TRAJECTORY PROPAGATION
USING INFORMATION ON.
PERIODICITY
Beny Neta*

Families of methods to integrate first and
second order ordinary differential equations
whose solution known to be periodic will be
discussed. The methods can be tuned to a
possibly a-priori knowledge of the user on
the location of the frequencies, that are dom-
inant in the exact solution. On the basis
of such extra information the truncation er-
ror can considerably be reduced in magni-
tude. The paper compares these methods to
well known integrators and discusses a simple
mechanism to estimate the frequency during
the integration process.

INTRODUCTION

Much effort has gone into the develop-
ment of numerical solution of first and sec-
ond order ordinary differential equations.
See Bulirsch and Stoer!, Butcher?, Daniel
and Moore3, Gear*56, Gragg”, Hull®, Hull
et a]®10:11 Krbgh:u'la, Herrick!4, Shanks?!®,
Lear!®, Fox!”, Montenbrunk!® and many
others. Some of these integrators were
applied to orbital mechanics. Several re-
searchers compared the wealth of integrators
available. Hull et al!'® used the number of
function evaluations, overhead cost and reli-
ability as criteria for comparison. Recently
Der?® presented a comparative study of var-
ious trajectory propagators using high order
numerical integrators.
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Panovsky et al??2 and Richardson et
al?2324 are developing and improving Cheby:
shev methods for the numerical integration
of first and second order ordinary differential
equations. The methods were- constructed
primarily for use in a variety of astrodynam-
ics applications. Richardson et al?* claim
that “because the solution to astrodynam-
ics equations often exhibits a periodic or
quasi-periodic character, it was felt that the
application of a numerical procedure based
on trigonometric (Chebyshev) interpolation
rather than polynomial interpolation would
be more suitable.” However they didn’t
choose to develop or use methods based on
trigonometric polynomials exploitinginfor-
mation on the periodicity of the solution.

In the next section we formulate the prob-
lem. Methods for first order ordinary differ-
ential equations and second order not con-
taining the first order derivative will be dis-
cussed in separate sections. We also included
a discussion of symmetric methods for sec-
ond order initial value problems. The last
section will give numerical experiments with
several techniques for periodic and quasi pe-
riodic problems.

PROBLEM FORMULATION

Let d@(t,,¥) be the total acceleration in
the equations of motion described by

d*7 .
:l?i- = a(t, r, ‘57 (1)
subject to the given initial conditions
7(to) = To, F(to) = 7o. (2).

Without loss of generality, we assume that
the position, velocity and acceleration vec-
tors are given in Earth centered inertial
coordinate system. The tctal acceleration
includes central gravity, oblateness, drag,



thrust, solar radiation pressure, and n-body
gravity.

The second order differential equations
(1)-(2) can be rewritten as a first order sys-
tem as follows

dr 3
dt v

= (3)
v a(t, 7, 9)
dt

subject to the given initial conditions

—

i To
(to) =

v Vo

(4)

The direct integration of (1)-(2) or (3)-(4)
is called Cowell method. The compara-
tive study by Der? includes Runge-Kutta-
Fehlberg and Adams-Bashforth Adams-
Moulton predictor corrector integrators for
the first order initial value problem (3)-(4)
and Nystréom and Gauss-Jackson-Fox inte-
grators for the second order (1)-(2).

METHODS FOR FIRST ORDER
EQUATIONS

Gautschi®® was the first to develop numer-
ical integrators based on trigonometric poly-
nomials for problems with oscillatory solu-
tions whose frequency is known. The result-
ing methods depend on a parameter v = hw,
where h is the step size and w is the known
frequency. These methods are of (explicit
and implicit) Adams type and reduce to the
classical ones if v — 0.

To be specific, we consider the linear mul-
tistep methods

p(E)yn — ho(E)jn = 0 (5)

for the integration of

9(t) = f(t, (), (6)

in cases where the exact solution is known to
be approximately of the form :

m
y(t) ~ ap + Eaje“"ft
j=1

(M)

where the frequencies w; are such that the
solution is periodic or quasi periodic, that is
y(t) ~ y(t + 27 /we) for some a priori given
frequency wg. The operator E is the forward
operator, i.e.

(8)

The first characteristic polynomial p({) de-
pends on the class of methods used. For
Adams type it is

p(Q) = ¢F - ¢ 9)

The second characteristic polynomial o(() is
of the same degree k for implicit methods
and of degree k — 1 for explicit ones.

Let

Eyn = Yn+1.

¢(z) = p(e*) — za(e®), (10)
then the local truncation error at f,ix is
given by (cf. e.g. Lambert?®) by

Tork = SOl (1)

Because of the consistency condition ¢(0) =
0 and from (7)

[Tk <D lajl |@(ivi)l,

=1

v; = hw;.

(12)
In the case y(t) is a periodic or a quasi pe-
riodic function with frequency wp, we may
replace y(t) by the Fourier series

o]
y(t) - Z&let&uot (13)
=0
and obtain the inequality
Tkl <D lae| |6(ilo)|.  (14)

=0



The inequalities (12) and (14) suggest es-
sentially three approaches (van der Houwen
and Sommeijer?”) for adapting linear mul-
tistep method to the additional information
available on the exact solution. The first ap-
proach is that of Gautschi?® and Neta and
Ford?®. The resulting method is said to be
of trigonometric order g and algebraic order
2¢ and it is obtained by exponentially fitting
at the points 10wy, £=1,...,¢q,i.e. solving

d(ilwg) = 0,£=1,2,...,q. (15)

Gautschi concluded based on some numer-
ical experiments that one can overestimate
the period or underestimate it somewhat and
still get better results. This is not encourag-
ing, since one doesn’t have exact value for
the frequency.

Neta and Ford?® considered Nystrom and
generalized Milne-Simpson type methods for
first order ordinary differential equations.
Here the first characteristic polynomial is

p(C) = ¢F =2 (16)
Their methods are restricted to problems

whose Jacobian matrix —— have purely imag-

0
inary eigenvalues. In t‘l}llose cases, it was
shown numerically that the methods are not
sensitive to changes in the frequency.

The second approach assumes there are
several dominant frequencies w;. One has
to start with a linear multistep method con-
taining sufficiently many free parameters in
order to achieve

d(iw;h) = 0,

This approach was taken by Lyche?®,
Bettis3®, Stieffel and Bettis®! and others.
One of the disadvantages of such an ap-
proach is that a rather detailed knowledge
of the dominant solution components is re-
quired. In nonlinear problems the frequen-
cies may vary over one integration step which

for all w;. (17)

will decrease the accuracy. Therefore Van
der Houwen and Sommeijer?”? took a slightly
different approach. They have developed a
family of linear multistep methods that min-
imize those terms in the local truncation er-
ror which correspond to the oscillatory so-
lution components. They have shown that
if one takes the ¢ zeros, v, in the interval
Um Kv<VUpmas

20— 1
2q

, £=1,2,...,q.
(18)

A
Vm). Then the free coefficients in the func-
tion ¢ (equivalently, the coefficients of the

second characteristic polynomial) can be de-
termined by solving the linear system

O = v1+vs cos

where 1, = l(um +vnm), and vy =

p(a) =0, £=1,2,...,q. (19)

They have developed methods of trigonomet-
ric order 3 and algebraic order 6 of Adams-
Moulton, Milne-Simpson and backward dif-
ferentiation types. The latter ones are useful
when the problem is stiff, i.e. some compo-
nents of the solution decay very fast.

METHODS FOR SECOND ORDER
EQUATIONS

In this section, we discuss the second order
initial value problem
i(t) = f(ty(t), Y(to) = Yo

(20)
The linear multistep method is characterized
by the same polynomials p and ¢. The local
truncation error is given by (11), but now ¢
is defined as

b(2) = p(e) = Zo(e).  (21)

In the first approach, taken by Gautschi?®,
explicit and implicit Stormer Cowell type

y(to) = vo,



methods of trigonometric order ¢ were de-
veloped in such a way that

¢(ihjw) = 0,

The first characteristic polynomial of such
methods is

p(C) = ¢F —2¢*T 4 ¢F 2,

Note that these methods are not symmetric
for £ > 3 and consequently don’t have the
optimal algebraic order. This is true even
for the slightly more general case

P(C) = ¢F+ar¢F ! + k2

For example, see the method Ss(v) listed in
the numerical examples section. Sommeijer,
van der Houwen and Neta3? decided to de-
velop methods based on this approach but
have an optimal order as well as take the
third approach mentioned in the previous
section, that is to replace the fitting condi-
tion (22) by

¢(0) = 0,

i=0,1,...,q. (22

(23)

(24)

$(iwl)) = 0, 1<j<y,

(25)
where the w(? are appropriately chosen
points in the interval w,, < w < wps. An ad-
vantage of this so called minimax approach
over the fitting approach is the increased ac-
curacy in cases where no accurate estimate
of wp is available or when the frequency is
varying in time. In order to facilitate the use
of these methods they also implemented a
simple mechanism to estimate the frequency
during the numerical integration. At every
step n, we evaluate w(n) using

f‘n. 1~ fn

26
Yn—1 — Yn ( )

w(n) =
and take
%(w(n - 2)+w(n—1)+w(n)). (27)

wp =

For the minimax type methods, we use the
interval [.95wy, 1.05wg).

SYMMETRIC METHODS FOR
SECOND ORDER EQUATIONS

A symmetric method for the solution of
second order ordinary differential equations
(missing the first derivative of the unknown)
are necessarily implicit, have an even step,
have the modulus of all the roots of the
first characteristic polynomial equal one and
have a symmetric second characteristic poly-
nomial (see e.g. Sommeijer et al®?). There-
fore the Stérmer type method suggested by
Gautschi?® for k = 3 is not of optimal order.

The above implies that the first character-
istic polynomial must be of the form

- i)

10,)(
(28)
where 0 < 8; < 2m. The 6; are free parame-
ters, restriced only by zero stability. The sec-

p(Q) = (¢-1)*mEP? (¢ -

ond characteristic polynomial has llc+1 free
coefficients, 8;. To achieve order p = k + 2,
we have to satisfy & + 4 conditions two of
which are zero stability, i.e. p(1) = p'(1) =
0. Thus the trigonometric order is %k + 1,
exactly as the number of free parameters.
Let’s rewrite the function ¢(z) in (21) as

$(2) = _z(a,_b 2) (e*9)7 1 &%), (29)
_1.—0
. k

b(z) = ezt Z ; — b;z?) cosh((§ - 7)2).

(30)
The fitting condition (22) assumes the form
(since z = irhwp)

Z(aj+b rhwo) )cos((g—J)rhwo) =0,
=0



Sommeijer, van der Houwen and Neta3? have
shown that for k = 4, the symmetric Stérmer
type method is

p() = (-1} -aC+1), —2<a<2

(32)
and the coefficients (8;) for the second char-
acteristic polynomial are given in terms of

Z = cosvg, Vg = hwg by

_ z—1 3 2
fo = —g52 {22(162° + 382 + 242 + 3)
+ a(dz+4)}/{z(z+1)(2z+1)
(42 + 22 - 1)},
(33)
B = _"’9;21 {22(202* + 602° + 4027 - 3)
0
— o(18c° + 142>~ 3z - 2) }/
{z(2z + 1)(42% + 2z — 1)},
(34)
_ z-1 5 4 3
B2 = 57 {22(402° + 122* - 562

~202? + 62 — 3) } {a(1082"+
+1702% + 422® — 252 — 4) } /
{m(a; +1)(42® + 2z — 1)} .
(35)
For the minimax, the frequencies should
be taken as roots of Chebyshev polynomials

o) = \/I/l + vy cos(2j_ 1)71', 1<j<q.

(36)
where v; = %(V.,zn +v}) and vy = 5(1/]2‘,, —
vi).

NUMERICAL EXAMPLES

In this section, we apply several linear mul-
tistep methods for the solution of three prob-
lems, the first is the orbit equation, the sec-
ond describes the orbit of an object slowly

spiralling outwards, and the third is an al-
most periodic problem involving Bessel funt-
tions. We will show the benefit of using the
knowledge of the frequency, even in almost
periodic cases.

The methods to be used for first order sys-
tems are:

1. Adams Moulton of order 6, AMg

p(C) = ¢ -¢* (37)
1
o) = o (475¢° + 1427¢*
—798¢3 + 482¢% — 173 + 27)
(38)
2. Milne Simpson of order 6, MSg
pQ) = ¢ -¢8 (39)
o(¢) = o (286 +129¢"
+14¢3 +14¢2 — 6¢ + 1)
(40)

3. Adams Moulton of order 6, AMg(v)
The same p(() as in AMg and o(() is
determined by (15) with ¢ = 3.

. Milne Simpson of order 6, MSg(v)

The same p(¢) as in MSg and o(() is
determined by (15) with ¢ = 3.

5. Minimax Adams Moulton of order 6,
AMg(Vm, va)

p(Q) = ¢ -¢*

and o(() is determined by (18),(19) with
g=3

(41)

6. Minimax Milne Simpson of order 6,
MSg(vm, vnm)

p(Q) = ¢ -¢

and o(¢) is determined by (25) with
g=3

(42)



The methods to be used for second order
systems are:

1. Lambert and Watson of order 6, LWg

p(Q) = ¢*=(2+a)C+ (2+2¢)C°

~(2+a)+1 (43)
1
Q) = 555 ((18+a)?
+ 8(26 — 3a)¢® + (28 — 194a)(?
+ 8(26—3a){+ (18+a)) (44)
The parameter a is taken as zero.

2. Stoérmer of order 5, S5(v)

3. Symmetric (optimized) Stérmer of order
6, SOs(v)

p(¢) is given by (32) and
5
U(C) = Zﬂjy:tl+l—j
Jj=0
with Bo = fs given by (33), B1 = B4

given by (34), and B, = 3 given by (35).

4. Symmetric minimax Stérmer of order 6,
SOG (V‘m) VM)
The same p, but need to solve (25) with
hwl) = Y1) given by (36).

The first example is a system of first order
initial value problems

(4

dt / Ys \
@ Y4
dt
=1 _ Y (45)
dy3 (i +v2)©3/2)
dt
_ Ya
\ Y4 ) \ @2+ 3 )

dt

subject to the initial condition

(1=

/ yl(O) \
12(0) 0
= 0 (46)
y3(0)
\u© ) |y

where ¢ is the eccentricity of the orbit. We
will take e = .01 in our experiments. Clearly
w = 1. The exact solution ¢, can be written
in terms of ¢ and 7 as follows

( COST — € \ '
[ vi(t) \
sinT
ya(t) 1—e€ecosT
= (47)
ys(t) V1—ésinT
\ va(t) } V1—¢€2cosT
\ 1—¢ecosT )
where T satisfies
T—esinT = t. (48)

This example is one of those used by Hull
et al!® for their comparative studies and also
used by van der Houwen and Sommeijer?’.

The following linear multistep method will
be compared: Adams Moulton of order 6 (see
e.g. Gear®, p. 113), (denoted AMs), Milne
Simpson of order 6 (MSg) and the corre-
sponding methods using the knowledge of the
frequency as discussed in the first approach
(AMg(v), MSg(v)) and the third approach
(AMg(vim,va), MSg(Vm,var)). We will use
the number of significant figures as defined
by van der Houwen and Sommeijer??,

sd = — log;o(L2 norm of the error at end)
(49)



The results of integration from ¢ = 0 to
t = 127 using a fixed step size h = 7/25 are
as follows

AMs | AMg(R) | AMg(.9%, 1.1R)
4.34 | 7.68 5.01
4.34 | 3.73 4.94
MSs | MSg(h) | MSe(.9%, 1.1h)
3.09 | 5.69 3.69
MSs | MSg(.9%) | MSe(.8k, 1.h)
3.09 | 3.06 3.62

It is clear that the first approach shows
a dramatic gain in the case w = 1, but no
gain when the frequency is underestimated
(w = .9), exactly as in Gautschi®®. In the
third approach, we took an interval around
w and find that there is no difference in the
two cases (a moderate gain over the original
methods).

The second problem is given by a system of
two second order ordinary differential equa-
tions and can be written also as a system of
four first order. This example is taken from
Stiefel and Bettis3! and also solved in Som-
meijer et al32, The problem is

22
.___+z-_—

o7y .0016“,

0<t<40r (50)

subject to the initial condition

2(0) 1

I

(51)
99957

dz
7O
where ¢ = +/—1, and the exact solution is

z(t) = cost+.0005t sin t-+i(sin t—.0005¢ cos t)
(52)

One can also solve this problem by Eing
methods for second order problems. We com-
pare Lambert-Watson method (LWs) with
original (Ss) and optimized (SOg) Gautschi
and optimized minimax (all but the original
Gautschi’s method, which is of Stérmer type,
are of order six) as found in Sommeijer et
al32. The results for A = 7/12 at final time of
407 are given in the next table (where in the
first row the frequency or interval are given
and in the second row the program adjusts
the data)

IWs | Ss(%) | SOs(h) | SOs(0%, 1.1%)
45 |34 |61 8.0
45 |34 |73 9.2

One can see that the fifth order Stérmer
method due to Gautschi couldn’t compete
with Lambert and Watson (difference in or-
der), but the optimized Gautschi’s method
obtains more than one digit of accuracy rela-
tive to LWg. On the other hand the minimax
methods due to Sommeijer, van der Houwen
and Neta3? yield about twice the number of
digits of accuracy.

Neta and Ford?® have compared AMg and
MSg for the solution of the first order sys-
tem resulting in this example. The results
for h = T are 5.8 for AMg and 8.0 for

MSg. Even though the step size is finer,
the results are not better than the minimax

method SOg(.9h,1.1R).

The third example is a second order almost
periodic equation with w ~ 10

!7-!-(100-*——1—)3] = 0,

i 1<t<9 (53)

The initial conditions are chosen so that the
exact solution is given in terms of Bessel
function Jp, (i.e. the coefficient of Yy term
is zero)

Ye = ViJo(10t) (64)



This example was used by Gautschi?®®, Neta
and Ford?® and Sommeijer et al32.

The results when solving the second order
system using h = 1/50 are given (at the final
time ¢t = 10) in the next table:

LWe | Ss(k) | SOs(h) | SO (.0, 1.1h)
60 |49 |82 11.0
60 |49 |79 11.0

Of course, the second order equation can
be written as a system of two first order equa-
tions. The results of solution of this system
using methods for first order equations are
listed below:

AMg | AMg(R) | AMg(.9%, 1.1A)
4.57 | 6.89 8.60
MSS MSs(h) MSG(.gh, llh)
5.14 | 6.80 8.73

Notice the quality of minimax methods rel-
ative to all others. Using the information on
periodicity can yield almost twice the num-
ber of digits of accuracy relative to tradi-
tional schemes.
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