique
shown in [9].

Example 1. As a first example, we have taken a quadratic polynomial with all real roots:
Table 6
Average

Exam

1
2
3
4
5
6

a p6ð
p1ðzÞ ¼ z2 � 1: ð5:2Þ

Basins of attraction for iterative maps GKN6m0H6, GKN6m1H3, GKN6m118H0 and Neta6 with p1ðzÞ ¼ z2 � 1 are illus-

trated, respectively from left to right in Fig. 3. The darker a point of each basin gets, the slower it converges to a root. At a root
or an extraneous fixed point its color is white, while getting darker for more iterations required for convergence within the
iteration limit. At black points, we recognize that the corresponding iterative maps did not converge within the iteration
limit of 40 currently prescribed in this experiment. Based on displayed results, we find that iterative map Neta6 has per-
formed better. Indeed, Table 6 shows average numbers of iterations to converge within the given error bound per point.
Example 2. As a second example, we have taken a cubic polynomial with one real and two complex roots:
p2ðzÞ ¼ z3 � 1: ð5:3Þ

Basins of attraction for GKN6m0H6, GKN6m1H3, GKN6m118H0 and Neta6 with p2ðzÞ ¼ z3 � 1 are illustrated, respec-

tively from left to right in Fig. 4. Neta6 performed best as in Example 1, but now it has more black points than before.
numbers of iterations for convergence per point.

ples pðzÞ GKNm0H6 GKNm1H3 GKN6m118H0 Neta6

z2 � 1 4.1380 4.1380 4.1298 2.5744

z3 � 1 5.7572 5.6097 5.4912 3.4305

z3 � z 5.1652 4.9327 5.0016 3.2130

zðz2 þ 1Þðz2 þ 4Þ 5.5559 5.2736 5.2439 4.0200
ðzþ 1=2� iÞðzþ 1=2� 2iÞðzþ 1Þ 5.1273 5.1391 5.2274 3.2345
p6ðzÞa 9.8523 7.7598 6.6478 19.7674

Averages 7.1198 6.57058 6.34834 7.24796

zÞ ¼ z6 � 1
2 z5 þ 11ð1þiÞ

4 z4 � ð19þ3iÞ
4 z3 þ ð11þ5iÞ

4 z2 � ð11þiÞ
4 zþ 3

2� 3i.

Fig. 3. Comparison of basins of attraction for p1ðzÞ ¼ z2 � 1.



Fig. 4. Comparison of basins of attraction for p2ðzÞ ¼ z3 � 1.
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Example 3. As a third example, we have taken a cubic polynomial with one real roots 0, �1,1:
p3ðzÞ ¼ z3 � z: ð5:4Þ

Basins of attraction for GKN6m0H6, GKN6m1H3, GKN6m118H0 and Neta6 with p3ðzÞ ¼ z3 � z are illustrated, respec-

tively from left to right in Fig. 5. Even though Neta6 has less black points, the basin for the root a ¼ 0 is smaller. This means
that there are points closer to this root that converge to one of the other two.
Example 4. As a fourth example, we have taken a quintic polynomial with one real and four complex roots:
p4ðzÞ ¼ zðz2 þ 1Þðz2 þ 4Þ: ð5:5Þ

Basins of attraction for GKN6m0H6, GKN6m1H3, GKN6m118H0 and Neta6 with p4ðzÞ ¼ zðz2 þ 1Þðz2 þ 4Þ are illustrated,

respectively from left to right in Fig. 6. The phenomenon observed in the previous example is more pronounced here. Neta 6
has much larger basins for the roots �2i.
Example 5. As a fifth example, we have taken another cubic polynomial with one real and two complex roots that are not
complex conjugate to each other. The roots are � 1

2þ i;� 1
2þ 2i and �1:
p5ðzÞ ¼ zþ 1
2
� i

� �
zþ 1

2
� 2i

� �
ðzþ 1Þ: ð5:6Þ
Basins of attraction for GKN6m0H6, GKN6m1H3, GKN6m118H0 and Neta6 with (5.6) are illustrated, respectively from
left to right in Fig. 7. Notice that the basin for Neta6 for the root � 1

2þ i is cut to two because points that should have been in
that basin has converged to � 1

2þ 2i. This did not happen with the new methods.
Fig. 5. Comparison of basins of attraction for p3ðzÞ ¼ z3 � z.

Fig. 6. Comparison of basins of attraction for p4ðzÞ ¼ zðz2 þ 1Þðz2 þ 4Þ.



Fig. 8. Comparison of basins of attraction for p6ðzÞ ¼ z6 � 1
2 z5 þ 11ð1þiÞ

4 z4 � ð19þ3iÞ
4 z3 þ ð11þ5iÞ

4 z2 � ð11þiÞ
4 zþ 3

2� 3i.

Fig. 7. Comparison of basins of attraction for p5ðzÞ ¼ ðzþ 1Þðzþ 1
2� iÞðzþ 1

2� 2iÞ.
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Example 6. As a sixth example, we have taken a sextic polynomial with real and complex roots �1þ 2i;� 1
2� 1

2 i;�1:5i; i;1
and 1� i:
p6ðzÞ ¼ z6 � 1
2

z5 þ 11ð1þ iÞ
4

z4 � ð19þ 3iÞ
4

z3 þ ð11þ 5iÞ
4

z2 � ð11þ iÞ
4

zþ 3
2
� 3i: ð5:7Þ
Basins of attraction for GKN6m0H6, GKN6m1H3, GKN6m118H0 and Neta6 with (5.7) are illustrated, respectively from
left to right in Fig. 8. Now Neta6 has large black regions and in fact the average number of iterations per point is very large as
can be seen in Table 6. The difference between this example and the previous one is that the coefficients are no longer real. It
is possible that this is the reason for the large number of points from which the method did not converge.

Even though in the first 3 examples Neta6 performed batter than our new methods, the last 3 examples shows the robust-
ness of our new methods relative to Neta6. The last example was the toughest for all methods, but was worse for Neta6 as
can be seen in Table 6.

We have shown a technique of selecting parameters of the weighting function of a proposed iterative method. One such
technique is given by positioning the extraneous fixed points of the corresponding rational iterative map applied to a well-
known quadratic polynomial pðzÞ ¼ z2 � 1 on the imaginary axis to get better basins of attraction. In view of the fact that the
imaginary axis is the boundary of basins of attraction for classical Newton’s method when applied to the polynomial
pðzÞ ¼ z2 � 1, it is worth to position the extraneous fixed points on the imaginary axis for improving chance of obtaining bet-
ter basins of attraction. In our future work for the development of a new family of iterative methods, our current approach
will play an important role in selecting parameters of the relevant weight functions to enhance basins of attraction of the
corresponding rational iterative map arising from the proposed iterative method.
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