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1 Introduction

In this article we develop a new method for the numerical solution of the second order
initial value problem

y′′ = f(x, y),
y(x0) = y0,
y′(x0) = y′0.

(1)

Here we are concerned with trigonometrically-fitted methods for (1) whose solution
is periodic or almost periodic with approximately known period.

There are several classes of methods, such as linear multistep methods (including
Obrechkoff methods, see [16]) and Runge-Kutta methods. Another idea is the Ado-
mian decomposition method [3] and its improvements [2]. See also [14] and [23] for
methods applied to quantum chemistry. Here we develop a symmetric twelfth order
scheme based on Obrechkoff methods to numerically solve problems for which the
frequency is approximately known in advance, see review article [7].

Definition 1. Linear multistep methods for the solution (1) are given by

k∑
j=0

αjyn+j = h2
k′∑
j=0

βjfn+j (2)

where yn+j is the approximate value at xn+j and similarly for fn+j. In here k is called
the step-number and k′ is either k − 1 or k. In the former case the method is called
explicit and in the latter it is called implicit. The coefficients αj and βj are chosen to
satisfy stability and convergence, as we describe in the sequel.

We now introduce the first and second characteristic polynomials,

ρ(ζ) =
k∑

j=0

αjζ
j (3)

σ(ζ) =
k∑

j=0

βjζ
j (4)
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Definition 2. The order of the linear multistep method (2) is defined to be p and its
error constant to be Cp+2 if, for an adequately smooth arbitrary test function z(x)

k∑
j=0

[αjz(x+ jh]− h2 βjz
′′(x+ jh)] = Cp+2h

p+2z(p+2)(x) +O(hp+3). (5)

The expression given by (5) is called the local truncation error at xn+k of the method
(2), when z(x) is the theoretical solution of the initial value problem (1).

Throughout, we shall assume that the linear multistep method (2) satisfies the fol-
lowing hypotheses (see [12]):

• αk = 1, |α0|+ |β0| �= 0,
k∑

j=0

|βj | �= 0.

• The characteristic polynomials ρ and σ have no common factors.

• ρ(1) = ρ′(1) = 0, ρ′′(1) = 2σ(1); this is necessary and sufficient for the method
to be consistent, that is, to have order at least one.

• The method is zero-stable; that is, all the roots of ρ lie in or on the unit circle,
those on the unit circle having multiplicity not greater than two.

We now consider the test equation (see e.g. Chawla and Neta [6])

y′′(x) = −λ2y(x). (6)

Let ζs, s = 1, 2, . . . , k denote the zeros of the polynomial

Ω(ζ,H2) = ρ(ζ) +H2σ(ζ) (7)

for H = λh and let ζ1, ζ2 correspond to perturbations of the principal roots of ρ(ζ).
Then a linear multistep method is said to have an interval of periodicity (0, H2) if, for
allH2 in the interval, the roots ζs of (7) satisfy ζ1 = eiθ(H), ζ2 = e−iθ(H), |ζs| ≤ 1, s ≥ 3
and θ(H) is real.

A linear multistep is called P-stable if its interval of periodicity is (0,∞). Lambert
and Watson [13] had shown that a P-stable method is necessarily implicit of order at
most 2.
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Remark: The problem (1) has periodic solutions. If the period is not known, then
the P-stability is desirable. If the period is known approximately, then one can use
the ideas in Gautschi [9], Neta and Ford [15], and others.

Another important property when solving (1) is the phase lag which was introduced
by Brusa and Nigro [5]. Upon applying a linear two-step method to the test equation
(6), we obtain a difference equation of the form

A(H)yn+2 +B(H)yn+1 + C(H)yn = 0 (8)

whose solution is
yn = B1λ

n
1 +B2λ

n
2 (9)

where B1 and B2 are constants depending on the initial conditions. The quadratic
polynomial

A(H)λ2 +B(H)λ+ C(H) = 0 (10)

is called the stability polynomial. The solutions to (10) are given by

λ1 = e(−a(H)+ib(H))H

λ2 = e(−a(H)−ib(H))H (11)

If a(H) ≡ 0 and b(H) ≡ 1, then we get the exact solution to the test equation (6).
The difference between the amplitudes of the exact solution of (6) and numerical
solution is called dissipation error, see [10]. The frequency distortion depends on the
magnitude |b(H)− 1|. The modulus of the leading term in the expansion of b(H)− 1
in powers of H is defined as the phase lag of the method and the expansion itself is
called phase lag expansion. See also Thomas [19] and Twizell [20].

Simos [17] has developed a P-stable trigonometrically-fitted Obrechkoff method of
algebraic order 10 for (1).

yn+1 − 2yn + yn−1 =
�∑

j=1

h2j
[
bj 0

(
y
(2j)
n+1 + y

(2j)
n−1

)
+ 2bj 1y

(2j)
n

]
, (12)
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where 	 = 3 and

b1 0 =
89

1878
− 15120

313
b3 1,

b1 1 =
425

939
+

15120

313
b3 1,

b2 0 = − 1907

1577520
+

660

313
b3 1,

b2 1 =
30257

1577520
+

690

313
b3 1,

b3 0 =
59

3155040
− 13

313
b3 1.

(13)

In order to ensure P-stability, the coefficient b3 1 must be

b3 1 =
(
190816819200[1− cos(v)]− 95408409600v2 + 7950700800v4

−265023360v6 + 4732560v8 − 52584v10 + 1727v12
)
/(3568320v12),

(14)

where v = ωh. The method requires an approximation of the first derivative which
is given by

y′n+1 =
1

2h
(yn−1 − 4yn + 3yn+1)− h

12

(
y′′n−1 + 2y′′n − 3y′′n+1

)
. (15)

He showed that the local truncation error is

LTE =

(
− 2923

209898501120
+

59

1577520
b3 1

)
h12y(12)n .

Wang et al. [22] have suggested a slight modification to the coefficient b3 1 as follows

b3 1 =
3155040− 1428000v2 + 60514v4 − a1 cos(v)

5040v2(−15120 + 6900v2 − 313v4 + a2 cos(v))
, (16)

where a1 = 3155040 + 149520v2 + 3814v4 + 59v6 and a2 = 15120 + 660v2 + 13v4.
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Wang et al. [22] have developed a method of algebraic order 12 as follows

yn+1 − 2yn + yn−1 = h2
(
α1

(
y′′n+1 + y′′n−1

)
+ α2y

′′

n

)

+ h4
(
β1

(
y
(4)
n+1 + y

(4)
n−1

)
+ β2y

(4)
n

)

+ h6
(
γ1

(
y
(6)
n+1 + y

(6)
n−1

)
+ γ2y

(6)
n

)
,

(17)

where

α1 =
229

7788
, β1 = − 1

2360
, β2 =

711

12980
,

γ1 =
127

39251520
, γ2 =

2923

3925152
,

and α2 is chosen so the method is P-stable,

α2 = 2v−2 + v2β2 − v4γ2 + 2 cos(v)
(−v−2 − α1 + v2β1 − v4γ1

)
.

The method is of algebraic order 12 and the local truncation error is now

LTE =
45469

1697361329664000
h14

(
ω12y′′n − y(14)n

)
.

The first order derivative is obtained by

y′n+1 =
1

66h
(305yn+1 − 544yn + 239yn−1) +

h

1980

(−5728y′′n − 571y′′n−1

+119y′′n+1

)
+

h2

2970

(
128y′′′n − 173y′′′n−1

)
+

h3

2970

(
−346y(4)n − 13y

(4)
n−1

)

+
h5

62370

(
−71y(6)n + y

(6)
n−1

)
.

(18)

Remark: There were typographical errors in the coefficients given in [22] which were
corrected in Chun and Neta [8].
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2 New schemes

In this section, we develop a new symmetric Oberchkoff-type implicit scheme for sec-
ond order systems of ordinary differential equations. The methods fit a combination
of monomials and complex exponentials, i.e. the set

{
xi
}K

i=0

⋃
{sin(rωx), cos(rωx)}qr=1 .

The new method is fitting monomials up to ninth degree (K = 9) and complex
exponentials with q = 2.

The method is given by (12) with 	 = 3, i.e.

yn+1 − 2yn + yn−1 =

3∑
j=1

h2j
[
bj 0

(
y
(2j)
n+1 + y

(2j)
n−1

)
+ 2bj 1y

(2j)
n

]
. (19)

The set of equations to solve is Here we detail the development of our twelfth order
method. We will list the resulting equations for the coefficients bj 0 and bj 1 for j =
1, 2, 3. Upon substituting the monomials x0 and x1, we find that the method (19) is
satisfied automatically.

Substituting the monomial x2 or x3 leads to the same equation

−4b1 0 − 4b1 1 + 2 = 0 (20)

Substituting sin(wx) or cos(wx) leads to

(cos(wh)b3 0 + b3 1)(wh)
6 − (cos(wh)b2 0 + b2 1)(wh)

4

+(cos(wh)b1 0 + b1 1)(wh)
2 + cos(wh)− 1 = 0

(21)

Using the monomials x4 leads to two equations, the first is identical to (20) and the
other is

−24b1 0 − 48b2 0 − 48b2 1 + 2 = 0 (22)

The monomial x5 give one new condition, namely

b3 0 + b3 1 = 0 (23)
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Now we substitute sin(2wx) and cos(2wx), the conditions are the same

(256 cos(wh)2b3 0 − 128b3 0 + 128b3 1)(wh)
6

+(−64 cos(wh)2b2 0 + 32b2 0 − 32b2 1)(wh)
4

+(16 cos(wh)2b1 0 − 8b1 0 + 8b1 1)(wh)
2 + 4 cos(wh)2 − 4 = 0

(24)

Using the monomial x6, we have 3 conditions and only one of them is new, namely

−60b1 0 − 720b2 0 − 1440b3 0 − 1440b3 1 + 2 = 0 (25)

The monomial x7 yields multiples of the condition for x6. The conditions resulting
from the monomials x8 and x9 are equivalent and not new. Solving the equations
(20) - (25) for the 6 coefficients, yields the result given in (26).

b1 0 =
1

60

(2c2 + 40c+ 33)v4 − (480c+ 465)v2 − 945(c2 − 1)

(c2 + 8c+ 6)v4 + 15(c2 − 1)v2
,

b1 1 =
1

60

(28c2 + 200c+ 147)v4 + (450c2 + 480c+ 15)v2 + 945(c2 − 1)

(c2 + 8c+ 6)v4 + 15(c2 − 1)v2
,

b2 0 =
1

240

(−8c− 7)v4 + (10c2 + 160c+ 145)v2 + 315(c2 − 1)

(c2 + 8c+ 6)v4 + 15(c2 − 1)v2
,

b2 1 =
1

240

(6c2 + 8c+ 1)v4 + (140c2 + 800c+ 635)v2 + 1575(c2 − 1)

(c2 + 8c+ 6)v4 + 15(c2 − 1)v2
,

b3 0 =
1

240

(−2c2 + c + 1)v6 + (2c3 + 28c2 + 13c+ 47)v4 +N1

(c− 1)((c2 + 8c+ 6)v8 + (15c2 − 15)v6)
,

b3 1 = −b3 0,

(26)

where
c = cos(v),
N1 = (75c3 + 15c2 + 105c− 195)v2 + 180(c3 − c2 − c+ 1).
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The Taylor series expansion of the coefficients up to eighth order is

b1 0 =
29
600

+ 39
88000

v2 + 7999
411840000

v4 + 212777
181209600000

v6 + 22554953
287519232000000

v8 +O (h10) ,

b1 1 =
271
600

− 39
88000

v2 − 7999
411840000

v4 − 212777
181209600000

v6 − 22554953
287519232000000

v8 +O (h10) ,

b2 0 = − 1
800

− 13
352000

v2 − 7999
4942080000

v4 − 212777
2174515200000

v6 − 22554953
3450230784000000

v8 +O (h10) ,

b2 1 =
3

160
− 13

70400
v2 − 7999

988416000
v4 − 212777

434903040000
v6 − 22554953

690046156800000
v8 +O (h10) ,

b3 0 =
59

3024000
+ 13

7040000
v2 + 96553

691891200000
v4 + 569914291

57537672192000000
v6 + 1280357251

1863124623360000000
v8

+O (h10) ,

b3 1 = −b3 0.

(27)

We now apply our method (19) to test equation (6), see e.g. [1]. We obtain the
following difference equation

A(v)ξ2 − 2B(v)ξ + A(v) = 0, (28)

where
A = 1 + b1 0v

2 − b2 0v
4 + b3 0v

6,
B = 1− b1 1v

2 + b2 1v
4 − b3 0v

6.
(29)

The phase lag is given by

7993450002076379

4945603202221473792000000000
v18.

For the local truncation error see [11].

3 Numerical examples

In this section we compare our new scheme for second order systems, denoted OM3,
to the method due to Wang et al., denoted Wang, for the solution of several examples.
For both methods we use (18) to approximate the first derivative.
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Example 1

In our first example, we use the almost periodic problem

y′′(x) +

(
100 +

1

4x2

)
y(x) = 0, 1 ≤ x ≤ 100. (30)

We choose the initial condition so that

yexact(x) =
√
xJ0(10x),

and pick ω = 10.

The results are given in Table 1 at x = 100. Both methods gave similar results for
the larger h, i.e. of order 10−18. The error is of order of 10−18 for our method and
10−17 for Wang. The CPU time to run the code is slightly lower using our method.

Method L2 Error for h = 0.02 L2 Error for h = 0.002 CPU for h = 0.002
OM3 0.333105(-10) 0.337424(-18) 18.771
Wang 0.877418(-10) 0.110750(-17) 18.795

Table 1: The L2 error and CPU of both methods at x = 100 where the exact solution
is 0.0798900501

Example 2

A second example is
y(4) + 2y′′ + y = sin(x). (31)

Initial conditions

y(0) = 1, y′(0) = 1, y′′(0) = 1, y′′′(0) = 1. (32)

yexact = cos(x) +
19

8
sin(x) + x

(
sin(x)− 11

8
cos(x)

)
− 1

8
x2 sin(x). (33)

We can rewrite this as a system of 2 second order initial value problems

y′′1 = y2,
y′′2 = −2y2 − y1 + sin(x),

(34)
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y1(0) = 1, y2(0) = 1. (35)

The results at x = 40π using three values of h are given in Table 2. Again the error
is of order 10−18 for both methods. The error for our method is slightly smaller. Our
method is again slightly faster.

Method h =
π

50
h =

π

250
h =

π

500
CPU for h =

π

500

OM3 0.999827(-11) 0.102514(-14) 0.641287(-15) 10.755
Wang 0.265514(-10) 0.266814(-15) 0.889702(-15) 10.902

Table 2: The L2 error of both methods at x = 40π using three values of time steps

Example 3

In our third example we took

z′′(x) + z(x) = 0.001eix,
z(0) = 1,
z′(0) = 0.9995i.

(36)

This example should give a leg up to methods using x sin(ωx) and x cos(ωx), as can
be seen in the exact solution below.

The exact solution is
z(x) = u(x) + iv(x),
u(x) = cos(x) + 0.0005x sin(x),
v(x) = sin(x)− 0.0005x cos(x).

(37)

We solved the equation on the interval 0 ≤ x ≤ 40π using ω = 1 and compared
the exact value of γ defined as γ =

√
u2 + v2 =

√
1 + (0.0005x)2 to the approximate

value at the end of the interval using two values of h = π/25, π/50. The results for
both methods are given in Table 3. Again the method gave similar result, but the
accuracy now is lower
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Method h =
π

25
h =

π

50

OM3 0.215540(-11) 0.839028(-14)
Wang 0.569522(-11) 0.222028(-13)

Table 3: The L2 error of both methods at x = 40π using two values of time steps

Example 4

In our fourth example, we consider the nonlinear undamped Duffing’s equation, see
e.g. van Dooren [18] and Vanden Berghe and Van Daele [4]

y′′ + y + y3 = B cos(Ωt),

with B = .002 and Ω = 1.01. The exact solution (see Vanden Berghe and Van Daele
[4]) is given by

y(t) = A1 cos(Ωt) + A3 cos(3Ωt) + A5 cos(5Ωt) + A7 cos(7Ωt) + A9 cos(9Ωt),

where
A1 = 0.2001794775361502,
A3 = 2.46946143255559(−4),
A5 = 3.0401498519692437(−7),
A7 = 3.743490701609247(−10),
A9 = 4.609682949622697(−13).

The initial conditions are

y(0) = A1 + A3 + A5 + A7 + A9,

y′(0) = 0.

The results are given in Table 4. Clearly the methods are comparable.

Example 5
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Method h =
π

50

OM3 0.134043(-11)
Wang 0.134252(-11)

Table 4: The L2 error of both methods at x = 40π.

In our fifth example, we consider the Mathieu differential equation

y′′(x) + 100 (1− α cos(2x)) y(x) = 0,

with boundary conditions
y(0) = 1,
y′(0) = 0,

and α = 0.1. The frequency is π/5 (see Gautschi [9]). Mathieu equation appears in
physical problems involving elliptical shapes or periodic potentials. We will solve the
equation for 0 ≤ x ≤ 5 and tabulate at every unit. The results are compared to
the values obtained from Maple using the function MathieuC(100,5,x). The results
are identical for both methods. The L2 error is computed at the end of integration
interval, i.e. x = 5.

Method
x = 1.0 x = 25.0 x = 50.0 x = 75.0 x = 100.0 L2 error

OM3 -0.908418 0.151668 -0.951685 -0.4205942 0.8338947 0.167908(-8)
Wang -0.908418 0.151668 -0.951685 -0.420594 0.833894 0.101908(-8)
Exact -0.908418 0.151668 -0.951685 -0.420594 0.833894

Table 5: The approximate solution using both methods (with h = 0.02) at various
values of the independent variable. The exact value at each point was found using
the Maple function MathieuC.
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Example 6 The last example is the cubic oscillator as given in [21]

y′′(x) + y(x) = εy(x)3, ε = 10−3, (38)

with the initial conditions
y(0) = 1,
y′(0) = 0,

(39)

and the frequency ω =
√
1− 0.75ε. The exact solution to cubic order in ε is given in

[21]

y(x) = cos(ωx) +
ε

128
(cos(3ωx) + cos(ωx)) +O

(
ε3
)
.

The results are given in Table 6. It is clear that both methods gave identical results.
Since the exact solution is only accurate to order 10−9, the L2 norm is higher than in
previous examples. The error is computed at x = 2000π. This also demonstrate the
capability of both method to due a long term integration.

Method L2 Error CPU time
OM3 0.555667(-7) 112.967
Wang 0.555667(-7) 119.634

Table 6: The L2 norm of the error and CPU for the sixth example.

Based on these results, it seems that the trigonometrically-fitted method we developed
is as good as the P-stable method of Wang et al. But it is faster than Wang’s method
by 5.9%.

We now consider two other examples to see if this is always the case. The first one is
to check the sensitivity to a small perturbation in the frequency ω. This is important
when the frequency is not known exactly. In example 1, the solution is not periodic
but almost periodic. Nevertheless, the solution is very accurate. We re-ran Examples
1, 4 and 6 using ω ± 0.1 and the results are summarized in Table 7.

From Table 7 it is clear that Wang is not sensitive to a small perturbation in ω. Our
method, OM3, for example 1 seems slightly more sensitive. Notice that for example
6 both method lost 2 significant figures by perturbing ω. Note that perturbing ω by
0.1 is 10% in examples 4 and 6 but it is only 1% in example 1. In all the examples
we see that underestimating or overestimating does NOT affect the accuracy.
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Example Method ω L2 Error
1 OM3 9.9 0.145272(-10)
1 OM3 10. 0.136230(-10)
1 OM3 10.1 0.127096(-10)
1 Wang 9.9 0.358570(-10)
1 Wang 10 0.358570(-10)
1 Wang 10.1 0.358570(-10)
4 OM3 .9 0.315810(-13)
4 OM3 1. 0.315988(-13)
4 OM3 1.1 0.316148(-13)
4 Wang 0.9 0.315599(-13)
4 Wang 1 0.315599(-13)
4 Wang 1.1 0.315599(-13)
6 OM3 ω − 0.1 0.207324(-5)
6 OM3 ω 0.5556678(-7)
6 OM3 ω + 0.1 0.207324(-5)
6 Wang ω − 0.1 0.2040854(-5)
6 Wang ω 0.5556678(-7)
6 Wang ω + 0.1 0.2040854(-5)

Table 7: The sensitivity to small perturbations in ω.
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Now we add another example taken from Chun and Neta [7].

Example 7

This example is chosen so that the exact solution is a combination of sine and cosine
of multiples of the frequency, i.e.

y′′(x) + 9y(x) = 3 sin(6x), 0 ≤ x ≤ 40π, (40)

subject to the initial conditions

y(0) = 1, y′(0) = 3. (41)

The exact solution is

yexact(x) =
11

9
sin(3x) + cos(3x)− 1

9
sin(6x). (42)

The results using h = π/500 are given in Table 8.

Method ω L2 error Global Error
OM3 3. 0.205241(-17) 0.144838(-17)
Wang 3 0.172924(-12) 0.958545(-7)

Table 8: The L2 norm of the error and global error for example 7.

This example demonstrates the superiority of our trigonometrically-fitted method
over a P-stable method of the same order using the same frequency. Notice that the
global error is much smaller by 10 orders of magnitude.

Conclusions We have developed a twelfth order trigonometrically-fitted method for
approximating the solution of a second order initial value problems whose solution
is periodic with a known period. We have compared our method to a twelfth order
P-stable method. We have shown that the accuracy is the same except in one case.
If the exact solution is a sum of trigonemtric functions of different period, then our
method is more accurate. The CPU run time required by our method to run example
6 (nonlinear equation) is much less than Wang’s. The last example demonstrates the
superiority of our method in terms of global accuracy.
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