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Abstract

In this report we document the implementation of high order Higdon nonreflecting
boundary conditions. We suggest a way to choose the parameters and demonstrate nu-
merically the efficiency of our choice. The model we used is the shallow water equations
and as a special case the Klein-Gordon equation. These equations are solved by the
finite difference method. We comment on the use of finite elements and demonstrate a
new, more efficient method. The case of curved boundary is discussed. We close with
a list of topics for research.

1. Statement of the Problem

Consider the shallow water equations (SWEs) in a semi-infinite channel. For simplicity
we assume that the channel has a flat bottom and that there is no advection, although
these assumptions may be removed in future studies. We do take into account rotation
(Coriolis) effects. A Cartesian coordinate system (x, y) is introduced such that the
channel is parallel to the x direction, as shown in the figure. The width of the channel
is denoted b.
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Figure 1: Setup for the wave-guide problem in a semi-infinite wave guide

The SWEs are (see [1]):

∂tu+ µu∂xu+ µv∂yu− fv = −g ∂xη , (1)
∂tv + µu∂xv + µv∂yv + fu = −g ∂yη , (2)
∂tη + µu∂xη + µv∂yη + (h0 + µη) (∂xu+ ∂yv) = 0 . (3)

Here t is time, u(x, y, t) and v(x, y, t) are the unknown velocities in the x and y direc-
tions, h0 is the given water layer thickness (in the direction normal to the xy plane),
η(x, y, t) is the unknown water elevation above h0, f is the Coriolis parameter, and g
is the gravity acceleration. We use the following shorthand for partial derivatives

∂i
a =

∂i

∂ai

The parameter µ is 1 for the nonlinear SWEs, and is 0 for the linearized SWEs with
vanishing mean flow. We shall consider the latter as a special case in the sequel.
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It can be shown (see [2]) that a single boundary condition must be imposed along
the entire boundary to obtain a well-posed problem. On the south and north channel
walls ΓS and ΓN we have v = 0 (no normal flow). On the west boundary ΓW we
prescribe η using the Dirichlet condition η(0, y, t) = ηW (y, t), where ηW (y, t) is a given
function (incoming wave). At x→∞ the solution is known to be bounded and not to
include any incoming waves. To complete the statement of the problem, initial values
for u, v and η are given at time t = 0 in the entire domain.

We now truncate the semi-infinite domain by introducing an artificial east boundary
ΓE, located at x = xE (see figure). To obtain a well-posed problem in the finite
domain Ω we need a single boundary condition on ΓE. This should be a Non-Reflecting
Boundary Condition (NRBC). We shall apply a high-order NRBC for the variable η.
A discussion on this NRBC follows.

2. Higdon’s NRBCs

On the artificial boundary ΓE we use one of the Higdon NRBCs [3]. These NRBCs were
presented and analyzed in a sequence of papers [4]–[8] for non-dispersive acoustic and
elastic waves, and were extended in [3] for dispersive waves. Their main advantages
are as follows:

1. The Higdon NRBCs are very general, namely they apply to a variety of wave
problems, in one, two and three dimensions and in various configurations.

2. They form a sequence of NRBCs of increasing order. This enables one, in principle
(leaving implementational issues aside for the moment), to obtain solutions with
unlimited accuracy.

3. The Higdon NRBCs can be used, without any difficulty, for dispersive wave prob-
lems and for problems with layers. Most other available NRBCs are either de-
signed for non-dispersive media (as in acoustics and electromagnetics) or are of
low order (as in meteorology and oceanography).

4. For certain choices of the parameters, the Higdon NRBCs are equivalent to NR-
BCs that are derived from rational approximation of the dispersion relation (the
Engquist-Majda conditions being the most well-known example). This has been
proved by Higdon in [3] and in earlier papers. Thus, the Higdon NRBCs can be
viewed as generalization of rational-approximation NRBCs.

The scheme developed here is different than the original Higdon scheme [3] in the
following ways:

1. The discrete Higdon conditions were developed in the literature up to third order
only, because of their algebraic complexity which increases rapidly with the order.
Here we show how to easily implement these conditions to an arbitrarily high
order. The scheme is coded once and for all for any order; the order of the
scheme is simply an input parameter.

2. The original Higdon conditions were applied to the Klein-Gordon linear wave
equation and to the elastic equations. Here we show how to apply them to the
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SWEs (1)–(3).

3. The Higdon NRBCs involve some parameters which must be chosen. Higdon [3]
discusses some general guidelines for their manual a-priori choice by the user. We
shall show how these parameters can be chosen automatically. They may either
be constant, or may change adaptively during the solution process.

4. We shall show how to improve the discretization of the Higdon NRBCs using
higher-order Finite Difference stencils.

5. We shall show how the Higdon NRBCs may be incorporated in a Finite Element
scheme.

6. (Future.) We shall extend these ideas to other configurations (full-space exterior
problems in 2D and 3D, 3D wave guides, etc.).

7. (Future.) We shall try to extend these ideas to curved boundaries.

The Higdon NRBC of order J is

HJ :


 J∏

j=1

(∂t + Cj∂x)


 η = 0 on ΓE . (4)

Here, the Cj are parameters which have to be chosen and which signify phase speeds
in the x-direction. The boundary condition (4) is exact for all waves that propagate
with an x-direction phase speed equal to either of C1, . . . , CJ . This is easy to see from
the following consideration.

Consider a wave which satisfies the linearized SWEs (eqs. (1)–(3) with µ = 0; see,
e.g., Pedlosky [1], p. 77). It has the form

η = η0Y (y) cos(kx− ωt+ ψ) , (5)

where

ω2 =



C2

0 (k2 + n2π2

b2 ) + f2 ; n = 1, 2, . . .

C2
0k

2 ; n = 0
, (6)

Y (y) =




cos
nπy

b
− bf

nπCx
sin

nπy

b
; n = 1, 2, . . .

exp(−fy/C0) ; n = 0

, (7)

C0 =
√
h0g , (8)

Cx =
ω

k
. (9)

In (5)–(9), η0 is the wave amplitude, ψ is its phase, k is the x-component wave number,
ω is the wave frequency, C0 is the reference wave speed (which is both the phase speed
and the group speed for the non-dispersive case f = 0), and Cx is the x-direction
phase velocity. Eq. (6) is the dispersion relation. The solutions corresponding to the
modes n = 1, 2, . . . are Poincaré waves, whereas the solution corresponding to n = 0 is
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the Kelvin wave. These complete the set of all wave solutions for wave number k and
mode n. There are also solutions that decay exponentially in the x direction. However,
Higdon’s NRBCs ignore them. They are usually not of great concern, since the decaying
modes are expected to be insignificant at ΓE , provided that ΓE is sufficiently far away
from where the waves are generated.

Now, it is easy to verify that if one of the Cj ’s in (4) is equal to Cx, then the wave
(5) satisfies the boundary condition (4) exactly.

We make a few observations:

• From (6) and (9) we have

Cx =




√
C2

0 +
C2

0n
2π2/b2 + f2

k2
; n = 1, 2, . . .

C0 ; n = 0

. (10)

Thus, always Cx ≥ C0; hence one should take Cj ≥ C0. In general, the solution
consists of an infinite number of waves of the form (5) with different phase speeds.

• The first-order condition H1 is a Sommerfeld-like boundary condition. If we set
C1 = C0 we get the classical Sommerfeld-like NRBC. A lot of work in the meteoro-
logical literature is based on usingH1 with a specially chosen C1. Pearson [9] used
a special but constant value of C1, while in the scheme devised by Orlanski [10]
and in later improved schemes [11]–[14] the C1 changes dynamically and locally
in each time-step based on the solution from the previous time-step. Some of the
limited-area weather prediction codes used today are based on such schemes, e.g.,
COAMPS [15]. See also the recent papers [16]–[18] where several such schemes
are compared.

• The condition HJ involves up to Jth-order normal and temporal derivatives. In
fact, it has the form

J∑
j=0

Aj ∂
j
x∂

J−j
t η = 0 , (11)

which is obtained by expanding (4).

• It is easy to show (see Higdon [3] for a similar setting) that when a wave of the
form (5) impinges on the boundary ΓE where the NRBC HJ is imposed, the
resulting reflection coefficient is

R =
J∏

j=1

∣∣∣∣∣Cj − Cx

Cj + Cx

∣∣∣∣∣ . (12)

Again we see that if Cj = Cx for one of the j’s then R = 0, namely there is no
reflection and the NRBC is exact. Moreover, we see that the reflection coefficient
is a product of J factors, each of which is smaller than 1. This implies that the
reflection coefficient becomes smaller as the order J increases regardless of the
choice made for the parameters Cj. Of course, a good choice for the Cj would
lead to better accuracy with a lower order J , but even if we miss the correct Cj’s
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considerably (say, if we make the simplest choice Cj = C0 for j = 1, . . . , J), we
are still guaranteed to reduce the spurious reflection as we increase the order J .
This is an important property of the Higdon’s NRBCs and is the reason for their
robustness.

• In [6], Higdon points to the possibility of a long-time instability that might occur
when one uses a NRBC with high-order derivatives. If the interior governing equa-
tions and the NRBC both admit solutions at zero wave number and frequency,
and if the data in the problem include such “zero modes,” then a slowly-growing
smooth instability is possible. Whether this shows up in practice depends on
the order of the derivatives in the NRBC and the number of spatial dimensions.
However, these difficulties do not arise in the presence of dispersion, or if the data
are confined to nontrivial modes.

3. Discretization of Higdon’s NRBCs

The Higdon condition HJ is a product of J operators of the form ∂t +Cj∂x. Consider
the following Finite Difference (FD) approximations:

∂t � I − S−
t

∆t
, ∂x � I − S−

x

∆x
. (13)

In (13), ∆t and ∆x are, respectively, the time-step size and grid spacing in the x
direction, I is the identity operator, and S−

t and S−
x are shift operators defined by

S−
t η

n
pq = ηn−1

pq , S−
x η

n
pq = ηn

p−1,q . (14)

Here and elsewhere, ηn
pq is the FD approximation of η(x, y, t) at grid point (xp, yq) and

at time tn. We use (13) in (4) to obtain:
 J∏

j=1

(
I − S−

t

∆t
+ Cj

I − S−
x

∆x

) ηn
Eq = 0 . (15)

Here, the index E correspond to a grid point on the boundary ΓE. Higdon has solved
this difference equation (and also a slightly more involved equation that is based on
time- and space-averaging approximations for ∂x and ∂t; see next section) for J ≤ 3 to
obtain an explicit formula for ηn

Eq. This formula is used to find the current values on
the boundary ΓE after the solution in the interior points and on the other boundaries
has been updated. The formula for J = 2 is found in [8], and the one for J = 3 appears
in the appendix of [7]. The algebraic complexity of these formulas increases rapidly
with the order J . It is thus not surprising that we have not found in the literature any
report on the implementation of the Higdon NRBCs beyond J = 3.

Now we show how to implement the Higdon NRBCs to any order using a simple
algorithm. To this end, we first multiply (15) by ∆t and rearrange to obtain

Z ≡

 J∏

j=1

(
ajI + djS

−
t + ejS

−
x

) ηn
Eq = 0 , (16)



High-Order Higdon NRBCs 6

where

aj = 1 +
Cj∆t
∆x

, (17)

dj = −1 , (18)

ej = −Cj∆t
∆x

. (19)

The coefficient dj actually does not depend on j, but we keep this notation to allow
easy extensions to the scheme (see later). Now, Z in (16) can be written as a sum of
3J terms, each one is an operator acting on ηn

Eq, namely

Z ≡
3J−1∑
m=0

AmPmη
n
Eq = 0 . (20)

Here Am is a coefficient depending on the aj, dj and ej , and Pm is an operator involving
products of I, S−

t and S−
x . All the terms in the sum in (20) are computable at the

current time step n, except the one which involves only the identity operator and no
shift operators. If we let this term correspond to m = 0, then P0 = I and

A0 =
J∏

j=1

aj . (21)

Thus we get from (20)
Z ≡ A0η

n
Eq + Z∗ = 0 , (22)

where

Z∗ =
3J−1∑
m=1

AmPmη
n
Eq . (23)

From (22) we get
ηn

Eq = −Z∗/A0 , (24)

which is the desired value of η on the boundary ΓE.
The problem now reduces to calculating Z∗ given by (23). We do this using the

algorithm described in Box 1.
Note that we need to store ηn̂

îq
values for î = E,E − 1, . . . , E − J and n̂ = n, n −

1, . . . , n− J . In other words, we have to store the history of the values of η for a layer
of thickness J + 1 points near the boundary ΓE and for J + 1 time levels (including
the current one). If there are Ny grid points in the y direction, then the amount of
storage needed in a simple storage scheme is (J + 1)2Ny. However, one can save in
storage by exploiting the fact that not all values ηn̂

îq
are needed, but only those for

which (E − î) + (n− n̂) ≤ J . This is clear from (11) and also from (16). For example,
the solution at time tn−J should be stored only for points on the boundary ΓE itself.
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• Start with Z∗ = 0. Calculate A0 =
∏J

j=1 aj.

• Loop over the integers m = 1, . . . , 3J − 1.

– For a given m, transform m into a number r in base 3, consisting of the digits 0, 1 and 2
only. The length of r will be at most J digits. Store the J digits of r in the vector Dr(j),
j = 1, . . . , J .
Example: Suppose that J = 6 and m = 227. Since 227 in base 3 is r = 22102, we will
get Dr = { 0 2 2 1 0 2 } .

– Use Dr to calculate the coefficient Am. To this end, start with Am = 1, loop over
j = 1, . . . , J , and for each j multiply Am by the factor aj (if Dr(j) = 0) or dj (if
Dr(j) = 1) or ej (if Dr(j) = 2).
Example: For J = 6 and m = 227, we have received the vector Dr above. Then A227 =
a1e2e3d4a5e6 .

– Use Dr to calculate the operator action Pmη
n
Eq. To this end, start with n̂ = n and î = E,

loop over j = 1, . . . , J , and for each j subtract 1 from n̂ (if Dr(j) = 1) or subtract 1 from
î (if Dr(j) = 2) or do nothing (if Dr(j) = 0). After the loop ends we have Pmη

n
Eq = ηn̂

îq
.

Example: For the case J = 6 and m = 227 considered above, we get n̂ = n− 1 (because
the digit “1” appears only once in Dr), and î = E − 3 (because the digit “2” appears
three times in Dr). Hence P227η

n
Eq = ηn−1

E−3,q.

– Update: Z∗ ← Z∗ +Amη
n̂
îq

.

• Next m.

• ηn
Eq = −Z∗/A0.

Box 1. Algorithm for implementing the Higdon NRBC of order J , using high-order FD discretiza-
tion.
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4. Improved Discrete Higdon NRBCs

The discretization scheme described in the previous section is based on the FD approx-
imations given by (13). These approximations can be improved in several ways. For
example:

(a) We can take

∂t � I − S−
t

∆t
(
(1− b)I + bS−

x

)
, ∂x � I − S−

x

∆x

(
(1− b)I + bS−

t

)
, (25)

where 0 ≤ b ≤ 1. Thus, the temporal difference is calculated with a weighted
average in space while the spatial difference is calculated with a weighted averaged
in time. The formulas (13) correspond to b = 0. In [3], Higdon has used this
approximation with b = 0.5, and reported a slight improvement in the results
compared to the use of (13).

(b) We can take one-sided approximations for the x- and t-derivatives [19], i.e.,

∂t � 3I − 4S−
t + (S−

t )2

2∆t
, ∂x � 3I − 4S−

x + (S−
x )2

2∆x
. (26)

These approximations are second-order accurate, as opposed to those in (13)
which are first-order accurate.

(c) We can combine the two types of approximations given above, namely

∂t � 3I − 4S−
t + (S−

t )2

2∆t
(
(1− b)I + bS−

x

)
, (27)

∂x � 3I − 4S−
x + (S−

x )2

2∆x

(
(1− b)I + bS−

t

)
. (28)

The procedure described in the previous section (see Box 1) for implementing the
Higdon NRBCs can easily be modified to admit these improved approximations. The
main feature that has to be changed in the algorithm outlined in Box 1 is the base
to which the counting decimal integer m is transformed. For example, consider the
approximation (a) above replacing (13). In this case (16), which involves three basic
operators (I, S−

t and S−
x ) is replaced by

Z ≡

 J∏

j=1

(
ajI + djS

−
t + ejS

−
x + gjS

−
t S

−
x

) ηn
Eq = 0 , (29)

which involves four basic operators (I, S−
t , S−

x and S−
t S

−
x ). Therefore, the counter m

in the main loop in Box 1 will range from 1 to 4J − 1, and all the calculation will be
performed in base 4 rather than in base 3. Similarly, the approximations (b) and (c)
will require calculations in base 5 and base 8, respectively. The alternations needed
in the coding are minor, but naturally the computational time associated with these
improved approximations would increase dramatically.
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We note that when one uses a high-order NRBC (namely HJ with a large J),
the discrete operator involved is of high-order even when the simplest formulas in
(13) are used to approximate the x- and t-derivatives. Thus, the importance of the
improvements discussed above diminishes when J increases. In fact, there is a point
in incorporating such improvements in the scheme only if a low-order condition (say,
J ≤ 3) is employed.

5. The Interior Scheme

We consider explicit FD interior discretization schemes for the SWEs (1)–(3) to be used
in conjunction with the HJ condition. The interaction between the HJ condition and
the interior scheme is of concern, since simple choices for an explicit interior scheme
turn out to give rise to long-time instabilities. We have tried the Miller-Pearce time-
integration [20], Leap-Frog [21], a version of semi-implicit time-integration [22] and
the MacCormack scheme [21, 23] (which is equivalent for linear problems to the Lax-
Wendroff scheme). They are all stable for a sufficiently small time step when used
with the boundary condition H1 (which is a Sommerfeld-like condition as previously
mentioned), but they all become unstable for J ≥ 2. The instability appears earlier in
time when J becomes larger.

Higdon [3] has proved, in the context of the scalar Klein-Gordon equation,

∂2
t η − C2

0∇2η + f2η = 0 , (30)

that the discrete NRBCs (15) are stable if the interior scheme is the standard second-
order centered difference scheme

ηn+1
pq = 2ηn

pq − ηn−1
pq +

(
C0∆t
∆x

)2 (
ηn

p+1,q − 2ηn
p,q + ηn

p−1,q

)

+
(
C0∆t
∆y

)2 (
ηn

p,q+1 − 2ηn
p,q + ηn

p,q−1

)
− (f∆t)2ηn

p,q . (31)

Now we shall show how the SWEs (1)–(3) can be discretized in such a way as to mimic
(31) and to lead to a stable scheme.

First we define the new variables

V + = h0(∂xu+ ∂yv) , V − = h0(∂xv − ∂yu) . (32)

From the SWEs (1)–(3) we obtain equations which involve these two variables. By
differentiating (1) and (2) with respect to x and to y, respectively, and then summing
the results, we get the equation

∂tV
+ − fV − + gh0∇2η = N1 , (33)

where
N1 = µh0 [∂x(u∂xu) + ∂x(v∂yu) + ∂y(u∂xv) + ∂y(v∂yv)] . (34)
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Note that N1 is the nonlinear part of eq. (33). Similarly, we differentiate (2) and (1)
with respect to x and to y, respectively, and then subtract the second from the first to
obtain

∂tV
− + fV + = N2 , (35)

where
N2 = µh0 [∂x(u∂xv) + ∂x(v∂yv)− ∂y(u∂xu)− ∂y(v∂yu)] . (36)

We write (3) as
∂tη + V + = N3 , (37)

where
N3 = µ [∂x(uη) + ∂y(vη)] . (38)

Finally we also consider the time derivative of eq. (37), namely

∂ttη + ∂tV
+ = ∂tN3 . (39)

Now we base the interior scheme on eqs. (33), (35), (37) and (39). First, we dis-
cretize (37) to obtain an updating formula for V +:

(V +)n+1
pq = Nn

3 −
ηn

pq − ηn−1
pq

∆t
. (40)

The notation Nn
3 means that we calculate all the variables appearing in the expression

for N3 at time-step n. We shall discuss the discretization of the spatial derivatives in
N3 later. Then we use (35) to update V −

t ≡ ∂tV
−:

(V −
t )n+1

pq = Nn
2 − f(V +)n+1

pq . (41)

Next we integrate (41) to update V −:

(V −)n+1
pq = (V −)npq + ∆t(V −

t )n+1
pq . (42)

Now we use (33) to update V +
t ≡ ∂tV

+. We use second-order central differences in
space to approximate ∇2η:

(V +
t )n+1

pq = Nn
1 + f(V −)n+1

pq − gh0

(
ηn

p+1,q − 2ηn
p,q + ηn

p−1,q

∆x2
+
ηn

p,q+1 − 2ηn
p,q + ηn

p,q−1

∆y2

)
.

(43)
Finally we use eq. (39) to update η. We use second-order central differences in time to
approximate ∂ttη:

ηn+1
pq = 2ηn

pq − ηn−1
pq −∆t2(V +

t )n+1
pq + ∆t(Nn

3 −Nn−1
3 ) . (44)

After ηn+1
pq is known, the updated values for u and v, i.e., un+1

pq and vn+1
pq may be found

in a number of ways. We have chosen to integrate the original SWEs (1) and (2) using
a forward FD approximation in time to obtain these values.

It is easy to show that in the linear case, and with zero initial conditions, the up-
dating formula for η, eq. (44), coincides with the formula (31) for the Klein-Gordon
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equation. Indeed, in this case (V −)n+1 = fηn, and using (40)–(44) without the non-
linear terms leads exactly to formula (31). Thus stability is guaranteed in this case.

In the nonlinear case, we have to calculate the quantities Nn
1 , Nn

2 and Nn
3 . These

involve first- and second-order spatial derivatives. All these derivatives may be calcu-
lated using second-order centered differences.

(Future: Find other “more natural” schemes that are stable with HJ .)

6. An Alternative Formulation With Auxiliary

Functions

Now we show how to rewrite the Higdon boundary conditions with no high-order deriva-
tives, by the use of auxiliary variables. This form of boundary condition has the ad-
vantages that after discretization it involves only degrees of freedom on the boundary
ΓE itself, that no high-order discrete schemes are needed, and that the history of the
solution does not have to be stored. As a result, it is more amenable, compared to the
previous formulation, for incorporation in a Finite Element scheme. For simplicity, we
consider the linear Klein-Gordon equation (dispersive wave equation)

∂2
t η − C2

0∇2η + f2η = 0 , (45)

rather than the SWEs. We assume that C0 and f do not depend on x (the direction
normal to the artificial boundary ΓE) or on t, but they may be functions of y (the
direction tangent to ΓE).

We first replace the Higdon condition (4) by the equivalent condition

HJ :


 J∏

j=1

(
∂x +

1
Cj
∂t

)
 η = 0 on ΓE . (46)

Now we introduce the auxiliary functions φ1, . . . , φJ−1, which are defined on ΓE as
well as in the exterior domain outside ΓE (namely the domain x > xE), denoted D.
(Eventually we shall use these functions only on ΓE, but the derivation requires that
they be defined in D as well, or at least in a non-vanishing region adjacent to ΓE .)
The functions φj are defined via the relations

(
∂x +

1
C1
∂t

)
η = φ1 , (47)(

∂x +
1
C2
∂t

)
φ1 = φ2 , (48)

...(
∂x +

1
CJ

∂t

)
φJ−1 = 0 . (49)
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By definition, these relations hold in D, and also on ΓE. It is easy to see that (47)–(49),
when imposed as boundary conditions on ΓE, are equivalent to the single boundary
condition (46). If we also define

φ0 ≡ η , φJ ≡ 0 , (50)

then we can write (47)–(49) concisely as(
∂x +

1
Cj
∂t

)
φj−1 = φj , j = 1, . . . , J . (51)

This set of conditions involves only first-order derivatives. However, due to the ap-
pearance of the x-derivative in (51), one cannot discretize the φj on the boundary ΓE

alone. Therefore we shall manipulate (51) in order to get rid of the x-derivative.
The function η satisfies the wave equation (45) in D. The function φ1 is obtained

by applying a linear operator to η, as in (47); hence it is clear that φ1 also satisfies the
same equation in D. Similarly, we deduce that each of the functions φj satisfies a wave
equation like (45). (Here we needed the assumption that C0 and f do not depend on
x or on t.) Namely,

∂2
xφj + ∂2

yφj − 1
C2

0

∂2
t φj − f2

C2
0

φj = 0 . (52)

Now, we make use of the following identity:

∂2
xφj =

(
∂x − 1

Cj+1
∂t

)(
∂x +

1
Cj+1

∂t

)
φj +

1
C2

j+1

∂2
t φj . (53)

Substituting (53) in (52) and replacing j with j−1 everywhere yields, for j = 1, . . . , J ,(
∂x − 1

Cj
∂t

)(
∂x +

1
Cj
∂t

)
φj−1 +

(
1
C2

j

− 1
C2

0

)
∂2

t φj−1 +∂2
yφj−1− f2

C2
0

φj−1 = 0 . (54)

From this and (51) we get, for j = 1, . . . , J ,(
∂x − 1

Cj
∂t

)
φj +

(
1
C2

j

− 1
C2

0

)
∂2

t φj−1 + ∂2
yφj−1 − f2

C2
0

φj−1 = 0 . (55)

On the other hand, (51) can also be written as(
∂x +

1
Cj+1

∂t

)
φj = φj+1 , j = 0, . . . , J − 1 . (56)

We subtract (55) from (56) to finally obtain, for j = 1, . . . , J − 1,(
1
Cj

+
1

Cj+1

)
∂tφj = φj+1 +

(
1
C2

j

− 1
C2

0

)
∂2

t φj−1 + ∂2
yφj−1 − f2

C2
0

φj−1 . (57)

The boundary condition (57) does not involve x-derivatives, as desired. In addition,
there are no high y- and t-derivatives in (57) beyond second order.
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Rewriting (47), (50) and (57), we can summarize this formulation of the Higdon
Jth-order NRBC on ΓE as follows:

β0∂tη + ∂xη = φ1 , (58)
βj∂tφj − αj∂

2
t φj−1 − ∂2

yφj−1 + λφj−1 = φj+1 , j = 1, . . . , J − 1 , (59)

αj =
1
C2

j

− 1
C2

0

, β0 =
1
C1

, βj =
1
Cj

+
1

Cj+1
, λ =

f2

C2
0

, (60)

φ0 ≡ η , φJ ≡ 0 . (61)

Future: Implement using FD approximation and check various interior schemes
with this formulation. Maybe interior schemes that are unstable with the discrete BC
of Section 3 become stable with the discrete BC of this section.

7. Finite Element Formulation

Now we show how the Higdon boundary condition in the form (58)–(61) can be incor-
porated in a Finite Element (FE) formulation.

Again we consider the linear Klein-Gordon equation

∂2
t η − C2

0∇2η + f2η = 0 . (62)

If on the artificial boundary ΓE the homogeneous Neumann condition ∂xη = 0 was
applied, the resulting semi-discrete system of ODEs would have been the standard
one, namely

Md̈ + Kd = F . (63)

Here M , K and F , are, respectively, the global mass matrix, stiffness matrix, and
load vector, and a superposed dot indicated differentiation with respect to time. The
dimension of all the global arrays in (63) is N , the total number of degrees of freedom.
On the element level, the element mass and stiffness matrices, which contribute to M
and K via the assembly operation, are given by

me
ab =

∫
Ωe
NaNb dΩ , (64)

ke
ab =

∫
Ωe

(C2
0 ∇Na ·∇Nb + f2NaNb) dΩ . (65)

Here Ωe is the element domain, and Na is the FE shape function corresponding to
node a of the element (for an η degree of freedom). The load vector F in (63) includes
information related to the boundary condition given on the boundary ΓW .

When the boundary condition (58), namely,

− ∂xη = β0∂tη − φ1 on ΓE , (66)

is incorporated in the FE formulation, (63) becomes

Md̈ + Cḋ + Kd = F + Gφ1 . (67)
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Here φ1 is the unknown vector whose entries are the nodal values of the variable φ1 on
ΓE. C is an N ×N damping matrix, and G is an N ×NE rectangular matrix, where
NE is the number of degrees of freedom on ΓE . The element-level analogs of C and G
are:

ceab =
∫
Γe

E

β0C
2
0NaNb dΓ , (68)

ge
ab =

∫
Γe

E

C2
0NaN

(1)
b dΓ . (69)

Here Γe
E = ∂Ωe∩ΓE , and N (1)

b is the FE shape function corresponding to node b for the
degree of freedom associated with φ1. Of course it is convenient to choose N (1)

b ≡ Nb,
but it remains to be checked that this combination leads to a stable scheme.

The jth boundary condition (59) leads to the following system of ODEs:

Cjφ̇j = P jφ̈j−1 −Qjφj−1 + Rjφj+1 , j = 1, . . . , J − 1 . (70)

Here all the matrices are NE×NE. The vector φj is the unknown vector whose entries
are the nodal values of the variable φj on ΓE. Relating to (61), we have that φJ ≡ 0,
and that φ0 is the NE-dimensional vector whose entries are equal to the entries of
the N -dimensional vector d for the degrees of freedom on ΓE . The element matrices
analogous to Cj , P j, Qj and Rj are:

(cej)ab =
∫
Γe

E

βjN
(j)
a N

(j)
b dΓ , (71)

(pe
j)ab =

∫
Γe

E

αjN
(j)
a N

(j−1)
b dΓ , (72)

(qe
j )ab =

∫
Γe

E

N (j)
a

′N (j−1)
b

′ + λN (j)
a N

(j−1)
b dΓ , (73)

(re
j )ab =

∫
Γe

E

N (j)
a N

(j+1)
b dΓ . (74)

Here N (j)
b is the FE shape function corresponding to node b for the degree of freedom

associated with φj . Again, it is convenient to have equal N (j)
a for all the j’s. In this

case (and assuming constant coefficients in each element) the matrices in (68), (69),
(71), (72) and (74) are all the same up to a constant factor. The primes in (73)
indicate differentiation with respect to y; we have used integration by parts to obtain
this symmetric expression.

Now we propose a time-integration scheme for the solution of (67) and (70), which
constitute J coupled systems of ODEs. We discretize all these systems based on the
Newmark [24] family of schemes for second-order ODEs in time (with parameters β and
γ). Note that the system (70) is actually first-order in time for φj, so that the “mass
matrix” is zero for this system. However, we can still use the Newmark method as long
as the “damping matrix” Cj is non-singular, which is indeed the case. The advantage
of using the Newmark scheme for (70) (as opposed, say, to using the generalized trape-
zoidal scheme) is that it yields the “acceleration,” namely the second time-derivative
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of φj, in each time-step. This “acceleration” is needed because it appears in the right
side of (70) as φ̈j−1.

We denote the approximations of d, ḋ and d̈ at time-step n by dn, vn and an,
respectively. We also denote the approximations of φj and φ̇j and φ̈j at time-step n
by U j,n V j,n and Aj,n, respectively.

In predictor-corrector form, the proposed time-integration scheme is:

Prediction:

d̃n+1 = dn + ∆tvn +
∆t2

2
(1− 2β)an (75)

ṽn+1 = vn + (1− γ)∆tan (76)

Ũ j,n+1 = U j,n + ∆tV j,n +
∆t2

2
(1− 2β)Aj,n , j = 1, . . . , J − 1 (77)

Ṽ j,n+1 = V j,n + (1− γ)∆tAj,n , j = 1, . . . , J − 1 (78)

Solution:

(M + γ∆tC + β∆t2K)an+1 = F n+1 + GŨ 1,n+1 −Cṽn+1 −Kd̃n+1 (79)
γ∆tCjAj,n+1 = P jAj−1,n+1 −QjU j−1,n+1 + RjŨ j+1,n+1 −CjṼ j,n+1

, j = 1, . . . , J − 1 (80)

Correction:

dn+1 = d̃n+1 + β∆t2an+1 (81)
vn+1 = ṽn+1 + γ∆tan+1 (82)
U j,n+1 = Ũ j,n+1 + β∆t2Aj,n+1 , j = 1, . . . , J − 1 (83)
V j,n+1 = Ṽ j,n+1 + γ∆tAj,n+1 , j = 1, . . . , J − 1 (84)

Note the order in which these calculations should be done in each time step. First,
the prediction phase is performed to yield d̃n+1 and ṽn+1, as well as Ũ j,n+1 and Ṽ j,n+1

for all the j’s. Then (79) is solved for an+1. Then dn+1 and vn+1 are calculated in
the Correction phase. Then (80) is solved with j = 1, for A1,n+1. Note that this
solution involves A0,n+1 and U0,n+1, namely an+1 and dn+1, which have already been
computed. Then U1,n+1 and V 1,n+1 are calculated in the Correction phase. Then (80)
is solved with j = 2, for A2,n+1, using on the right side of (80) the vectors A1,n+1 and
U1,n+1 which are already known. The procedure goes on in this fashion.

We have used the predicted vectors Ũ j+1,n+1 in (79) and (80) rather than U j+1,n+1,
since the latter is not known when solving for an+1 or Aj,n+1. However, it is possible
to improve the accuracy (and stability?) of the process if a second cycle is performed
after the U j,n+1 are calculated for all the j’s. One can proceed “backwards,” by solving
(80) again for j ranging from j = J−2 to j = 1 and then also solving (79) again, while
using in this second cycle the already computed vectors U j+1,n+1 instead of Ũ j+1,n+1.
Alternatively, one can start in the second cycle from (79) and proceed “forward” to
solve the other equations, for j = 1, . . . , J − 1, one more time.
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8. FD Discretization of the Auxiliary-Variable

Formulation

In the previous section we showed how to discretize the NRBCs (58)–(61) by FEs. Now
we show how to discretize them by FDs.

First we consider the boundary condition for η, (58). We discretize ∂xη on ΓE by
using the one-sided second-order approximation [19]

(∂xη)nEq � −
−3ηn

Eq + 4ηn
E−1,q − ηn

E−2,q

2∆x
. (85)

From (58) we obtain a discrete formula for ∂tη, i.e.,

(∂tη)nEq �
1
β0

(
(φ1)nEq − (∂xη)nEq

)
. (86)

Then we calculate the new η by the forward-in-time formula

ηn+1
Eq = ηn

Eq + ∆t (∂tη)nEq . (87)

Next we consider the boundary condition for φj , (59). We use the following second-
order central difference approximations for the second temporal and tangential deriva-
tives [19]:

(∂2
t φj−1)nEq �

(φj−1)n+1
Eq − 2(φj−1)nEq + (φj−1)n−1

Eq

(∆t)2
, (88)

(∂2
yφj−1)n+1

Eq �
(φj−1)n+1

E,q+1 − 2(φj−1)n+1
Eq + (φj−1)n+1

E,q−1

(∆y)2
. (89)

Note that (89) cannot be used at the two east corners (the two end points of ΓE).
At these corners, a one-sided second-order approximation should replace (89). For
example, at the south-east corner we use [19]

(∂2
yφj−1)n+1

Eq �
2(φj−1)n+1

Eq − 5(φj−1)n+1
E,q+1 + 4(φj−1)n+1

E,q+2 − (φj−1)n+1
E,q+3

(∆y)2
. (90)

From (59) we obtain a discrete formula for ∂tφj , i.e.,

(∂tφj)nEq �
1
βj

(
(φj+1)nEq + αj(∂2

t φj−1)nEq + (∂2
yφj−1)n+1

Eq − λ(φj−1)n+1
Eq

)
. (91)

Then we calculate the new φj by the forward-in-time formula

(φj)n+1
Eq = (φj)nEq + ∆t (∂tφj)nEq . (92)

The simplest solution procedure is the one based on the sequential solution of the
equations for the φj ’s. Namely, we first solve for η, then we solve for φ1, then for φ2,
and so on. At the stage when we update the values of φj, the quantities (φj−1)n+1

E...
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appearing in (88) and (89) are already known, having been derived in the previous stage
for φj−1. On the other hand, the quantity (φj+1)n+1

Eq is not yet available; that is why we
use (φj+1)nEq in (86) and (91) rather than (φj+1)n+1

Eq . The latter fact may potentially
lead to an unstable solution. Indeed, when we have implemented the scheme based on
the formulas (85)–(92) with J ≥ 2, an instability developed in time. A remedy for this
instability is to perform a second iteration and update η and the φj’s again based on
values obtained in the first iteration. This two-cycle algorithm turns out to be stable.
It is summarized in Box 2.

Note that the only algorithmic difference between the first and second iterations is
in the use of (φ1)nEq vs. (φ1)n+1

Eq in (86). All the other formulas remain unchanged in
the two iterations. We have tried to use also (φj+1)n+1

Eq in (91) instead of (φj+1)nEq in
the second iteration, but this led to instability.

As an alternative scheme, eqs. (85)–(92) may be solved simultaneously for all the
j’s and all the y-locations q, as one coupled system of linear equations on ΓE. The
dimension of this system is JNy, where Ny is the number of grid-points on ΓE. In this
case the part of the solution associated with the Higdon NRBC is implicit.

9. Controlling the Parameters

The Higdon NRBCs involve the parameters Cj which must be chosen. There are three
approaches in this context:

(a) The user chooses the Cj a-priori in a manual manner based on an “educated guess.”
This is the procedure recommended in Higdon’s papers [3]–[8].

(b) The Cj are chosen automatically by the computer code as a preprocess.

(c) The Cj are not constant, but are determined dynamically by the computer code.
Namely, a value for Cj is estimated for every grid point on the boundary at each
time step, from the solution in the previous time-steps.

We have adopted approach (b), which is automatic yet very inexpensive computa-
tionally. The algorithm we propose is described in Box 3. It is based on the maximum
resolvable wave numbers in the x and y directions, and on the minimax formula [25]
for choosing the x-component wave numbers. This algorithm seems to work well in
practice and to yield reasonable estimates for the phase velocities.

The adaptive approach (c) is more complicated and costly. One possible scheme in
this category is based on Fourier decomposition of the solution near the boundary ΓE

in each time step. Suppose an estimate of the Cj ’s is desired in a given time-step n+1
at a given point (xE , y

∗) on the boundary ΓE. Then the proposed scheme consists of
the following steps:

(1) Apply the one-dimensional Fast Fourier Transform (FFT) to the solution ηn along
the boundary ΓE . This will yield a number of Fourier modes in the y direction.

(2) Take an interval in the x direction going west from the point (xE, y
∗), namely

an interval xE−p∗ ≤ x ≤ xE, y = y∗, for some chosen integer p∗. Apply the
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• First iteration:

• Compute the (∂xη)n values on ΓE from (85).

• Compute the (∂tη)n values on ΓE from (86).

• Compute the ηn+1 values on ΓE from (87).

• If J = 1, stop.

• For j=1,. . . ,J-1:

– Compute the ∂2
t (φj−1)n values from (88).

– Compute the ∂2
y(φj−1)n+1 values from (89) and (in the two corners) from (90).

– Compute the ∂t(φj)n values from (91).
– Compute the (φj)n+1 values from (92).

• Next j

• Second iteration:

• Recompute the (∂tη)n values on ΓE from (86), but use (φ1)n+1 instead of (φ1)n.

• Recompute the ηn+1 values on ΓE from (87).

• For j=1,. . . ,J-1:

– Recompute the ∂2
t (φj−1)n values from (88).

– Recompute the ∂2
y(φj−1)n+1 values from (89) and (in the two corners) from (90).

– Recompute the ∂t(φj)n values from (91).
– Recompute the (φj)n+1 values from (92).

• Next j

Box 2. Algorithm for the FD implementation of the Jth-order Higdon NRBC based on the
auxiliary-variable formulation.
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• Given the grid parameter ∆x, estimate the maximum resolvable wave number k in the x
direction. Assuming a maximum of 10 grid points per wave length, a reasonable estimate is

kmax =
π

5∆x
.

• Choose J−1 values of k from the interval (0, kmax). This is done using the symmetric minimax
formula (based on the Chebyshev polynomial) proposed by Sommeijer et al. [25]:

kj =

[
k2

max

2

(
1 + cos

(
2j − 1

2(J − 1)
π

))] 1
2

, j = 1, . . . , J − 1 .

• Given the grid parameter ∆y, estimate the maximum resolvable wave number ky in the
y direction. Again assuming a maximum of 10 grid points per wave length, a reasonable
estimate is

(ky)max =
π

5∆y
.

• For each kj, calculate the corresponding (and maximal in the y direction) frequency ωj from
the dispersion relation (6):

ωj =
√
C2

0

[
k2

j + (ky)2max

]
+ f2 .

• Calculate
Cj =

ωj

kj
for j = 1, . . . , J − 1 .

• Add the value C0 (the minimum possible phase speed) to the J − 1 values calculated above.
These constitute the desired J values Cj .

Box 3. Algorithm for determining the parameters Cj in the Higdon NRBC.
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one-dimensional FFT to the solution ηn in this interval. This will yield a number
of Fourier modes in the x direction.

(3) Take the products of the x- and y-Fourier coefficients obtained above. These
products are the Fourier coefficients of the two-dimensional solution in the vicinity
of the point (xE , y

∗). Among these 2D modes, pick the J modes which have the
largest Fourier coefficient products.

(4) These J modes are associated with wave numbers (kx, ky)j for j = 1, . . . , J . Ex-
tract the kx’s and ky’s from the appropriate one-dimensional modes.

(5) For each pair (kx, ky)j , calculate the corresponding phase velocity (Cx)j (via the
dispersion relation and (9)). These are the desired Higdon coefficients Cj .

It should be remarked that one does not necessarily have to use this procedure
in every single time step and for every single grid point on ΓE. In order to save in
computations one may choose to use it more selectively.

10. A Numerical example

We apply the new scheme to a simple test problem whose exact solution is synthesized
a priori. We consider the linear inhomogeneous Klein-Gordon equation,

∂2
t u− C2

0∇2u+ f2u = S , (93)

in a two-dimensional uniform semi-infinite channel or wave guide. A Cartesian coordi-
nate system (x, y) is introduced such that the wave-guide is parallel to the x direction.
The width of the wave-guide is denoted b. We set b = 5, C0 = 1 and f = 0.5. The
boundary function uW (y, t) on ΓW and the initial conditions are those that correspond
to a solution u(x, y, t) which is a linear combination of three waves of the form (5), i.e.,

u =
3∑

m=1

Am cos
nmπy

b
cos(kmx− ωmt) . (94)

The parameters chosen in (94) are:
Am = 1, 1, 1 ;
nm = 1, 2, 2 ;
ωm = 0.81, 1.37, 1.68 .
This corresponds to the three phase velocities:
Cx/C0 =7.61, 6.27, 1.69 .
The km in (94) are obtained from the ωm and the nm via the dispersion relation (6).

We introduce the artificial boundary ΓE (see Fig. 1) at xE = 5. Thus, the compu-
tational domain Ω is a 5 × 5 square. In Ω we use a uniform grid with 21 × 21 points.
We discretize the Klein-Gordon equation in Ω using the explicit central-difference FD
interior scheme (31). On ΓE we impose the Higdon NRBC implemented in its high-
order form. The time-step size is ∆t = 0.025, which is smaller than the CFL limit and
thus guarantees stability.
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In Figs. 2(a)–(d), we plot the solution u at the point x = 5, y = 2.75 (located on
ΓE) as a function of time. In each of the four figures the exact solution is compared to
a number of numerical solutions obtained with different NRBC schemes, namely with
different choices of the order J and the parameters Cj . First we choose Cj = 1 for all
j. Fig. 2(a) shows the H1, H2 and H3 solutions. Their accuracy is poor, although the
H3 solution is significantly better than the other two. Fig. 2(b) shows the H5 and H7

solutions. The H7 solution is quite accurate in the entire time interval shown. Thus,
if the Cj’s are not specially chosen, we need the order of the Higdon NRBC to be as
high as 7 for high accuracy.

Now we employ the procedure given by Box 3 to automatically choose the Cj ’s.
Fig. 2(c) shows the resulting H3, H4 and H5 solutions. We see that in this case the
approach of the numerical solutions to the exact solution is monotone. Moreover, for
J = 5 we get about the same level of accuracy as we did with J = 7 when all the Cj

had the value one (Fig. 2(b)). For additional reference, we show in Fig. 2(d) the H3

solution obtained with the Cj corresponding to the three phase velocities Cx of the
exact solution. It is about as accurate as the H5 solution in Fig. 2(c). We also show
the H4 solution obtained with the exact C1, C2, C3 and with C4 = 1. The numerical
solution is indistinguishable from the exact solution. In this case not only the NRBC
is exact, but we gain additional accuracy on the boundary due to the increased order
of the FD scheme.

This example demonstrates, albeit in a simplified setting, that the same level of
accuracy obtained with parameter values Cj that are well-estimated can be achieved
with ill-chosen parameter values but with an increased order J . Of course, increasing
the order to ensure high accuracy is computationally expensive, and therefore it is
usually beneficial to use the algorithm given in Box 3.

11. Nonzero Advection

When using the Higdon NRBC (4) with the SWEs, it has been assumed that the SWEs
are linearized (at least in the exterior domain D) about the state of zero mean flow (no
advection). Now, suppose that the SWEs are linearized about a state corresponding
to a nonzero mean flow. For simplicity, let us assume that this mean flow is constant
in space and time. If the component of the advection velocity in the x direction
(the direction normal to ΓE) is U0, then in the non-dispersive case, the Sommerfeld-
like condition (∂t + C0∂x)η = 0 simply becomes (∂t + (U0 + C0)∂x)η = 0 (see, e.g.,
Durran [23]). We can infer from this, that the Higdon NRBCs (4) should be replaced
by

HJ :


 J∏

j=1

(
∂t + Ĉj∂x

) η = 0 on ΓE , Ĉj = U0 + Cj. (95)

Thus, the Higdon conditions remain unchanged in the presence of advection, except
that the parameter multiplying the x-derivative in each operator factor stands for the
total phase velocity in the x direction (and not the perturbed velocity).

The high-order FD discretization scheme given in Section 3 above applies immedi-
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ately to the advective case, with Cj replaced by Ĉj . The interior scheme discussed in
Section 5 and the scheme for selecting the parameters given in Section 9 can be ex-
tended to the advective case without difficulty. On the other hand, the discretization
scheme devised in Section 6 (using auxiliary variables) cannot easily be adapted to the
advective case, because it is inherently based on the linear Klein-Gordon equation (45).
The latter is satisfied by η only in the non-advective case. In fact, it seems that with
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Figure 2: Solution of the three-wave test problem: u at the point x = 5, y = 2.75 (on ΓE) as a
function of time. (a) Exact solution and the H1, H2 and H3 solutions with Cj = 1. (b) Exact
solution and the H5 and H7 solutions with Cj = 1. (c) Exact solution and the H3, H4 and H5

solutions with automatically chosen Cj. (d) Exact solution and the H3 and H4 solutions with the
exact Cj.
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nonzero mean flow, the linearized SWEs cannot be reduced to any single equation in
η.

12. Blending the High-Order NRBCs with Global

Data

In meteorology, one distinguishes between a Global Model (GM), in which the at-
mospheric equations are solved over the entire spherical surface of the globe, and a
Limited-Area Model (LAM), in which the solution is sought in a relatively small re-
gion Ω bounded by artificial boundaries. The GM captures the large-scale atmospheric
phenomena and is based on a coarse grid (about 100km resolution), whereas the LAM
captures the mesoscale phenomena and is based on a finer grid (typically 10-20km
resolution). The LAM is usually used after the solution of the GM is already avail-
able. One very important question in computational meteorology is: How should the
information obtained from the GM be incorporated in the LAM? If we look at the east
artificial boundary ΓE of the LAM, for example, we face a dilemma: on one hand we
wish to impose a NRBC on ΓE, so that waves generated in Ω can leave the domain
without spurious reflection, but on the other hand we wish to use the global data.

Three possible methods for blending global information with a NRBC are:

• One can use a “relaxation layer” for gradual transition from the LAM solution
to the GM solution. One such scheme has been proposed in 1976 by Davies, and
is still used today in the Navy code COAMPS [15] (where the global information
is taken from the code NOGAPS).

• One can pose the whole LAM problem variationally (as is done when FE schemes
are employed), use the NRBC on ΓE, and apply the additional condition that the
GM solution matches the LAM solution on ΓE as a constraint. This constraint
can be imposed by means of a Lagrange multiplier.

• One can extend an idea of Carpenter [27], which has been originally presented
in the context of the Sommerfeld-like NRBC. Here is the basic idea. Suppose
we have a NRBC of the form H[wave] = 0 on ΓE , where H is a linear NRBC
operator. We denote the solution obtained from the GM by uG and the unknown
solution of the LAM by u. We decompose both solutions into an incoming part
and an outgoing part. We require the outgoing part of both solutions to satisfy the
NRBC, and the incoming parts to match on ΓE. Thus, we obtain the following
five equations:

Decomposition: u = uIN + uOUT on ΓE (96)
Decomposition: uG = uIN

G + uOUT
G on ΓE (97)

Patching: uIN = uIN
G on ΓE (98)

NRBC: H[uOUT ] = 0 on ΓE (99)
NRBC: H[uOUT

G ] = 0 on ΓE (100)
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Using these five equation, one can obtain the single equation

H[u− uG] = 0 on ΓE . (101)

Eq. (101) is a boundary condition which combines the chosen NRBC and the
global information from the GM. This allows the use of any NRBC, including the
Higdon high-order NRBCs, in the meteorology LAM.

13. Curved Artificial Boundaries

Since the shape of the artificial boundary B can be chosen by the code developer, it may
seem that there is no particular need to work with non-rectangular boundaries. This
is indeed the case in most applications of meteorology. However, in other fields, such
as acoustics, there is a lot of interest in non-rectangular boundaries. Computational
“boxes” have corners which sometimes give rise to numerical difficulties. Also, in
exterior radiation or scattering problems it is more natural to think of the solution as
composed of cylindrical or spherical waves (in the 2D and 3D cases, respectively) than
of plane waves. For these reasons, it is of interest to develop high-order NRBC schemes
in cylindrical and spherical coordinates, where the artificial boundary B is a circle and
sphere, respectively. (Other curvilinear coordinates are also of interest in acoustics.)

It may be hard (or impossible) to generalize the auxiliary-variable scheme pro-
posed in Section 6 to the cylindrical or spherical cases, because it relies heavily of
the Cartesian structure of the wave equation. (The cylindrical case is actually more
problematic; no converging high-order NRBCs are available today in 2D.) But the FD
scheme presented in Section 3 can be generalized to both cases.

In 3D, with spherical coordinates, the NRBC analogous to the Higdon NRBC is
 J∏

j=1

(∂t + Cj∂r)


 (rJη) = 0 on B . (102)

See a slightly more simplified condition in Bayliss and Turkel [28] (p. 710, eq. (2.3)).
If one chooses Cj = C0 for all the j’s, and if there is no dispersion (f = 0), then (102)
is exact for the first J spherical harmonics of the solution. It was shown by Neta that
this condition is equivalent to

J∑
i=0

(
J
i

)
J !

(J − i)!ri

J−i∏
k=1

(∂t +Ck∂r) η = 0. (103)

In 2D, with polar coordinates, (102) is replaced by
 J∏

j=1

(∂t + Cj∂r)


 (rJ−1/2η) = 0 on B . (104)

In this case the NRBC is only asymptotically correct. It was shown by Neta that this
condition is equivalent to

J∑
i=0

(
J
i

)
(2J − 1)!!

(2J − 2i− 1)!!(2r)i

J−i∏
k=1

(∂t + Ck∂r) η = 0. (105)
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Neta [29] has shown how to discretize (103) and (105) by FDs in a high-order way
analogous to that shown in Section 3.
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Appendix: Future Research

Here is the list of subjects for further investigation (in random order):

1. Thorough investigation of the numerical properties of the scheme: measuring the
error as a function of the location of the artificial boundary; computing time and
operation count as a function of the various parameters (such as J and the number
of grid points on the boundary); stability with various interior schemes; etc.

2. Implementing the scheme with auxiliary variables, using FDs. (Being done now.)

3. Implementing the scheme with auxiliary variables using FEs. (Igor Patlashenko
is working on this now.)

4. Experimenting with the use of the Higdon conditions with the Nonlinear SWEs
in the computational domain. (Need to find a stable interior scheme-NRBC
combination.)

5. Using the scheme with a rectangular artificial boundary (four non-reflecting edges).
Checking if the corners are problematic. Also: applying the scheme in the 3D
case.

6. Extending the scheme to the case of the linearized SWEs with a nonzero mean
flow (advection).

7. Extending the scheme to the case of stratified media (say, a two-layers medium).

8. Blending the Higdon NRBCs with global information.

9. Updating the Higdon parameters Cj dynamically and adaptively. (May be needed
in the stratified case, and nice to have as an option in all cases.)

10. Extending the scheme to curved boundaries. (May be not so important in mete-
orology, but certainly useful in acoustics.)
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