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1. INTRODUCTION

In this paper we develop a numerical model
water for a single layer of fluid with the
shallow approximation which flows over variable
bottom topography. The motion is confined in a
channel with cyclic boundary conditions. The
Galerkin finite element method 1s used for the
spatial variation and, the time discretization
is accomplished with semi-implicit finite dif-
ferencing. In our experiments we use bilinear
basis functions on rectangles.

We also analyze the linearized version of
the model. In this analysis we compare four
spatial schemes, bilinear basis functions on
rectangles, linear basis functions on isosceles
triangles and second and fourth order finite
differences. The time will not be discretized
in this analysis.

2. NUMERICAL MODEL

The system of equations referred to as the
shallow water equations consists of three equa-
tions with three forcast variables ¢, u and v.
The equations are
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% 453 el + 5= eyl =0, (LD
du Qu du _ 2% .
bt+ “ax+"ay fv+bx 0, (1.2)
dv . ov . 3y 3¢ _
6t+ubx+v6y+fu+by o, (1.3)
where ¢ = gh is the geopotential height, (h =

height of free surface) ¢pg is the bottom topo-
graphy (assumed to be independent of time), u is
the east/west component of the wind, and f is
the Coriolis parameter. (See e.g., Staniforth
and Mitchell [5]). By expanding ¢ into a mean

value & and a deviation ¢', the equations (l.1)-

(1.3) become
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du , 36" ,dK _

a— +BT +a— vQ = 0, (1.5)
dv ,0¢' 23K 2

3 +6 +ay+uQ 0, (1.6)
where

D =g—u+g—v is the divergence, K =% (ul+v 2)

is the kinetic energy per unit mass, and Q is
the absolute vorticity. The primes will be
dropped for the rest of the paper.

Cullen and Hall [1]) showed that the accuracy
of the Galerkin finite element solution was
better for the vorticity-divergence formulation
of the shallow-water equations than for an
increase in resolution with the primitive
formulation (1.1)=(1.3). Williams and
Schoenstadt [6] noted that staggered variable
formulation of the primitive equations and the
unstaggered vorticity-~divergence formulation
gave the best treatment of geostrophic adjust-
ment for small-scale features.

The vorticity-divergence form of the
equations is

00

5t *@D +—[u(¢-¢ g+ y[v(¢-<pB)] =0, (1.7)
=435 o + o ) - (1.8)
g—D+v2¢ + 72K —— (vQ) + (uo) =0, (1.9)
where £ = %1 - %% is the relative vorticity.

The velocity can be writtenm as the sum of
the rotational and irrotational components as

V=yv +V .

v, Y (1.10)

The equations (1.7) = (1.9) can be rewritten
using D = sz and { = V2¢ as follows

L - -2 [u- - (v -

5e Hov = -5y - el - Slve —e ],
(1.11)

) ) 0

sV ¢ = -5y WO -5 (O, (1.12)
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(1.13)
The domain of integration is a channel with east-~
west cyclic conditions. The boundary condition
at the wall is

V.n=o, (1.14)

where n is an outward normal vector. Along the

northern and southern walls, the v component 1s
equal to zero, so that the v equation of motion
(1.3) reduces to

00 | _ gy,

5y (1.15)

The zonal and meridional components of the wind

can be written as
u = - “;+g—§ , (1.16)
v=gix +2—X;- (1.17)

Then, along the north/south walls where v equals
zero, the boundary condition is

0 L 0x _
bx+ay 0. (1.18)
The above condition is imposed by setting
¢ = Constant (1.19)
when solving the vorticity equation, and
dx
5y 0 (1.20)
when solving the divergence equation. This 1is an

overspecification but (1.18) would be difficult
to apply.

The semi-implicit scheme 1s implemented by
evaluating all the terms on the left hand side of
the equation as an average at time level t +At
and and t - At or with a centered time diffrence
as appropriate. All the terms on the right hand
slde are evaluated at time t. The equations
become

Fo—t .2

2 _ . _3K, _d 3K
v sty O

(vq ﬁ) ~3y (uQ +W)

_b(t-at) V2 y(t=-At)
d Aty ht

1,2 d _
+m{6_x [ue '¢B)] +aT[V(¢ ¢B)]},
1.21)
2 +9Xy = 0 (g -0K _ 3 oK
Ve +6t:) " (vQ bx) 3y (uqQ +by)’
(1.22)
2¢0%y o oD -0
v2 (3K 5% (WO - 55 (v, (1.23)

where ¢ = [¢p(t +At) -4 (t -AL)]/2.
The solution procedure involves solving (1.21)
for a new 3: The divergence equation (1.22) is

then solved for $-+-%% « Finally, the

vorticity equation (1.23) is solved for

%ﬁL. We choose to use ¢, u and v as

history—-carrying variables. They are updated
after each time step by (see [5]),

ot +At) = 2% -4t -atL),

u(t +At) = 2At (g—xg—%—g—yg—‘t ) + u(t=-At),
(1.24)

o
<
~

z 0 0x 40
v(t +At) ZAc(by at+a

(=4
rt

+ v(t - At).

Implementation of the Galerkin finite
element is accomplished as in Hinsman [2].

In the next section we describe some of
the numerical experiments performed. We measure
the phase speed and compare it to the analytical
speed obtained by analytical results as described
in Section 4.

3. NUMERICAL SIMULATIONS

In our numerical simulations we used the
model described above., The basis functions are
bilinear on rectangular elements. We have
measured the phase speed and compared it to the
value obtained from the formula in the Appendix,
1.e.

= — 3.1
c m (3.1)
where
fpdL
dy
g =p U+ 3
Y(p'2 + y2 'P2)+f2 _pa_‘f):
(3.2)
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and

i

In our first set of experiments we
examined small amplitude wave motion in a
channel with a constant bottom slope in the y

direction. Thus g£-= 0. The results are

summarized in Table 1.

Mean Slope Exact approximate phase for
Flow of Phase
(m/s) Bottom ¢ A T

0 2000 =-39.4 -39.3 .25% -39.7 .66% -39.6 .40%
0 1000 =-18.4 -18.3 .60% -18.6 .86% -18.4 .22%
10 1000  45.3 43.3 4.5% 43.3 4.4% 43.4 4.2%
10 0 66.5 64.7 2.7% 65.2 2,0% 65.1 2.1%

TABLE 1

The percentages indicate the relative error
after 48 hours for a 12 x 12 rectangular grid om
a channel 5653.51 km long and 4896.08 km wide.
The phase speed is given in degrees per 48 hours.

In the next Table we compare the value of
phase speed computed by (3.2)-(3.3) and the
formulae in Section 4 obtained under further
simplifications.

Mean Slope (3.2)-(3.3)
Flow of (Deg/Day)
(m/s) Bottom

- 0Y_n Relative
(4.16)v ox 0 Error

0 2000 -5.1875 -5.1807 .13%

0 1000  -2.4833 -2.4826 .03%
10 1000 9.12646 9.12649 .00037%
10 0 4.0033 4,0124 .23%

TABLE 2

The results here show that the simplifica-
tions taken in Section 4 are justified.

4, PHASE SPEED

In this section we derive expressions for
the phase speed using various spatial discreti-
tions. Our starting point is the linearized
vorticity-divergence formulation

00 4 o , 0

¢ =g L 3y
5t 5 ay+yD “ax+"ay (4.1)

3L 4 y28 4y L gp -
at+Uax+Vay+fD 0 (4.2)

V2% = £ ¢ (4.3)

with the geostrophic relations

—l R
fu 5y (4.4)
fv =22 (4.5)
ox
where
Y =% -6 (4.6)

Note that we simplified the dynamics further by
dropping the divergence terms in (4.3) which
eliminates the gravity waves. Combining (4.1)-
(4.2) and (4.4)-(4.5) we obtain

aL 14 £ [o1] 00
at+Uax be— (6 +Uax+vay
(4.7)
+L 2y 20 3y v
Y ox ay 0y 9x

After discretization of (4.7) and (4.3) one has

Pz +UP.z +VP z ~L (PF +UP_ F+V P F)
= x= - Yy = x = y =

+1 oy F-°—Y-p F) = 0.(4.8)

v lax iy L
Pyx F = fPz, (4.9)

where the matrices P, Py, Py, P,y depend on the
discretization used.

The analytical phase speed of (4.7), (4.3)
may be obtained by substituting

¢ =2z ellax +vy) (4.10)
6 =F ellbx +vy) (4.11)

into these equations to obtain
Z+1QU +vV)zZ -f{p +1QU + vV)F]

a_Y_ - -
+Y_ (v B ay) 0, (4.12)

-2 +v2) F = f£2. (4.13)
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Substituting (4.13) and its derivative into
(4.12) one has
£(v 2L - 91-)
Z41QU+vV)Z -1 —0% T ¥Y g0 (4.14)
22 +y @2 +v?)
Let
Z =z, e-lot, (4.15)

then the phase speed c is given by

£,.0
ZdL - V3
C-T_(“U +vV+—IM)/p. (4.1)

2 442 +f—
¥ Y

4.1. TIsosceles Triangles

The matrices P, Py and Py were computed by
Neta and Williams [3]. The entries of the
matrix Pyy can be computed in a similar fashion.
It is easily shown that for L, ¢ given by
(4.10)-(4.11) the following holds

PiuaA_}g.AZz’

Pz=16 z ,
Xx= o

(4.17)

Pz=18 z,

1 Ax

- - A_Z
L (2356 + 35y

e)F,
where

a=3+coequ+2cosuA—;costy

(4.18)

B = (cos p 9—)25 sin vAy) Ax

6 = %Ay (sin pAx + sin p L;_x cos vAy)

5 = l-cos pAx,

€ -3+cospr-4cosuA—)2(-costy.

Substituting (4.17) into (4.8)-(4.9) and
eliminating F, from both, yields

_6_Lv) 2

z+:l(—U+ ZAy o

}f'(% eAy - BAx —Y- )

+1 z°=0. (4.19)

>

2
by _l__ £ abx Ay
2Ax6+2A E+Y <

The approximate phase speed is then

£, 2
22 eaydL - pax 3y
ep= G v+ 2B v X y Y
abx - aby A 1ax _, £2 abx A
2 5+ 22X ey Y
x 2 Ay
(4.20)
4.2. Bilinear Rectangular Elements
Relations (4.17) are now
P_z_-a“%zo, P,éﬂiezo’
(4.21)
2, Ay Ax
Pyi-iﬂzo, Pxﬂ-"'-a—(A—;‘- 6+A—-€)F,
where
a = (2 + cos pAx)(2 + cos vAy),
g = -13-Ax (simvAy (2 + cos pAx)),
(4.22)
8 = %Ay (sin pAx (2 + cos vAy),
8§ = (2 + cosvAy)(l - cos pAx),
e = (2 + cosuAx)(1l - cosvAy),
and the phase speed is
3 6 3B
cg = ( U +aAy \
(4.23)
£ ooy 3L -pax 30
+1 Y.

A_z Ax £ arx Ay
2 (3Lo+B2c) Lbxhy

4.3. Second Order Finite Differences of the
Vorticity-Divergence Formulation

In this case we approximate the fires
derivatives by centered differences. Relations
(4.17)~(4.18) become

Pz =q z, Pxi =18 Z, Pyi = ip Zos (4.24)
PxxE- - 26 +¢€) Fo’
sinvA sin pAx
a =1, B = Ayyr 6 = Axp. ’
& = -_co8 EAx+l’ . cost+l’ (4.25)

ax)»? (ay)?
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£.(e oy _ B glq
c,= @V 40U+ L _BY DXy, (4.26)

£2
-2(6“{) + Y_

4.4 Fourth Order Finite Differences

A fourth order approximation for the
Laplacian A2¢ is given by

a0 °mn-16(¢m+l n+ ¢ m—ln)+ ¢m+2$ ¢

A2¢- - m—2n’

12(Ax)?2 (4.27)

_ 30 ¢’nm ~16( mn+l+ 6 nm—l)+ ¢mn+2+ q’mn-Z
12(ay)?

It is then easy to show that (4.17) 1s exactly
(4.24), where

o b sinvAy _ 1 sindvAy

a =1, B

3 Ay 6 Ay °
< b4osinpuAx 1 sin2iAx
6 3 Ax 6 Ax ’ (4.28)

- co82 pAx — 16 cosphx + 15
12(ax)?

e = cos2 vAy - 16 cosvAy + 15
’

12(ay)?

and the phase speed is given again by (4.26).

In the following figures we plotted the
relative phase speed for the channels used in
Section 3. The first set of &4 curves corres-
ponds to the first example in Table l. The
second set corresponds to the last example
in that Table. Note that in the first
example for which the mean flow is zero the
phase speed is over estimated by both second
and fourth order finite differences. The
accuracy 1is the highest for low x and y wave
numbers. The finite elements approximate
the phase speed better than the finite dif-
ferences. The rectangles show slightly better
results than the triangles. In the second
example, in which there 1is no topography, one
can see the finite elements again perform
better than the finite diferences with one
exception. There is a small region where the
fourth order finite differences perform better
than the isosceles triangles, that is large

y wave number and large x wave number. The
rectangular elements perform better than the
isosceles triangles except for some small
region for small y wave number and large x
wave number.
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APPENDIX

In this appendix we derive (3.2)~(3.3).
We start by Linearizing (1.1)-(1.3). Let

u=U+u'", v=V=y' ¢ =0+¢"', (A.1)

where U,V are constant mean flow and & is
independent of time. We assume that U,V
related to ® via the geostrophic relatioms.

el

20 2
ax’

5y’ (A.2)

1 1
U T v r

Substituting (A.1) into (1.1)-(1.3) and using
(A.2) one obtains, after supressing the primes,

0% 08 3¢ . B rem -
st Wax ¥V 5y * 5x[@ —¢g) vl
(A.3)
>
+3- 10 -yl = 0,
du du du _ 3
Sruldevi-oev sl (A.4)

0V , p2¥ 4 v g 4+ o g, (A.5)
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where we assumed that the flow is along the
topography, i.e.,

) 26
U—2+yv_B=o, (A.6)
X

Since in our numerical experiments, we assumed
¢B to depend only on y, i.e.,

— = 0. A.7)

Thus from (A.6) and (A.2) we have

=0
ve=s,=0. (A.8)

Following Pedloski [6], we assume that the
linearized system (A.3)-(A.5) with the

assumptions (A.6)-(A.8), admits a solution of
the form

u = uOei(ux +vy = ct)epy’

V=V ei(l'Lx tvy - ct)epy , (A.9)

0 =¢° ei(px +vy - at)epy'

In order for (A.9) to be a solution, one must
have

A=-0 +nlU (A.10)
satisfying

IN[(A P =y (p+Hy P2 =(p+Hy )%Ii]-f[-fi}\—iu(pﬁv W

_— g’-Y;]my [~£(o+iv)~1u (N )] = 0. (A.11)

The real part of (A.ll) yields (3.3), whereas
the imaginary part is a cubic equation for A.

A2=A{y @2+ v2- p2)+E2- o %)-pf g—Y}; = 0.(A.12)

To obtain the phase speed of Rossby waves, we
drop A2 term and solve

ufgl
- = o — . (A.13)
Y@2+v2-p2) + 2 -p oL

Combining (A.13) and (A.10) gives (3.2)

IR
e
e
| a——, ?‘\ "\%\2*\:la

RN
| \Q ¢ l3aaaaa
v 2 8 )4 i} il /1 J s ®



S==—==—-
[~~~ —_— — g ——0A— |
N m S ——
S | | —
/ M/al\\ . m ﬂ%ﬂ .“../!:T\\S
Uo//% ﬁ:/.le\ m m /.v// o o
RN g\ A N,
NN E SR RN
AN\ \ u/

7///» //.v/ ™~ _// s s/-.

-----------------

nnnnnnnnnnnnnnnnnn




RELATIVE PHASE SPEED RELATIVE PHASE SPEED
ISOSCELES F.D. 2ND ORDER

\% \% \3\90\$ \?o \"\‘?;\ ‘}‘?}%ﬂ \3 \ﬁ ‘3 lg 8 l g B
N 1
6 \\>\M‘q’% e g eeege 3
\'o %\%\>\§ g B 8 33133
: 5i\i ‘>;\\5\\0 1 i) 5‘3]5 5"')_ ¢ o ©
e e
\$ 1888888 ‘8 g e8¢g¢8¢88
\B g gegRigle g 3338133
i § 88888 3 8333133
1 2 5\14 [ 0\ 'I\O‘O © 2 2 4 8 o 5l5 H




