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Abstract 

Problems of linear time-dependent dispersive waves in an un-bounded domain 
are considered. The infinite domain is truncated via an artificial boundary B. A 
high-order Non-Reflecting Boundary Condition (NRBC) is imposed on B, and 
the problem is solved by a Finite Difference (FD) scheme in the finite domain. 
The sequence of NRBCs proposed by Higdon is used. However, in contrast to 
the original low-order implementation, a new scheme is devised which allows the 
easy use of a Higdon-type NRBC of any desired order. In addition, the problem 
is considered for a stratiJied media. The performance of the scheme is 
demonstrated via numerical example. 

l Introduction 

In various applications one is often interested in solving a dispersive wave 
problem computationalIy in a domain which is mxch smaller than the actual 
domain where the governing equations hold. One of the several methods 
that exist for solving a wave problem in a limited computational domain is 
that of using NRBCs. In this method, the original domain is first truncated 
by introducing an artificial boundary B, which encloses the computational 
domain R. Then a special boundary condition is applied on B. This bound- 
ary condition should not give rise t o  reflections when waves that propagate 
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74 Coastal Engineering V1 

from within Q impinge on it. Boundary conditions that generate no spuri- 
ous reflection are called "perfectly non-reflecting," "perfectly absorbing," or 
simply "exact" and are reveiwed in [l]. Most NRBCs are approximate and 
generate some amount of reflection. However, as long as the reflection is 
small (e.g. the order of magnitude of the discretization error) the NRBC is 
considered adequate. The simplest NRBC is the Sommerfeld-like boundary 
condition, which has the same form as the Sommerfeld radiation condition 
that holds at  infinity. In the last three decades several improved NRBCs 
that reduce the spurious reflections have been proposed [2]. 

To design a NRBC, one usually assumes that the governing equations in 
the exterior are linear. This does not prevent the NRBC from being used 
with nonlinear equations inside Q. In terms of the complexity of designing 
accurate NRBCs, one can distinguish between three types of linear wave 
problems: time-harmonic wave problems, non-dispersive time-dependent 
wave problems, and dispersive wave problems. The prototype governing 
equations for these problems are, respectively, the Helmholtz equation, the 
scalar wave equation, and the Klein-Gordon equation. Technically more in- 
volved equations, but with similar properties, are of interest in each of the 
three categories. 

The case of time-harmonic waves is, to a large extent, solved as far as 
NRBCs are concerned. Effective, exact, and high-order NRBCs are avail- 
able; see 131-151. The case of time-dependent waves is much more involved. 
For three-dimensional waves where B is a sphere, Grote and Keller [6] 
and Hagstrom and Hariharan 171 constructed exact NRBCs. In two di- 
mensions, Hagstrom and Hariharan [7] proposed a high-order asymptotic 
NRBC. Dispersive wave problems, in which waves of different frequencies 
propagate with different speeds, are the most difficult. High-order NRBCs 
have been constructed by the authors 181-[10]. We propose a high-order NR- 
BCs scheme, in the context of the two-dimensional Klein-Gordon equations 
in stratified media. It is associated with a sequence of NRBCs of increasing 
order and the Jth-order NRBC is exact for any combination of waves that 
have specified wave number components (k,), and (k,), for j = 1,. . . , J. 
This methodology originates from the observation that the solution of a 
dispersive wave problem is an infinite superposition of single waves, each 
characterized by its wave number components (or, equivalently, by its phase 
speed component). 

We use on the artificial boundary B one of the Hzgdon NRBCS [ll]. For 
a straight boundary B normd to the X direction, the Higdon XRBC of order 

Here, t is time, and the Cj are parameters which have to be chosen and 
which signify phase speeds in the X direction. The boundary condition (1) 
is exact for all combinations of waves that propagate with X-direction phase 
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Coastal Engineering V1 75 

speeds Cl,  . . . , C j .  

2 Statement of the problem 

Consider the shallow water equations (SWEs) in a semi-infinite channel 
(Figure 1). For simplicity, assume that the channel has a flat bottom and 
that there is no advection. Rotational (Coriolis) effects are taken into ac- 
count. A Cartesian coordinate system (X, y) is introduced such that the 
channel is parallel to the X direction, as shown in Figure 1. The width of 
the channel is b. 

Figure 1: A semi-infinite channel 

Stratification with regards to the shallow water model, we are referring 
to changes in density of the fluid. Van Joolen [l21 has shown that for a 2 
layer model, the linearized equations about a zero mean flow are given as a 
system of 2 Klein-Gordon equations 

Here t is time, vi(x, y, t) is the unknown water elevation above Qi, f is the 
Coriolis parameter, and g is the gravity acceleration. On the north and 
south boundaries F N  and rs we specify the Neumann condition: 

On the west boundary r w  we prescribe % using a Diricklet condition, i.e., 

where vw, (g, t )  is a given function (incoming wat.e>. At z 4 W the solution 
is known to be bounded and not to include any incoming waves. To complete 
the statement of the problem, the initial conditions are given: 

                                                             Transactions on the Built Environment vol 70, © 2003 WIT Press, www.witpress.com, ISSN 1743-3509 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



76 Coastal Engineering V1 

We now truncate the semi-infinite domain by introducing an artificial 
east boundary FE, located at X = XE (see Figure 1). To obtain a well-posed 
problem in the finite domain fl we need a single boundary condition on r E .  
We shall apply a high-order NRBC for the variables qi. A discussion on 
this NRBC follows. 

3 Higdon's NRBCs 

On the artificial boundary FE we use one of the Higdon NRBCs. The 
Higdon NRBC of order J is given by (1) and involves up to Jth-order normal 
and temporal derivatives. These NRBCs were presented and analyzed in a 
sequence of papers [13]-[l61 for non-dispersive acoustic and elastic waves, 
and were extended in [l11 for dispersive waves. 

The first-order condition HI is a Sommerfeld-like boundary condition. 
If we set Cl = CO we get the classical Sommerfeld-like NRBC. A lot of 
work in meteorological literature is based on HI with a specially chosen 
Cl. Pearson [l71 used a special but constant value of Cl ,  while in the 
scheme devised by Orlanski [l81 and in later improved schemes [19]-[21] 
the C1 changes dynamically and locally in each time-step based on the 
solution from the previous time-step. See also 1221-[24]. For other parameter 
choices, the Higdon NRBCs are equivalent to NRBCs derived from rational 
approximation of the dispersion relation (the Engquist-Majda conditions 
being the most well-known example). This was proved by Higdon in [l11 
and in earlier papers. 

The Higdon NRBC has many advantages including: 

They are robust. Higdon showed that the reflection coeficient is a 
product of J factors, each of which is smaller than 1 [Ill. This implies 
that the reflection coefficient becomes smaller as the order J increases. 
A good choice for the Cj would lead to better accuracy with a lower 
order J, but even if we miss the correct Cj's considerably, we will still 
reduce the spurious reflection as we increase the order J. 

They are very general and apply to a variety of wave problems, in one, 
two and three dimensions and in various configurations. They can 
be used, without any difficulty, for dispersive wave problems and for 
problems with layers. Most other available NRBCs are either designed 
for non-dispersive media (as in acoustics and eiectromagnetics) or are 
of low order (as in meteorology and oceanography). 

The scheme used here was developed in 18; and is different than the 
original Higdon scheme :11]. Discrete Higdon conditions were developed in 
the literature up to third order only, because of their algebraic complexity. 
Here we use the implementation to an arbitrarily high order. 
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Coastal Engineering V1 77 

3.1 Discretization of Higdon's NRBCs 

The Higdon condition HJ is a product of J operators of the form g + Cj g. 
Consider the following Finite Difference (FD) approximations: 

In (7), At and Ax are, respectively, the time-step size and grid spacing in 
the X direction, I is the identity operator, and S; and S; are shift operators 
defined by 

n- l n 
s;v:pq = rli,,, 7 S; = %,p-l,q - (8) 

Here and elsewhere, q&, is the FD approximation of qi(x, g, t )  at grid point 
(X,, y,) and at  time tn. We use (7) in (1) to obtain: 

31 - 45,- + 31 - 4s; + (S,-)2 
2At 

+ cj 
2 a x  rl:Eq = 0 - (9) 

Here, the index E correspond to a grid point on the boundary F E .  Higdon 
has solved this difference equation (and also a slightly more involved equa- 
tion that is based on time- and space-averaging approximations for and 
2) for J 2 3 to obtain an explicit formula for This formula is used 
to find the current values on the boundary FE after the solution in the in- 
terior points and on the other boundaries has been updated. The algebraic 
complexity of these formulas increases rapidly with the order J. We have 
implemented the Higdon NRBCs t o  any  order using a simple algorithm [8]. 

4 The interior scheme 

Higdon [l11 has proved, in the context of the scalar Klein-Gordon equation 
(2), that the discrete NRBCs (9) are stable if the interior scheme is the 
standard second-order centered difference scheme 
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78 Coastal Engineering V1 

where Coi = a. We use this interior scheme in the numerical experi- 
ments presented in the next section. Since (9)-(11) are explicit, the whole 
scheme is explicit. 

5 A numerical example 

We apply the new scheme to a simple test problem using the wave-guide 
depicted in Figure 1. The channel width b is 5 and the channel depth is 1. 
The medium is stratified with two layers. The upper layer has a thickness 
of $1 = .2 and a uniform density p1 = 1. The lower layer has a thickness 
of $2 = .8 and a uniform density of p2 = 1.25. A gravitational parameter 
g = 9.8 and a dispersion parameter f = 1 are used. 

The initial values are zero everywhere, and the boundary function vw 
on the west boundary rw is zero everywhere for the first layer. A wave 
pulse is generated at  rw in the second layer and given by: 

.1502 cos [$(y - yo)] i f l y - y o l l r  & O < t < t o ,  
VW(Y, t)  = { 0 otherwise, 

(12) 
where the pulse center, radius and duration are yo = 2.5, r = 1.5, and 
to = 0.75 respectively. 

An artificial boundary B is introduced at  X = 5, thus defining as the 
computational domain R a 5 X 5 square. In Q a mesh of 20 X 20 is used, 
with linear interpolation for all the variables. The extended domain for 
the reference solution qef is a 15 X 5 rectangle, with a mesh of 60 X 20 
elements. No artificial boundary is imposed on the extended domain and 
therefore vref is not polluted by spurious reflections. 

Two cases with artificial boundaries are investigated and juxtaposed to 
vref. In the first case a Higdon NRBC with J = 5 is constructed with 
parameters Cj = 4. The respective numerical solution 7s is compared to 
wef to obtain a measurement of error ]jell at time t which was calculated 
by the following formula: 

where N, and N, are determined by the grid spacing. In a second example, 
a Higdon NRBC on B with J = 1 and C, = 4 is constructed and its numer- 
ical solution 71 is compared to r),,f to obtain a second enor measurement. 
In both cases, the total error and the error for each layer is reported. 

Figures 2 and 3 show the solutions for vref, and at times t=.25 
and 3. The top-left and top-right plots depict vref on the truncated domain 
R and extended domain D respectively (note that the domain for %,f is 
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Coastal Engineering V1 79 
Reference Solution @ 0.25 Seconds 

Case 1 : J=5 

5- 

Case 2: J=i - 

Reference Solution on Exterior Domain 

1.5 

0.5 - - - , - 
1 2 3 4 

Domain L, Error Norm vs. Time 

Figure 2: Solution at t=.25 

continuous with no artificial boundary B, but it has been separated in the 
figure so that rlref in R may be better contrasted with Q and vl). The 
middle-left and bottom-left plots correspond to 775 and 771 respectively. Two 
graphs on center- and bottom-right present the error measures as a function 
of time that resulted from spurious reflections on B. 

At time t = .25 (Fig. 2) the wave packet QW is still close to r w .  The 
solution at and near B is still zero, hence no spurious reflection has occured. 
The wave plots are identical and, as expected, the measured error is 0. 

At time t = 3 (Fig. 3), most of the wave packet has left the truncated 
domain R and is now visible in the extended domain D. The solution for 
175 exhibits wave traces similar to those in q r e f  O r  the other hand, 71 
reveals a reflected wave that moves backwards in Q poEuting the computa- 
tional domain. The error norm plots reveaj an improvement of one order of 
magnitude for 77s. This was achiewd with minimal computational expense. 
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80 Coastal Engineering V1 

Reference Solution @ 3 Seconds Reference Solution on Exterior Domain 

rA - Total: 0.00010528 

% 

2 

1 _ - - - -  
/ 

0 0 
_ - - -  

l 2 3 4 5 1 2 3 4 

Case 2: J=1 

Figure 3: Solution at t=3 
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