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Dedicated to Professor Mutsuto Kawahara on the occasion of his 60th birthday

Among the many areas of research that Professor Kawahara has been active in is the subject of open
boundaries in which linear time-dependent dispersive waves are considered in an unbounded domain.
The infinite domain is truncated via an artificial boundaryB on which an open boundary condition (OBC)
is imposed. In this paper, Higdon OBCs and Hagstrom–Hariharan (HH) OBCs are considered. Higdon-
type conditions, originally implemented as low-order OBCs, are made accessible for any desired order
via a new scheme. The higher-order Higdon OBC is then reformulated using auxiliary variables and made
compatible for use with finite element (FE) methods. Methodologies for selecting Higdon parameters are
also proposed. The performances of these schemes are demonstrated in two numerical examples. This is
followed by a discussion of the HH OBC, which is applicable to non-dispersive media on cylindrical and
spherical geometries. The paper extends this OBC to the “slightly dispersive” case.
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INTRODUCTION

Among the many areas of research that Professor Kawahara

has been active in is the subject of open boundaries. An

open boundary is an artificial boundary of a computational

domain through which propagating waves or flow should

pass in order to leave the computational domain without

giving rise to spurious reflection. Open boundaries, which

are also called non-reflecting, transparent, absorbing or

radiating boundaries, are used in cases where the original

domain of the problem under investigation is infinite or

very large. Applications include oceanographic and

meteorological waves, earthquake waves, air flow around

an aircraft and acoustic scattering from submarines.

Numerous reviews on the subject are available (Givoli,

1991; 1992; 1999a; Givoli and Harari, 1998; Tsynkov,

1998; Hagstrom, 1999; Turkel, 1998; Astley et al., 2000).

The use of open boundaries is one methodology out

of several that have been developed for the numerical

solution of exterior wave problems in the last three

decades (Givoli, 1992). The 70s and early 80s produced

well-known low-order local open boundary conditions

(OBCs), e.g. the Engquist–Majda OBCs (Engquist and

Majda, 1979) and the Bayliss–Turkel OBCs (Bayliss and

Turkel, 1980). The period between the late 80s and mid

90s has been characterized by the emergence of exact non-

local OBCs like those based on the Dirichlet-to-Neumann

(DtN) map (Keller and Givoli, 1989; Givoli and Keller,

1990), and by the invention of the perfectly matched layer

(PML) (Bérenger, 1994).

The method of OBCs can be described as follows.

First, the infinite domain is truncated via an artificial

boundary B, thus dividing the original domain into a finite

computational domain V and a residual infinite domain D.
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Then a special boundary condition, called an OBC, is

imposed on B, in order to complete the statement of the

problem in V (i.e. make the solution in V unique) and,

most importantly, to ensure that no (or little) spurious wave

reflection occurs from B. Finally, the problem is solved

numerically in V, say by the finite difference (FD) or the

finite element (FE) method. The set-up is illustrated in

Fig. 1. Fig. 1(a) pertains to an exterior problem outside of a

scatterer or an obstacle in full space, whereas Fig. 1(b)

describes a semi-infinite wave-guide problem.

Naturally, the quality of the numerical solution strongly

depends on the properties of the OBC employed. In the

last 25 years, much research was done to develop OBCs

that after discretization lead to a scheme which is stable,

accurate, efficient and easy to implement (Tsynkov, 1998;

Givoli, 1999a; Hagstrom, 1999). Of course, it is difficult

to find a single OBC which is ideal in all respects and all

cases; this is why the quest for better OBCs and their

associated discretization schemes continues.

Two of Professor Kawahara’s investigations on open

boundaries are reported by Shimura and Kawahara (1990)

and Ohashi and Kawahara (1998). In Shimura and

Kawahara (1990), a new boundary treatment is proposed

for the two- and three-dimensional (2D and 3D) time-

dependent incompressible Navier-Stokes equations. The

equations are discretized by FEs in space. Iso-parametric

linear interpolation functions are used for both pressure and

velocity. The authors show that good numerical results are

obtained with no need for artificial smoothing. In Shimura

and Kawahara (1990), a new OBC is devised for the 2D

unsteady non-linear shallow water equations. The numeri-

cal solution is matched on the artificial boundary with an

analytic solution in a weak manner. Linear triangular FEs

are used in the computational domain, and the two-step

explicit method is employed as a time integrator.

Sequences of OBCs with increasing order have been

available for a long time (e.g. the Bayliss–Turkel

conditions [Bayliss and Turkel, 1980] constitute such a

sequence), but before the mid 90s they had been regarded

as impractical beyond second or third order from the

implementation point of view. Recently, practical high-

order local OBCs have been introduced (Collino, 1993;

Grote and Keller, 1996; Hagstrom et al., 1998;

Guddati and Tassoulas, 2000; Givoli, 2001; Givoli and

Patlashenko, 2002) that do not involve high-order

derivatives. This is enabled by the introduction of special

auxiliary variables on B.

In the context of artificial boundary treatment, wave

problems can roughly be divided into four categories:

(1) linear time-harmonic wave problems, (2) linear time-

dependent wave problems in non-dispersive homogeneous

media, (3) linear time-dependent wave problems in

dispersive and/or stratified media and (4) non-linear

time-dependent wave problems.

Linear time-harmonic waves have been treated

extensively by OBCs and absorbing layers; see the

reviews mentioned above. Time-dependent waves are

considerably more difficult to handle from the artificial-

boundary perspective. However, some exact and high-

order schemes have been devised in this case as well.

These include the schemes proposed by Collino (1993),

Grote and Keller (1996), Hagstrom et al. (1998), Guddati

and Tassoulas (2000) and Givoli (2001).

The presence of wave dispersion and/or medium

stratification makes the time-dependent problem still

more difficult as far as OBC treatment is concerned. Wave

dispersion appears in various applications, including

meteorological models, which take into account the earth

rotation (Pedlosky, 1987; Durran, 1999). None of the

high-order and exact OBCs mentioned above has been

designed to deal with wave dispersion. In fact, even in one

spatial dimension, an exact OBC for the dispersive

(Klein–Gordon) wave equation is not available. Very

recently, Navon et al. (2003) developed a PML scheme

for the dispersive shallow water equations. Non-linear

waves (with the non-linearity extending to infinity) are, of

course, the most difficult to handle. Some highly-accurate

OBCs have been proposed for specific classes of non-

linear wave problems (Tsynkov, 1998; Givoli, 1999b;

Hagstrom, 1999).

This paper describes extension to previous works by

Higdon (1994) and Hagstrom et al. (1998) with the goal of

solving the linear time-dependent wave problem in a

dispersive media. The Higdon OBC is a family of OBCs

useful for analyzing dispersive wave problems on

Cartesian coordinates, but whose implementation was

considered impractical beyond the third order. Methods

devised by Givoli and Neta (2002; 2003a) to easily set up

and practically employ Higdon OBCs to any order are

presented. In doing so, spurious reflection is reduced at

the open boundary, however, derivatives beyond the

second order result rendering the Higdon condition

incompatible with the FE method. Givoli et al. (2003)

achieve elimination of all high-order derivatives through

FIGURE 1 Set-up for the OBC method: (a) an exterior scattering problem; (b) a semi-infinite wave guide.
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the introduction of special auxiliary variables on B. This

allows the use of any order Higdon OBC while

maintaining compatibility with a standard C 0 FE

formulation, which turns out to be stable even with

equal-order interpolation for all the variables. In the

second section, we will briefly review the high-order

Higdon condition and demonstrate its use with and

without auxiliary variables in a Cartesian system.

The extension of the Higdon OBC to cylindrical and

spherical coordinates is more complicated and still under

investigation. The Hagstrom–Hariharan (HH) OBC

is useful for analyzing the non-dispersive wave

problem in cylindrical- and spherical-coordinates.

In the third section, we extend the HH conditions to the

dispersive case. We conclude with remarks for future

development.

HIGH-ORDER HIGDON CONDITIONS

Simply stated the Jth-order Higdon OBC is given by:

HJ :
YJ

j¼1

ð›t þ Cj›xÞ

" #
h ¼ 0 on B: ð1Þ

Here h is the time-dependent dispersive wave under

consideration and Cj are parameters which must be chosen

and which signify phase speeds in the x-direction.

This equation is exact for all waves that propagate with

an x-direction phase speed equal to either C1; . . .;CJ : The

Higdon OBC allows for relatively easy accuracy control,

and it can be shown by Higdon (1994) that when a plane

wave of the form:

h¼Acos
npy

b

� �
coskðx2CxtþcÞ; n¼ 0;1;2. . . ð2Þ

impinges on the boundary B where the Higdon OBC

HJ is imposed, the resulting reflection coefficient R is:

R ¼
YJ

j¼1

Cj 2 Cx

Cj þ Cx

����
����: ð3Þ

From Eq. (3) it is evident that by simply increasing the

order J of the Higdon OBC, the reflection coefficient R

decreases. Theoretically, the boundary condition could be

taken to any level of accuracy desired without giving

much consideration to the values of Cj. However, Higdon

conditions beyond the third order were considered

impractical in terms of implementation and are incompa-

tible with FE schemes. Furthermore, schemes that

“intelligently” select values for Cjs are often effective in

reducing the OBC order required to achieve a desired level

of accuracy. Givoli and Neta (2003a) devise a scheme

which discretizes Higdon OBCs of any desired order for

implementation with FD schemes. In addition, they utilize

a procedure for the automatic choice of the parameters Cj

using the minimax formula based on the Chebyshev

polynomial as proposed by Sommeijer et al. (1986).

Numerical Example Employing Higdon OBC in an FD

Formulation

A uniform wave guide, depicted in Fig. 2 is considered

with width b ¼ 5 and with a dispersion coefficient

f ¼ 0:5: The gravity constant g ¼ 10 and the layer

thickness Q ¼ 0:1; resulting in a medium wave speed

C0 ¼
ffiffiffiffiffiffiffi
gQ

p
¼ 1:

The initial values are zero everywhere, and the

boundary function hW on the west boundary GW is

given by:

hWðy; tÞ

¼

0:005cos p
2r
ðy2y0Þ

	 

if jy2y0j# r and 0# t# t0;

0 otherwise:

8<
: ð4Þ

Thus, the wave source on GW is a cosine function in y with

three parameters: its center location y0, its width r and its

time duration t0. The chosen parameter values are

y0 ¼2:5; r¼1:5 and t0 ¼0:5:
An artificial boundary B is introduced at x ¼ 5; thus

defining as the computational domain V a 5 £ 5 square.

In V a mesh of 20 £ 20 is used, with linear interpolation

for all the variables. The extended domain for the reference

FIGURE 2 Semi-infinite wave guide.
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solution href is a 15 £ 5 rectangle, with a mesh of 60 £ 20

elements. No artificial boundary is imposed on the

extended domain and therefore, href is not affected by

spurious solutions. An FD scheme is used to obtain

the numerical solutions, as explained in Givoli and Neta

(2003a).

Two cases with artificial boundaries are investigated

and juxtaposed to href. In the first case an OBC with J ¼ 4

is constructed with parameters Cj ¼ 1, 1.45, 1.75 and 4.06

that were calculated as a pre-process using the minimax

formula based on the Chebyshev polynomial. The

respective numerical solution hcase 1 is compared to href

to obtain a measurement of error at time t which was

calculated by the following formula:

kh4k ¼
XNx

i¼1

XNy

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½hrefðxi; yj; tÞ2 hcase 1ðxi; yj; tÞ�2

NxNy

s
; ð5Þ

where Nx and Ny are determined by the grid spacing. In a

second example, an OBC on B with J ¼ 1 is constructed

and its numerical solution hcase 2 is compared to href

to obtain a second error measurement. In the latter case,

the parameter C1 ¼ 2:5 is used, which is in the middle of

the range of the four Cj’s mentioned above.

Figures 3–7 show the solutions for href, hcase 1 and

hcase 2 at times t ¼ 1, 4, 5, 8 and 10. The top-left and top-

right plots depict href on the truncated domain V and

extended domain D (note that the domain for href is

actually continuous with no artificial boundary B, but it

has been separated in the figure so that href in V may be

better contrasted with hcase 1 and hcase 2). The middle-left

and bottom-left plots correspond to hcase 1 and hcase 2,

respectively. Two graphs on center- and bottom-right

present the hcase 1 and hcase 2 error measures that resulted

from spurious reflections on B as a function of time.

At time t ¼ 1 (Fig. 3) the wave packet hW is still close

to GW and quite compact. The solution at and near the

boundary B is still zero, hence no spurious reflection has

occurred. The plots for href, hcase 1 and hcase 2 are identical

and, as expected, the measured error for hcase 1 and hcase 2

is 0.

At time t ¼ 4 (Fig. 4) the main bulk of the wave packet

just reaches B. A slight spurious reflection is measured for

hcase 2 and hcase 1, but overall the three solutions in V are

still very similar. Note the difference in scales for the

vertical axis for the hcase 1 and hcase 2 error norm plots

indicating that the spurious reflection for the latter case is

much greater.

At time t ¼ 5 (Fig. 5) the front of the wave packet

crosses and advances beyond the boundary B. At this time,

hcase 1 is almost indistinguishable from href, whereas in

hcase 2 spurious reflections are discernible.

At times t ¼ 8 and 10 (Figs. 6 and 7), most of the wave

packet has left the truncated domain V and is now visible

in the extended domain D. The solution for hcase 1 exhibits

wave traces which are similar to those present in href.

On the other hand, hcase 2 reveals a reflected wave that

moves backwards in V polluting the computational

FIGURE 3 Solution at 1 s.
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FIGURE 4 Solution at 4 s.

FIGURE 5 Solution at 5 s.
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FIGURE 7 Solution at 10 s.

FIGURE 6 Solution at 8 s.
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domain. Again note the difference in scale for the error

norm plots which reveal an improvement of one order of

magnitude for hcase 1. This was achieved with minimal

computational expense.

Adapting Higher-order Higdon OBCs for Use with FE

Methods

In its current form, Higdon conditions of orders J ¼ 3 and

above are incompatible with FE methods because

third-order derivatives or higher are necessary in their

formulation. Givoli and Neta (2002) demonstrate how

to rewrite the Higdon OBC with no high-order derivatives

by the use of auxiliary variables. As a result, it is more

amenable, compared to the previous formulation, for

incorporation in an FE scheme, as shown in Givoli et al.

(2003).

As a starting point, the Higdon condition given by

Eq. (1) is rewritten in an equivalent form:

HJ :
YJ

j¼1

›x þ
1

Cj

›t

� �" #
h ¼ 0 on B: ð6Þ

Auxiliary functions f1; . . .fj21; which are defined on B
as well as in the exterior domain outside B are given as:

›x þ
1

C1
›t

� �
h ¼ f1

›x þ
1

C2
›t

� �
f1 ¼ f2

..

. ..
. ..

.

›x þ
1

CJ
›t

� �
fJ21 ¼ 0:

ð7Þ

By definition these relations hold in D and also in B.

If the following definitions are employed:

f0 ; h and fJ ; 0; ð8Þ

Eq. (7) can be concisely written as:

›x þ
1

Cj

›t

� �
fj21 ¼ fj: ð9Þ

This set of conditions involves only first-order

derivatives. However, due to the appearance of the

x-derivative in Eq. (9), one cannot discretize the fj on the

boundary B. Givoli and Neta (2002) manipulate this

equation to eliminate the x-derivative. The resulting

formulation of the Higdon Jth-order OBC on B is:

b0›tu þ ›xu ¼ f1; ð10Þ

bj›tfj 2 aj›
2
t fj21 2 ›2

yfj21 þ lfj21 ¼ fjþ1; ð11Þ

aj ¼
1

C2
j

2
1

C2
0

; b0 ¼
1

C1

; bj ¼
1

Cj

2
1

Cjþ1

; ð12Þ

l ¼
f 2

C2
0

; f0 ; h; fJ ; 0: ð13Þ

This modified form of the Higdon OBC is incorporated

into an FE formulation in the numerical example

described in the next section. See further discussion of

the computational aspects of the scheme in Givoli et al.

(2003).

Numerical Example Employing Modified Higdon OBC

in an FE Formulation

Consider the wave-guide problem illustrated in Fig. 8.

The Coriolis parameter f is unity and the initial

conditions are zero everywhere except in the strip

0 # x # 1 where:

hðx; y; 0Þ ¼ Hð0;1ÞðxÞ; htðx; y; 0Þ ¼ 0: ð14Þ

Note that the initial values do not depend on y, but only

on x through the “hat function” H(0,1)(x). Second, the

medium wave speed C0 is not constant in V. But rather

FIGURE 8 Set-up for the “bump” wave-guide problem.
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C0 ¼ 1 everywhere except in a small square area, of size

0:2 £ 0:2; where C0 ¼ 3: This area, shown in Fig. 8,

models a “hard bump” in the medium, which causes wave

scattering inside the wave guide, and is solely responsible

for the y-dependence of the solution. The “bump” area

includes 16 FEs.

Figures 9(a) and (b) show the “exact” solutions as well

as solutions obtained for various values of J, along B at

times t ¼ 4 and t ¼ 8; respectively. The current problem

is hard enough so that even with high-order OBCs some

small error is noticeable. In particular, note that at time

t ¼ 8 (Fig. 9(b)), the J ¼ 4 and J ¼ 5 solutions almost

coincide, but are slightly off the “exact” solution. Still,

they are much more accurate than the solutions

corresponding to J # 3:

For a given simulation time T, one can define the global

error-measure in space and time,

�EBðTÞ ¼

ðT

0

E2
BðtÞ dt

� �1
2

: ð15Þ

This is the accumulated error on B during the entire

simulation. Figure 10 shows this error as a function of the

simulation time T for various values of J. For all J, the

error increases initially with the simulation time, but then

becomes almost constant for long simulations. Unlike the

instantaneous error shown in the previous figures, the

accumulated error decreases monotonically with increas-

ing J. The superiority of the J ¼ 5 solution over all lower-

order solutions is apparent.

FIGURE 9 The “bump” wave-guide problem: comparison of solutions along the artificial boundary B, at times (a) t ¼ 4, (b) t ¼ 8.
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EXTENSION OF THE HAGSTROM–HARIHARAN

CONDITIONS TO DISPERSIVE MEDIA

Hagstrom and Hariharan (1998) devised high-order

OBCs for the standard time-dependent 2D wave

equation in cylindrical coordinates and for the 3D wave

equation in spherical coordinates. The artificial boundary

is a circle in 2D and a sphere in 3D. The OBC originates

from the well-known sequence of conditions of Bayliss

and Turkel (1980), but in contrast to them it does not

involve any high-order derivatives. This is achieved by

employing special auxiliary variables. In Hagstrom and

Hariharan (1998), the OBCs are implemented using FDs.

Huan and Thompson (2000; 2001) implemented the same

OBCs with FEs in 3D and 2D, respectively.

Here we shall extend these OBCs to the dispersive case.

First, we recall the essential facts from Hagstrom and

Hariharan (1998). The standard wave equation in either

the 2D-cylindrical or 3D-spherical case is:

1

C2
0

›2h

›t 2
¼

›2h

›r 2
þ

ðd 2 1Þ

r

›h

›r
þ

1

r 2
~7

2

dh: ð16Þ

Here d is the dimension (d ¼ 2 or 3), and

~7
2

dh ¼

›2h
›u 2 ; d ¼ 2

1
sin u

›
›u

sin u ›h
›u

� �
þ 1

sin2 u
›2h
›f 2 ; d ¼ 3

8><
>: : ð17Þ

The HH OBC is based on the following series

representation for the solution of Eq. (16):

2D : hðr;u; tÞ,
X1
n¼0

anðuÞ
X1
k¼0

r2k21=2 f n
k ðC0t2 rÞ; ð18Þ

3D : hðr; u;f; tÞ

¼
X1
n¼0

Xn

m¼0

anmðu;fÞ
X1
k¼0

r2k21 f nm
k ðC0t 2 rÞ: ð19Þ

The 3D expansion (19) is a converging series, whereas

the 2D expansion (18) is an asymptotic (non-converging)

series valid for large radial distances. Starting from

Eqs. (18) and (19), HH obtained the following Pth-order

OBC:

1

C0

›h

›t
þ

›h

›r
þ

ðd 2 1Þ

2r
h ¼ w1; ð20Þ

1

C0

›wk

›t
þ

k

r
wk 2

bdk

4r 2
wk21 2

1

4r 2
~7

2

dwk21

¼ wkþ1; k ¼ 1; . . .;P; ð21Þ

bdk ¼
k 2 1

2

� �2
; d ¼ 2

kðk 2 1Þ; d ¼ 3

8<
: ð22Þ

w0 ¼ 2u; wPþ1 ¼ 0: ð23Þ

The wk ðk ¼ 1; . . .;PÞ are unknown auxiliary functions.

Since the 3D OBC is based on a converging series, it

becomes an exact OBC in the limit P !1: Moreover, in

3D, the Pth-order OBC is exact for all waves consisting of

the first P spherical harmonics. The 2D OBC is only

asymptotically correct, for large R, where R is the radius of

the artificial boundary.

FIGURE 10 The “bump” wave-guide problem: the global accumulated error ĒB(T) as a function of the simulation time T for various values of J.
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Now we consider the dispersive case. In this case,

Eq. (16) is replaced by the Klein–Gordon equation:

1

C2
0

›2h

›t 2
¼

›2h

›r 2
þ

ðd 2 1Þ

r

›h

›r
þ

1

r 2
~7

2

dh2
f 2

C2
0

h: ð24Þ

Here f is the dispersion parameter. We shall assume that

the dispersion is small, namely that

f

C0K
! 1; ð25Þ

where K is a typical wave number appearing in the

solution. This is a common situation in various

applications, e.g. meteorology.

In order to extend the HH conditions (20)–(23) to the

dispersive case, we first Fourier-transform them to the

frequency domain. This is easily done by formally

performing the replacement:

1

C0

›

›t
!2iK ; 2i

v

C0

: ð26Þ

Here K is the wave number and v is the frequency.

This reduces Eqs. (20) and (21) to:

2iK �hþ
› �h

›r
þ

ðd 2 1Þ

2r
�h ¼ �w1; ð27Þ

2iK �wk þ
k

r
�wk 2

bdk

4r 2
�wk21 2

1

4r 2
~7

2

d �wk21 ¼ �wkþ1;

k ¼ 1; . . .;P:

ð28Þ

Here a superposed bar indicates a Fourier-transformed

variable.

Now, if we Fourier-transform the standard wave

equation (16) and the Klein–Gordon equation (24), we

obtain the Helmholtz equation in both cases:

›2 �h

›r 2
þ

ðd 2 1Þ

r

› �h

›r
þ

1

r 2
~7

2

d �hþ K̂2 �h ¼ 0: ð29Þ

In the non-dispersive case we have:

K̂ ¼
v

C0

; K; ð30Þ

whereas in the dispersive case we have:

K̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 2 f 2

p
C0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2 2

f 2

C2
0

s
: ð31Þ

From Eqs. (30) and (31) we deduce that in the frequency

domain, an equation valid in the non-dispersive case

becomes valid in the dispersive case under the replace-

ment:

K !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2 2

f 2

C2
0

s
: ð32Þ

Now we make use of the smallness of f to approximate

the square root on the right side of Eq. (32) by a rational

function. We use the Taylor approximation:

ffiffiffiffiffiffiffiffiffiffiffi
1 2 x

p
¼ 1 2

1

2
x þ Oðx 2Þ ð33Þ

to obtain, under the assumption (25),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2 2

f 2

C2
0

s
. K 2

f 2

2C2
0K

: ð34Þ

From Eqs. (32) and (34) we get that the replacement:

K ! K 2
f 2

2C2
0K

ð35Þ

which moves us from the non-dispersive case to the

slightly dispersive case. Using this we get the

dispersive version of Eqs. (27) and (28), namely

2iK �hþ
if 2

2C2
0K

�hþ
› �h

›r
þ

ðd 2 1Þ

2r
�h ¼ �w1; ð36Þ

2 iK �wk þ
if 2

2C2
0K

�wk þ
k

r
�wk 2

bdk

4r 2
�wk21 2

1

4r 2
~7

2

d �wk21

¼ �wkþ1; k ¼ 1; . . .;P: ð37Þ

Now it remains to apply the inverse Fourier

transform to Eqs. (36) and (37) in order to obtain

dispersive OBCs in the time domain. This is formally

done by performing the replacements:

iK !2
1

C0

›

›t
;

i

K
�h! C0

ðt

0

hðtÞ dt: ð38Þ

In writing the latter formula we have used the fact that

the solution vanishes identically on the boundary at time

t ¼ 0: Applying Eq. (38) to Eqs. (36) and (37) finally

yields:

1

C0

›h

›t
þ

f 2

2C0

ðt

0

hðtÞ dtþ
›h

›r
þ

ðd 2 1Þ

2r
h ¼ w1; ð39Þ

1

C0

›wk

›t
þ

f 2

2C0

ðt

0

wkðtÞ dtþ
k

r
wk 2

bdk

4r 2
wk21

2
1

4r 2
~7

2

dwk21 ¼ wkþ1; k ¼ 1; . . .;P; ð40Þ

bdk ¼
k 2 1

2

� �2
; d ¼ 2

kðk 2 1Þ; d ¼ 3

8<
: ð41Þ

w0 ¼ 2u; wPþ1 ¼ 0: ð42Þ
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By comparing Eqs. (20)–(23) with Eqs. (39)–(42) we

see that the effect the dispersion has on the OBCs is in

introducing the time-integral terms in Eqs. (39) and (40).

We note that these terms do not really make the OBC non-

local in time, since a single differentiation eliminates the

integrals. This does not mean, however, that Eqs. (39) and

(40) should be differentiated in practice. From a numerical

perspective, despite the appearance of the integral in these

equations there is no need to store and operate on the

history of the solution. To see this, we denote:

IðtÞ ¼

ðt

0

hðtÞ dt: ð43Þ

Then obviously:

Iðt þ DtÞ ¼ IðtÞ þ

ðtþDt

t

hðtÞ dt; ð44Þ

and hence the integral I can be calculated in each time-step

based on its value in the previous time-step only.

FUTURE WORK

Several topics for future research remain for both Higdon

and HH OBCs. With regards to the Higdon condition, the

authors are currently investigating the extension to

cylindrical and spherical geometries. The difficulty is in

the fact that the coefficients of the operator HJ are not

constants. Further investigation is also warranted in

techniques that automatically select Cjs with the goal of

minimizing spurious reflections at the artificial boundary

while also minimizing the order of the corresponding

Higdon OBC. Software routines are also desirable that

would employ Higdon OBCs to implement schemes that

provide solutions to the non-linear, time-dependent wave

equations. With regards to the HH condition, extending

the condition further to the dispersive vice “slightly

dispersive” case remains open.

CONCLUSIONS

In this paper, we discussed the subject of open boundaries

in which linear time-dependent dispersive waves are

considered in an unbounded domain. The infinite domain

is truncated via an artificial boundary $\beta$ on which

an OBC is imposed. In this paper Higdon OBCs

and Hagstrom-Hariharan OBCs were considered.

Higdon-type conditions, originally implemented as low-

order OBCs, are made accessible for any desired order via

a new scheme. The higher-order Higdon OBC is then

reformulated using auxiliary variables and made compa-

tible for use with Finite Element (FE) methods.

The performance of these schemes was demonstrated

in two numerical examples. The paper extends

the Hagstrom-Hariharan OBC to the “slightly dispersive”

case on cylindrical and spherical geometries.
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