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On Satellite Umbra/Penumbra
Entry and Exit Positions

Beny Neta! and David Vallado?

Abstract

The problem of computing Earth satellite entry and exit positions through the Earth’s
umbra and penumbra, for satellites in elliptical orbits, is solved without the use of a
quartic equation. A condition for existence of a solution in the case of a cylindrical
shadow is given. This problem is of interest in case one would like to include perturbation
force resulting from solar radiation pressure. Most satellites (including geosynchronous)
experience periodic eclipses behind the Earth. Of course when the satellite is eclipsed,
it’s not exposed to solar radiation pressure. When we need extreme accuracy, we must
develop models that turn the solar radiation calculations “on” and “off,” as appropriate,
to account for these periods of inactivity.

Introduction

The problem of computing Earth satellite (in elliptical orbits) entry and exit
positions through the Earth’s umbra and penumbra is a problem dating from the
earliest days of the space age, but it is still of the utmost importance to many space
projects for thermal and power considerations {1]. It’s also important for optical
tracking of a satellite. To a lesser extent, the satellite external torque history and
the sensor systems are influenced by the time the satellite spends in the Earth’s
shadow.

The umbra is the conical total shadow projected from the Earth on the side
opposite the sun. In this region, the intensity of the solar radiation is zero. The
penumbra is the partial shadow between the umbra and the full-light region
(see Fig. 1). In the penumbra, the light of the sun is only partially cut off by
the Earth, and the intensity is between O and 1. All textbooks discussing the
problem (e.g. Geyling and Westerman [2] and Escobal [3]) and even the recent
work by Mullins [1] suggest the use of a quartic equation analytic solution to
determine umbra/penumbra boundaries. Because the quartic is a result of squaring
the equation of interest, one must check all four solutions and discard the spurious
ones. In this paper, we examine solving the original equation numerically. We will
give a condition for the existence of a solution, discuss the initial guess for an
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FIG. 1. Earth Umbra and Penumbra.

iterative scheme, and compare the complexity of the two schemes (our scheme
versus the analytic solution of the quartic [1]).

The shadow problem has been solved in the past by assuming a cylindrical
shadow behind the Earth [2], or a conical shadow which is more realistic [1, 4].
The numerical solution will be discussed for each case.

Problem Formulation

In this section, we formulate the problem using both cylindrical and conical
shadow geometry. We’ll see that the solution method is different in the two cases.

Cylindrical Shadow

In this case the orbital geometry is given in Fig. 2 [3,5].
The analysis given in Escobal [3] and Vallado [5] show that the true anomaly,
v, at entrance and exit into the shadow satisfies the following equation:

Ri(l + ecosv)* + pz(,Blcosv + Bysinv)? — p2 =0 0))

where Re is the radius of the Earth (~6378.136 km), ry is the sun’s position vector
(~1.496(10%) km), p is semi-parameter, and e is the eccentricity. The remaining

FIG. 2. Cylindrical Shadow.
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classical orbital elements are inclination, i, longitude of the ascending node, (1,
and the argument of perigee, . The parameters 3, and 8, are given by

ro - P

A el
_TIp - Q
T

The Earth-centered unit vectors P and Q are defined by

cos w cos §) — sin w sin () cos i
P = | cos wsin ) + sin w cos ) cos i
sin w sin i

— sin w sin ) + cos w cos () cos i
CoSs w sin i

[—sinwcosQ - coswsichosi:|

For circular orbits and if i = 0, #, P should be redefined in a convenient
manner [3].

Conical Shadow

In this case, one must distinguish between umbra (full shadow) and penumbra
(partial shadow) regions. In the umbra case, we must solve a system of two
nonlinear equations [1]. The first equation models the surface of the shadow cone

F(xsh9y:hyz.rh) = y.rzh + th - (d - x.\'h)2 tanza- =0 (2)

where d is the distance from center of the Earth to apex of shadow cone
(~1.3836(10%) km), and o is half-angle of that cone (~0.26412°). The second
equation describes the orbit?

2 2
- (222 (@) 10 o

where b = av/1 — ¢2. Because the two equations are not in the same coordinate
system, we take ry, and rotate it to get ro. The transformation is given by

ro = ROT3(w)ROT1({)ROT3(Q)ROT1(—€)ROT3(m — L)ry,

where € is the mean obliquity of the ecliptic (~23.5°), L is the ecliptic longitude of
the sun, and ROT1(¢), ROT3(¢) are rotations about the x, z axes (respectively)
by ¢. If we denote the transformation matrix by A, then

Xsp = anxo + azyo 4)
Ysh = A12Xo T anyo (5)
Zsh = apXo + anyo (6)

3This doesn’t mean that we are interested in only two-body problems, but certainly excludes parabolic
or hyperbolic orbits as previously mentioned.
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FIG. 3. Earth-Centered Coordinate System and x Along the Shadow Cone Axis.

Notice that zg is zero at the intersection of equations (2) and (3). Because only
solutions with x;, > 0 are acceptable (see Fig. 3), we must satisfy

anxg + azyo >0 )
Substituting equations (4—6) into equation (2), we get the following
Fi(x0,y0) = aoxg + a,yg + 2a5xgyg + asxg + asyo — d*tan’o =0 (8)
where

ay = afz + af3 - af, tan’ o
a = a%z + a%3 - a%l tan’ o
a; = apay + apaxy — apay tan’ o
ay = 2a“dtan2 a

ay = 2a2|dtan2 o

This equation should be solved with equations (3) and (7).

Mullins [1] suggests solving equation (8) subject to equations (3) and (7), using
a quartic equation for x and then checking each of the four solutions with solutions
of a quadratic equation for y as a function of x. Mullins admits: “The coefficients
(of the quartic) are messy functions of the angles shown ... .” In a following
section, we show another way to solve the problem without going through a
quartic equation and thus without computing these “messy coefficients.”

In the penumbra case, Mullins [1] shows that equation (2) becomes

F(xshayshvzsh) = yszh + Zszh - (dl + xsh)z tan’c’ =0

where d’ is the distance from the center of the Earth to the apex of the cone
between the sun and the Earth (~1.35849(10°) km), and o' is half angle of that
cone (~0.26901°). This leads to an equation similar to equation (8) to solve. The
idea presented in a following section will be used here too.
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Complexity of Quartic Solution
The problem (for cylindrical shadow) can be solved analytically using the
quartic equation

Agcos* v + Ajcos® v + Aycos’v + Ascosv + Ay =0 9)

and then the spurious roots can be rejected based on the following conditions.
The physical solution should satisfy the original equation and

Bicosv + Bysinv <0

The coefficients of the quartics are given by:
4 2
R R
o= (B2) et -3 %) g2 - et + 1 4 7
p p
4 2
Ro\ (Re) 2 _ g
Al=4l— e -4 —)(B; — Bie
1 ( D ) D 2 1

Ro R\ Re \’
m=6(;)8—2(;>w%—ﬁh—2(;)u—Bbé+

285 - BY( - B3) — 4BiB;

4 2
A3 = 4(%) e — 4(%) (1 - Be
Y Ro\
4o = (—) - z(—“’) (- 8D + (1 - B
p P

If the work is done economically, one finds that the number of multiplications
and divisions required to compute the coefficients of the quartic is 38. To find the
solution of the quartic requires 64 multiplications/divisions, 5 square roots, 4 cube
roots, | arccosine, and 3 cosine evaluations. The cosine and arccosine evaluations
are required only if the discriminant is negative [6].

Numerical Solution for Cylindrical Shadow

To solve the shadow equation (1) numerically, we can use either bracketing
or fixed-point type methods. Neta [7] has collected algorithms* of both types
and compared those from the point of view of efficiency. Reference to available
software is given. In the following, we describe only Newton’s and Halley’s
methods which are of fixed-point type. It is first suggested to check the existence
of a solution. First, rewrite equation (1) as

fx)=Ax2 +Bx+ CxJV1 = x2+ D=0 (10)

“This monograph is available from the first author.
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where x = cos v and the coefficients are given by:
p?
A=ée + 55 (Bt - B)
Rs
B =2e

p?

C=2=
R% .Blﬂz

2 2
P~ 2 P
D=1+ =58 - =
R3 A2 R3
In order to have a solution, the function must change sign in the interval (which
is —1 = x = 1) and thus we must have

f=Df1) =0 )]

Clearly equality means that either f(1) = O or f(—1) = 0, i.e. cos¥» = *1. The
strict inequality in equation (11) is equivalent to

2 2
Re Re
l_<a(1+e)) >'B'2>1_(a(l-e)>

Note that there is no condition on B,.

Remark: Close analysis of equation (10) shows that the use of this transforma-
tion will not be useful in the numerical solution (see Neta and Vallado [8]). This
result is consistent with Junkins’s talk [9]. Therefore, we rewrite equation (1) as
follows

Acos’v + Beosv + Ccosvsinv + D = 0, O0==v=27 (12)

where A, B, C, and D are the same as in equation (10). This is the equation we
will solve numerically.

Newton’s Method

To solve a nonlinear equation f(x) = 0 via Newton’s method, we require
an initial guess xo. Then an iterative procedure can be followed to construct a
sequence of estimates x,, by

_ S
fl0e)’

The iterative process converges if either

If(xn)l < TO])’

=0,1,...

Xn+l = Xp

or
Ixn+l - xnl < TOI.\'

for given tolerances. In either case we take x,,;, as the root. The convergence
rate is quadratic. If the iterative process doesn’t converge in a certain number of
iterations, we stop. In this case we suggest bracketing methods. Newton’s method
will diverge if we hit a point where f'(x) is very small. It is advocated by many to
use so called hybrid methods (see Neta [7]). Such methods combine a bracketing
step whenever the iteration starts to diverge.
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Halley’s Method

Halley’s method converges faster (third-order compare to second-order for
Newton). The iterative process is

2f (xn) f'(xn)

el = X T RGP — fe) ) b
or
f(xn)
o Fi(x) -
o SO T T ) fa T O
2F'Cen) f(En)

Bracketing Methods

In general, bracketing methods are slower, but they are safer in the sense that
convergence is guaranteed. For example, the bisection method starts with an initial
interval, [aq, bo], containing the root. The process halves the interval at every step.
After n iterations, the length of the interval containing the root is (bp — ag)/2".
Therefore, the number of iterations required depends on the length of the initial
interval and the tolerance.

This simplistic method can be modified by using Regula Falsi (solving a linear
equation at every step) or modified Regula Falsi (which is useful when the
curvature of f is large enough.)

For example, we have solved equation (10) with A = 1, B = —2,C = 1, and
D = 1. Newton’s method required 6 iterations for convergence to 1078, Halley’s
method required 5 iterations, and the bisection methods used 38 iterations, for
both roots.

Convergence

We have already mentioned that bisection and other bracketing methods are
guaranteed to converge if one starts with an interval containing the root. For
Newton’s and Halley’s methods which are of fixed-point type, the convergence
results are given here. Let’s recall that a fixed-point iterative procedure is given by

Xp+1 = g(xn)
The function g(x) for Newton’s method is

fx)
f(x)

glx) =x —

and for Halley’s method is

f(x)
- f'(x)
W= T 7
2f'(x) f'(x)
We now quote the results for convergence of fixed-point methods (see any
numerical analysis book). The first theorem gives nonlocal convergence results.
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Existence Theorem: If g(x) maps the interval [a,b] into itself and g(x) is
continuous, then g(x) has at least one fixed point in the interval.

Uniqueness Theorem: Under the above conditions and
lg'(x)| =L <1 forall x € [a,b]

then there exists exactly one fixed point in the interval.

Convergence Theorem: Under the conditions of the last theorem, the error
e, = x, — & satisfies

Ln
I —L

le,| = lx; — xol

Note that the theorem ascertains convergence of the fixed-point algorithm for
any xo € [a,b] and thus is called a global convergence theorem. It is generally
possible to prove only a local result. Note also that when L is close to unity, the
convergence is slow.

Local Convergence Theorem for Newton’s Method: Let f" be continuous and
f'(x) # 0 in some open interval containing the root £. Then there exists an € > 0
such that Newton’s method is quadratically convergent whenever |x; — £| < €.

Note that quadratic convergence means that the error e, at the nth step satisfies

en = Ke?_,

As we mentioned earlier, Halley’s method is of order 3, i.e.
e, = Ce3_,

It is important to note that one can get quadratic (Newton) or cubic (Halley)
convergence if the initial guess is close enough. This may not be easy for the first
computation of the entry/exit, but it is true at subsequent crossings.

In the later examples, one can see the rate at which the value of f at the nth
iterate approaching zero, one gains several digits of accuracy at every step.

Initial Guess

Because the problem is to solve for cos », we know that the solution, if it
exists, must lie in the interval [—1, 1]. For bracketing methods we suggest using
this interval, and for Newton’s and Halley’s method, we take the midpoint of the
interval, i.e. xo = 0. If one uses equation (12) instead of equation (10), the initial
guess could be 77 which is the midpoint of [0,27].

For subsequent crossings through the shadow, we can take xy to be the previous
solution.
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Complexity of Numerical Solution

All iterative procedures require function evaluations, and some will require
the evaluation of the first and perhaps second derivative. The evaluation of the
function requires five multiplications/divisions (using nested multiplication) and
two trigonometric function evaluations. The evaluation of the first derivative is
accomplished by five multiplications/divisions. The second derivative requires
four multiplications/divisions. For one iteration of Halley’s method we need
14 multiplications/divisions and two trigonometric function evaluations. For one
iteration of Newton’s method we need 10 multiplications/divisions and two
trigonometric function evaluations. For the bisection method we need five multi-
plications/divisions and two trigonometric function evaluations. If we multiply the
number of iterations (for both roots) by the cost per iteration we find that Newton’s
method is the cheapest with 60 multiplications/divisions and 12 trigonometric
function evaluations, then Halley’s method with 70 multiplications/divisions and
10 trigonometric function evaluations, then (after the quartic) the bisection method
with 190 multiplications/divisions and 76 trigonometric function evaluations. To
each of these, we add 11 multiplications/divisions for computing the coefficients.
In comparison, Newton’s method is cheaper than solving the quartic and it doesn’t
require checking for spurious roots. Even Halley’s method is competitive with the
analytic solution of the quartic. We summarize the results in Table 1.

Numerical Solution for Conical Shadow

In this section, we describe a numerical method to solve equation (8) and
equation (3) subject to equation (7). We suggest guessing an initial approximation
xo = 0 and use equation (3) to get the corresponding y

yo = £bV1 — €2 (13)

Because equation (3) is quadratic, we offer here the correct sign to satisfy
equation (7). Note that equation (7) describes a half-plane whose boundary is
a line in Figs. 4 and 5. The equation of the line is:

Yo = ——Xo (14)
as)

If we have a;; > 0 and a;; > 0, then the half-plane includes the first quadrant
(Fig. 4). Since we take xo = 0, then y, must be positive to get a point in the
half-plane

a)y

Yo = ——Xo
az
TABLE 1. Operation Count
Number of Number of Number of Number of Number of

Operation mult./div. square roots cubic roots trig. func. iterations
Newton 71 0 0 12 6
Halley 81 0 0 10 5
Bisection 201 0 0 76 38
Quartic 102 5 4 2! 0

'This doesn't include checking for spurious roots.
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a21<0

region of interest

a21>0

FIG. 4. a,, and a; Have the Same Sign.
If we now consider the case a;; < 0 and a;; < 0, then the half-plane
< a
Yo —— X0
az

includes the third quadrant and with x = 0 we must have yo < 0. Therefore the
sign of y, is the same as the sign of aj,.
The other two cases when a3, and a,, have different signs are shown in Fig. 5.
Again one can see that with xo = 0, yp and a;; must have the same sign.
Therefore the sign of the radical in equation (13) is the same as the sign of ay;.
We now rewrite equation (8) as

Fi(x,y) = Ax* + By(x)* + Cxy(x) + Dx + Ey(x) + F
y
region of interest

a2i>0

a_21<0

FIG. 5. a,, and a.; Have Opposite Signs.
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with [using equation (3)]
y(x) = £V1 — €24/a? = (x + ae)?

For Newton’s method, we need F; and y’ which are given by
Fi(x,y) = 2Ax + 2By(x)y'(x) + Cy(x) + Cxy'(x) + D + Ey'(x)

and
_(1 = e¥)(x + ae)
yx) ==
y
Now the iterative procedure is as follows
Fl(-xnayn)
nbl = Xp — = =1,2,...
ol * Fll(xmyn) "

Yn+1 = VI = ez\/a2 — (X1 + ae)?
Note that the appropriate sign must be chosen.
Cylindrical Shadow Example

In this section we give an example of the results using the numerical methods
discussed. The orbit parameters are eccentricity, e = 0.002; inclination, { =
63.4°; semi-parameter, p = 1.029R¢; and all other parameters are zero. The Julian
date is 2458866.5 which translates to January 18, 2025, 00:00:00. Computing 3,
and B, we get

B: = 0.459588
B, = —0.6807135.

When computing the coefficients of equation (12), we note that we can divide
through by Re. Thus

A = 0.22365359961987
B = —0.48663607239723
C = —0.66251206398010

and

D = —0.55219149589539

To compare our answer with the solution of the quartic, we have used MAPLE
(a software for symbolic as well as numeric manipulation). The solution of the
quartic is given by MAPLE as

0.9515384807, 0.6383876663, —0.6284006779, —0.9573391655

We have used the initial guesses 7/2 and 7 (this last one is the midpoint
for the interval for v) for both Halley’s method and Newton’s. The results are
summarized in Tables 2 and 3. We haven’t listed the results for bisection to save
space, but it was found that 19 iterations are required for each root.

If we lump the roots and trigonometric functions evaluations, both Newton’s
and Halley’s algorithms are competitive with the quartic. Clearly in the next
entry/exit, we have a better starting value and the number of iterations will drop.
In such a case, we believe that even the bisection is competitive.
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TABLE 2, Halley’s Method

Index Xn Sn
0 3.1415927410126 0.15809811820307
| 3.3458677144367 7.1754595942126E-3
2 3.3548687370636 3.7933632368592E-7
0 1.5707963705063 —0.55219144566452
1 2.0102227850806 —4.9619495511140E-2
2 2.0592174428168 —7.9155781539941E-5
3 2.0592977378196 —2.2241000152690E-9

Conical Shadow Example

In this section we utilize two cases, one is a Molniya orbit and the other is Topex.
In both cases the Julian date is 2451059.5, which is September 3, 1998, 0 hrs UTC.
The orbit parameters for the Molniya are eccentricity, e = 0.7310151; inclination,
i = 63.7771°; semi-major axis, a = 26573.92 km, and all other parameters are
zero. The orbit parameters for Topex are eccentricity, e = 0.0007391; inclination,
I = 66.0424°; semi-major axis, a = 7714.39 km, and all other parameters are
zero.

We have used the initial guess xo = O as suggested previously for Newton’s
method. The results are summarized in Table 4.

Newton’s method required four iterations (in the case of Topex, one more
iteration is required to reduce the value of F, to 10~8). Again with a better choice
of initial guess (for subsequent crossings), one can reduce the number of iterations.

Conclusions

In this paper, we suggest the use of iterative techniques to compute the entry
and exit positions through the Earth’s umbra and penumbra. We also show how
to choose the initial guess for the first and subsequent crossings. Several iterative
methods for the solution of the problem are compared to the current method.

TABLE 3. Newton’s Method

Index Xp fn
0 3.1415927410126 0.15809811820307
1 3.3802270351102 —2.0352665051308E-2
2 3.3549832208569 —9.1037138606143E-5
3 3.3548692425999 —3.3682949540648E-8
0 1.5707963705063 —0.55219144566452
1 2.0513187842744 —7.8994163839551E-3
2 2.0592637093607 —3.3538132013122E-5
3 2.0592977304045 —2.2241000152690E-9
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TABLE 4. Newton’s Method for Molniya (Top) and Topex (Bottom)

Index Xn Vn Sn

0 0.0 —12373.266877648 —

1 4488.2707072959 —7907.2661725674 3205757.601269
2 4644.5415889873 —7683.3182279388 17470.353126
3 4645.4027483515 —7682.0619334299 0.564417
4 4645.4027761748 —7682.0618928360 2.23E-8
0 0.0 —7714.3857858694 13188317.066076
1 2941.3435563094 —7129.2853450404 —5828386.245817
2 2219.7272005566 —7386.4233192724 —231728.769016
3 2188.4458400588 —7395.7758038092 —507.821106
4 2188.3769864374 -7395.7962306511 —2.474E-3
5 2188.3769861019 —7395.7962307506 1.490E-8

Newton’s method converges fast especially at subsequent crossings because the
initial guess is good.
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