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A b s t r a c t - - T h i s  paper analyzes the stability of the finite-element approximation to the  linearized 
two-dimensional advection-diffusion equation. Bilinear basis functions on rectangular elements are 
considered. This is one of the two best schemes as was shown by Neta and Williams [1]. Time is 
discretized with the the ta  algorithms tha t  yield the explicit (0 = 0), semi-implicit (0 = 1/2), and 
implicit (0 ---- 1) methods. This paper extends the results of Neta and Williams [1] for the advection 
equation. Giraldo and Neta [2] have numerically compared the Eulerian and semi-Lagrangian finite- 
element approximation for the  advection-diffusion equation. This paper analyzes the finite element 
schemes used there. 

The stability analysis shows tha t  the semi-Lagrangian method is unconditionally stable for all 
values of 0 while the  Eulerian method is only unconditionally stable for 1/2 < 0 < 1. This analysis 
also shows tha t  the  best methods are the  semi-implicit ones (0 = 1/2). In essence this  paper ana- 
lytically compares a semi-implicit Eulerian method with a semi-implicit semi-Lagrangian method. It 
is concluded tha t  (for small or no diffusion) the  semi-implicit semi-Lagrangian method exhibits bet- 
ter  amplitude, dispersion and group velocity errors than  the semi-implicit Eulerian method thereby 
achieving bet ter  results. In the  case the  diffusion coefficient is large, the semi-Lagrangian loses its 
competitiveness. Published by Elsevier Science Ltd. 

K e y w o r d s - - F i n i t e  elements, Semi-Lagrangian, Advection-diffusion, Stability, Amplification, Dis- 
persion, Group velocity, Bicubic spline. 

1. I N T R O D U C T I O N  

The stability and phase speed for various finite-element formulations of the advection equation 
was discussed previously by Neta and Williams [1]. That analysis showed that the best schemes 
are the isosceles triangles with linear basis functions and the rectangles with bilinear basis func- 
tions. 
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In this paper, we extend the analysis to the finite-element approximation to the advection- 
diffusion equation on rectangular elements using bilinear basis functions. The best methods are 
found to be the semi-implicit methods (8 = 1/2). Therefore, this paper essentially compares a 
semi-implicit Eulerian method with a semi-implicit semi-Lagrangian method. 

Semi-Lagrangian methods and other related methods, such as characteristic Galerkin and 
Eulerian-Lagrangian methods, have been studied using the advection equation in two dimen- 
sions [3] and the advection-diffusion equation in one [4] and two dimensions [5]. In [4] a class 
of schemes similar to semi-Lagrangian methods are studied for amplification errors but only for 
Lagrange interpolation. In this paper, we analyze a family of two-time-level semi-Lagrangian 
methods for amplification, dispersion, and group velocity errors. 

Semi-Lagrangian methods have been implemented successfully for numerical weather prediction 
models by Bates and McDonald [6], Robert [7], and Staniforth and Temperton [8]. Giraldo 
and Neta [2] have implemented both Eulerian and semi-Lagrangian finite-element schemes for 
the advection-diffusion equation. Finite elements have many advantages over finite-difference 
methods including optimality (for self-adjoint operators) and generalization to unstructured grids. 
In Section 2, the finite-element discretization of the two-dimensional advection-diffusion equation 
using Eulerian and semi-Lagrangian methods is introduced. Bilinear rectangular finite elements 
are used for the spatial discretization. Section 3 contains the stability analysis of these methods. 
Finally, Section 4 contains comparative results. 

2. F I N I T E - E L E M E N T  F O R M U L A T I O N  

The advection-diffusion equation in a two-dimensional Cartesian coordinate system is given by 

O~(x'y't) + ~ . V ~ = K V ~  t > 0 ,  (x,y) E~,  (1) 
0t 

where ~ is some conservation variable, ~7 = (u, v) is the velocity field, and K is the diffusion 
coefficient. Clearly one requires initial and boundary conditions to obtain a unique solution. 

2.1. Eulerian 

In Eulerian schemes the evolution of the system is monitored from fixed positions in space and, 
as a consequence, are the easiest methods to implement as all variable properties are computed 
at fixed grid points in the domain. Discretizing this equation by the finite-element method, we 
arrive at the following elemental equations: 

M~b + (A + D)~ = R, 

where M is the mass matrix, A the advection, D the diffusion, and R the boundary terms which 
are given by 

D~j = K \ Ox Ox + Oy- O~ d~, Ri = K n N i ( V ~ ' ~ )  dS' 

where N are the bilinear shape functions and ~ is the outward pointing normal vector of the 
boundaries. Discretizing this relation in time by the theta algorithm gives 

[M + AtS(A + P)]~ n+l = [M - At(1 - 0)(A + D)]~ n + A t  (~R n+l -~ (1 - -  O ) l l ~ n )  , (2) 

where 8 -- 0, 1/2, 1 gives the explicit, semi-implicit, and implicit methods, respectively [9]. For 
other possible time discretizations, see [10]. 
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2.2. Semi-Lagrangian 

Semi-Lagrangian methods belong to the general class of upwinding methods. These meth- 
ods incorporate characteristic information into the numerical scheme. The Lagrangian form of 
equation (1) is 

d~ 
d--/= KV%, (3) 
d~ 
d-t- = t7 (~, t ) ,  (4) 

where d denotes the total derivative and Z = (x, y). Discretizing this equation in time by the 
two-time level theta  semi-Lagrangian method yields 

~n+l _ At0KV2~n+I = ~ + At(1 - 0 ) K V 2 ~ ,  (5) 

where ~n+l = ~(~, tn + At) and ~ = ~ ( ~ -  G, tn) are the solutions at the arrival and departure 
(d) points, respectively, and (integrating (4) by, e.g., the mid-point rule) 

= a t ~  ~ - ~ , t  + , (6)  

defines a recursive relation for the semi-Lagrangian departure points. Discretizing this relation 
in space by the finite-element method, we get 

[M + AtSD] ~n+l = [M - At(1 - O)D] ~ + At (sa n+l + (1 - 8)R;), (7) 

where the matrices are defined as in the Eulerian case. 
For the stability analysis, we linearize (1), to get the elemental equation 

-~y Nj dx dy 
i i ~ (8)  

( ONiox ONJox ON~o__y ONJ ) + g ~ ~,(t) + d~dy = R, 
i 

for each j .  
The integral over 12 can be written as a sum of integrals over each rectangular element. For 

a given j there are exactly four rectangles which have a nonzero contribution to this sum. The 
index j refers to the center of the complex in Figure 1. 

(x-,~ x, y+ 5. y) (x, y+ A y) (x+,~ x, y+ ~ y) 

(x-A x, y) 

R2 

Ra 

(x, y) 

R1 

R4 

(x+t~ x, y) 

(x-A x, y- .~. y) (x, y- A y) (x+A x, y- A y) 

Figure 1. Rectangular elements. 
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The index i of the basis function is as follows: N1 is the basis function that  vanishes at 
all vertices except the lower left. N2 is nonzero at the lower right corner and continuing in 
a counterclockwise direction. We will use this convention in our stability analysis in the next 
section. 

3. S T A B I L I T Y  A N A L Y S I S  

We extend here the results of Neta and Williams [1]. Note that  if j is at the center as in 
Figure 1, then i can take on any of the nine vertices. Thus, we can write (8), by adding the 
contribution from each of the  four rectangles (using the results in the Appendix.) 

1 
~b(x, y) + 3 {~b(x + Ax, y) + qb(x, y + Ay) + ~b(x - Ax, y) + qb(x - Ax, y - Ay)} 

1 
+ ~-~ {~b(x + Ax, y + Ay) + ~b(x - Ax, y + Ay) + ~b(x + Ax, y - Ay) 

3 u 
+ ¢ ( x  - Ax,  u - ~ y ) }  + 3 ~ {~(x  + ~ x ,  y) - ~(x  - Ax, y) 

1 
+ 4  [~(x + Ax, y + Ay) - ~(x - Ax, y + Ay) + ~(x + Ax, y - Ay) 

3 v 
- ~ ( x  - Ax, y - AY)]} + 3 h~y {~(x' Y + AY) - ~(x, y + Ay) 

1 
+ 4  [~(x + Ax, y + Ay) - ~(x + Ax, y - Ay) + ~(x - Ax, y + Ay) 

3K { 1 -~(~ - a ~ ,  u - ay) ]}  + ~ ~(x,  y) - ~ [~(x + ~ ,  u) + ~(x  - a ~ ,  y)] 

1 1 
- ~  [~(x + Ax, Y + AY) + ~(x + Ax, Y - AY)] + 3 [~(x, y + AY) + ~(x, Y - AY)] 

1 [~(x _ zx~, ~ + Ay) + ~(~ _ ~x~, ~ - zx~)] + ~ ~(~, ~) + 3 [~(~ + Ax, ~) 
8 

1 1 
+ ~ ( x  - Ax ,  Y)] - g ['Z(x + / " x ,  Y +/XY) + ,~(x + ,'Xx, y - .ay)] - ~ [~(x, y + ,'Xy) 

1 } 
+ ~ ( x ,  u - ,,x~)] - g [ ~ ( x  - ,,',~, ~ + ,'xu) + ~ ( x  - / ' , z ,  u _ ,,x~)] . 

(9) 

Now substitute a Fourier mode 

in (9) to get 

~(x, y) = A(t)e ~(~x+~y) (10) 

A(t) + -~i Ax 1 + (1/2) cos~tAx + /xy  1 + (i-//2~-iJos~,~,y A 
1 - cos/tAx 1 1.-- cos uAy 

+ 3 K  A~ 2 1 + (1/2) cos/tAx + Ay~ 1 + (1/2) c o s u A y ]  A = 0. 

(11) 

Note that  if K = 0 (pure advection) and v = 0 (unidirectional flow) then (11) becomes (2.44) 
from [1]. 

Neta and Williams discuss a leap-frog time discretization. Here we suggest the use of the theta 
algorithm. Thus, the fully discrete algorithm becomes 

3 i~/(1 - 0) - 3f~(1 - 0)} (12) An+l {l +3 iTO+ 3~O} = An {1-~  

The amplification factor, G, is then 

1 - 3(1 - 0)~ - (3/2) i(1 - 0)~/ 
G -- 1 -{- 30/~ -{- (3/2)i0"y ' (13) 
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where 

sin #Ax  

1 + (1/2) c o s # A x '  
1 - cos #Ax  

~ = p~ 
1 + (1/2) c o s # A x '  

sin u A y 

~/v = av 1 + (1/2) cos r a y '  

1 - cos u A y  

t3y = py 1 + (1/2) cos u A y '  

~/= '~x + 3'v, (14) 

(15) 

and the Courant  numbers crz and cry are given by 

crX ~ U - -  
At At 

cry -~ r a y  , 
A x '  

(16) 

and Px and py are 

We can rewrite (13) as 

where 

K A t  K A t  
P x -  Ax 2, PY = Ay2" 

a 
G = b + i  _ , _  

c c 

(17) 

(18) 

3 
a = - - ~  "/, 

b = 1 - 3 1 3 ( 1 - 2 0 ) - 9 0 ( 1 - 0 )  ~ 2 + 4 7 2  , 

9 0272 c = (1 + 3/30) 2 + ~ . 

(19) 

(20) 

(21) 

The condition for stability is 

IG] < 1, (22) 

o r  
v ~ + a  2 

< 1. (23) 
c 

For pure advection (K = 0 or 13 = 0), the method is unconditionally unstable for 0 < 0 < 1/2 
and unconditionally stable for 1/2 < 0 < 1. For advection-diffusion the method is conditionally 
stable for 0 < 0 < 1/2 and unconditionally stable for 1/2 < 0 < 1. 

The (relative) amplification error, ~o, is given by 

laJ 
ea = _ ¢2+ 2 (24) 

e 

where 

¢~ = # A x ,  Cy = u A y .  (25) 

In Figure 2, we plot the amplification error for the advection-diffusion (small diffusion coefficient) 
for the case 0 = 1/2. 

Writing G = IG[e - i ¢  = [G[e - i ~ t ,  we get the dispersion relation 

(~ = w A t  = arctan , (26) 

and the dispersion error is given by 

e¢ = axCx "4- ayCv (27) 
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Figure 2. Amplification error for the Eulerian scheme with 8 = 112, ~= = .25, 
au = 1. and p= = Pv = .01. 
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Figure 3. Dispersion error for the Eulerian scheme with 8 = 1/2, a= = .25, ay = 1. 
and p= = py = .01. 
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In  F i g u r e  3, we  p l o t  t h e  d i s p e r s i o n  e r ro r  for  t h e  a d v e c t i o n - d i f f u s i o n  ( sma l l  d i f fus ion  coef f ic ien t )  

for  t h e  ca se  8 = 1 /2 .  
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Recall tha t  the group velocities govern the rate at which energy propagates. The zonal and 
meridional group velocities are defined as the partial derivative of the frequency w with respect 

to the wave numbers / t  and u, respectively• Tha t  is, 

Ow 1 0 t a n ~  1 
0/t - At 0/t sec2 ~ ,  (28) 

Ow 1 a t a n ~  1 
0~ - At 0~ sec2 @ (29) 

The derivative of the tangent function is given by 

0 tan @ a~ • b - b~ • a 
- ( 3 0 )  

0/t b 2 ' 

where 

and 

0 a _  3 { 0 ~ . ~  (31) 
a~- a/t 2 \ - ~ / '  

b~, = O/tOb _ 98(1 - 8) (2fl  ~Off= + 51 ~ O'7= ] - 3(1 - 28) Ofl=O/t , (32) 

0Vx (1/2) + cos/tAx 
cg/t = axAz (1 + (1/2) cos/tAx) 2' (33) 

Off= 3 p=Ax sin/ tAx 
0/t -- 2 (1 + (1/2) cos#Ax)  2" (34) 

Notice the symmetry in (11), which yields a similar formula for the zonal group velocity. Here 
(Figure 4) we plot only the meridional one. The meridional group velocity error is 

1 0 ~  1 ( ' 0 t a n ~  1 )  1 
egv-m = u ~ = a'-= \ O/t Ex  s e ~ "  (35) 

18o ,3 Meridional Group Velocity Error 

' . 2 .5  
,2 ~ ~ -  

160 - , 1 .5  

"-- I --  

14o 

12o 

lOO 

% 
80 

60 

40 

20 

,0 

10.5 

J 

o , , - - , , , , 
0 20  40  60  80  100  120  140  160  180  

Cx 

Figure 4. Meridional group velocity for the Eulerian scheme with ~ --- 1/2, c~= = .25, 
c~ = 1. and Px = py = .01. 
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3.1. Semi-Lagrangian 

The Lagrangian form of the advection-diffusion equation is 

d~ 
dt KV2~ = 0, (36) 

d~ 
dt g (~' t),  (37) 

and the discretized form is given by 

[M + AtOD] ~ n + l  = [ M  - A t ( 1  - O)D] ~ + A t  (OR n+l + (1 - O)R'~), (38) 

where d is the departure point and ~ is the interpolation of ~o~ using grid point values. Intro- 
ducing the Fourier modes we obtain the amplification factor 

a = I/d] [1 - 3(1 - 0)Z]  j '  (39) 

where 

93~ (40) / d  = ~ n  , 
jk 

which is a generalized stability criteria and is valid for any type of approximation used for ~ .  
The amplification error is again defined by (24). Assuming no interpolation is required because 
we know the value at the departure point, then the interpolation function is 

~ = ~o n ( j A x  - ax, k a y  - a~) , 

which gives the amplification factor 

fd = e - i ( u ~ + ~ ) .  (41) 

Thus, the method is stable for any value of d. Generally speaking, the departure points do 
not lie on grid points thereby requiring some form of interpolation. In this paper, bicubic spline 
interpolation is used to approximate the departure points. Using interpolators of lower order than 
cubic eliminates any advantages that the semi-Lagrangian method might offer [5]. In addition, 
using Lagrange or Hermite interpolation as opposed to spline interpolation also greatly diminishes 
the accuracy of the solution, see for example [2]. For bicubic spline interpolation we obtain 

~ = { I - ~ x i V ( u ) I  + ~ [3(Ex I - I) + i F ( p ) ( E ;  1 + 21)] 

^3 [2 (E~-I _ i)  +ir(u)(Z;1 + i ) ]} .  --O/x 

{I-ayir(u)I +~ [3(Ey 1 -  I) + iv(u)(E~ -1 + 2I)] (42) 

- d y  3 [2(Zy 1 - I) + i r (u ) (E ;  1 + I)]} ¢Pj-p,k-q, 

where the identity operator I, and the translation operators Ex, and Ey are given by 

I ~ j - p , k - q  : ~ j - p , k - q ,  

E x ~ j _ p , k _  q = ~Oj_pWl,k_q, 

Eu~i-p ,k-q  = ~j-p,h-q+l,  

and where we have defined the departure point as in [6] to be (p, q) grid intervals away from the 
arrival point (j, k) in the (x, y) direction, respectively, and 

(2 x Ozy 
dz - A z  P' °~v -- A y  q' (43) 
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is the residual Courant number. The Fs are given by Purnell [3]: 

This interpolation yields 

F(#) = 3 sin Cx 
Ax(2 + cos ¢~) ' 

3 sin Cy 
r(~) = Av(2 + cos Cy) 

where 
ax = Bx sin p¢~ + Ax cos PCx, 

bx = Bx cospCx - Az sinpCx, 

and 

A~ = F(#)&~ (1 - &~) - 2&2C~ cos ~ ,  

B~ = 1 + 2&2Cx sin ~ ,  

- (3 - 2&x) sin ~ - ,  c ~  = r ( ~ )  (1 - ~ )  cos y 
z 

Thus, 

fd = (bx - iax)(by - lay), 

a u = By sinqCy + Ay cos qCy, 

by = By cos qCy - Ay sin qCy, 

(44) 

~y 
Ay = r ( . ) ~ y  (1 - ~y) - 2 ~ c y  cos 7 '  

By = 1 + 2&~Cy sin ~ ,  

Cy = F(u)(1 - &y)cos ~ - (3 - 2&y)sin ~ .  

Ifdl = ~/( A2 + B~) (A 2 + B2), (45) 

which says that  the method is stable for M1 p, q, since 0 _< &~ < 1 and 0 < &y _< 1 by definition. 
Thus, the two-time level semi-Lagrangian method is unconditionally stable for advection (K = 0) 
and advection-diffusion. The dispersion relation is given by 

• = arctan [axby 
+ aybx ] 

k axay -- b~by J ' (46) 

and the dispersion error is defined by (26). The group velocity and group velocity error are 
defined once again by equations (28), (29), and (35) where the derivative of the tangent function 
is given by 

0 
0 (axby + ~yb~) - (a~by + aybx) N (a~a~ - b~by) 

0tan______~O _ (axay - bzby) -~  , (47) 
O~ (a~% -- bxby) 2 

where 

(48) 

(49) 

a~bv + aybx = (BxBy - A~Av) sin (pCx + qCv) + (AxBy + BxAy) cos (PCx + qCy), 

a~av - bxby = - (BxBy - A~Ay) cos (p¢~ + qCy) + (A~By + BxAy) sin (p¢~ + qCy), 

OBx Ay OAx pax  (AxBy + BxAy))  sin (pCx + qCy) oo. (~b~ + aybx) = By 0---; - 0-7 - 
( OA~ OBx ) 

+ By ~ + Ay ~ + pAx (BxBv - axay) cos (p~bx + qq~y), 

0 ( OB~ Ay OAz pAx(A~By+B~Ay))cos (PCx+qCy)  O--p (axay - bxby) = - By 0 - 7  - 0---~ - 

( OA~ OB~ ) 
+ B y ~ + A y - ~ p  + p A x ( B x B v - A ~ A u )  s i n ( p ¢ ~ + q C y ) ,  
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and 

OA= = a= (i - &=) °r("---A) - 2 & ~ =  ac= _~ ¢= a ,  a ,  ~ cos + &2AxCz sin -~-, 

0 ,  ~ sin + &2AxCz cos ¢= ~-, 

where 

OC~ = (1 - &=) o r ( , )  
0 ,  ~ cos 

Cx r(.)(1 -&x) Axsin ~ 1 ¢= 
2 2 - 5 (3 - 2&=)ZX= cos ~ - .  

4.  C O M P A R I S O N  

Figure 5 shows the ampli tude errors for &= = .25, dy = 1 for advection (Figure 5a) and 
advection-diffusion (Figure 5b). Figures 6-7 show the dispersion and group velocity errors for 

&x --- .25, &y = 1 for advection and advection-diffusion. We have experimented with four different 

values of each of &z, &y, i.e., 0.25, 0.50, 0.75, and 1 which correspond to the departure  point 

lying one-quarter, one-half, three-quarters, and one grid point distance away from the p (q for y 

direction) grid point. 
First considering the amplification error for the pure advection case. Extensive experimentat ion 

showed tha t  the semi-Lagrangian results are best when either &x or &y is on a grid line and the 
other one is on or close to it. For example &z = 1, &y -- .25, .75, 1. These errors are smaller than  

the ones obtained by the best Eulerian schemes. The dispersion error for the semi-Lagrangian is 

smaller than  that  for the Eulerian. 

Amplification Factor 
180 . . . . .  
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I I I I I I I I  

20 40 60 80 100 120 140 160 
Cx 

1 5 t 

. 0 .  

180 

(a) 

Figure 5. The amplification error for the semi-Lagrangian method using bicubic 
spline interpolation. The values for &x ---- 0.25, &y = 1 are illustrated. (a) is for 
P= = P~ = 0, and (b) is for px = py = .01. 
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Figure 5. (cont.) 

Dispersion Error 
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Figure 6. The  dispersion error for the semi-Lagrangian method  using bicubic spline 
interpolation. The  values for &= = 0.25, &~ -- 1 are illustrated. (a) is for pz = pv ---- 0, 
and (b) is for Px --- Pv = .01. 
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Figure 6. (cont.) 
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Figure 7. The  group velocity error for the  semi-Lagrangian me thod  using bicubic 
spline interpolat ion.  The  values for &x = 0.25, &y = 1 are i l lustrated. (a) is for 
P x  = P y  = O, and (b) is for Px = Pu = .01. 
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Figure 7. (cont.) 

Now consider the advection-diffusion case. Again we have used the same values for &= and &y. 
We allowed at first only a small diffusion coefficient, i.e., Px = Pv = .01, and then increased the 
diffusion coefficient to Px = Py = .1. For the case of a small diffusion coefficient (pz = py = .01), 
we have found that  the amplification error for the semi-Lagrangian is smaller than that  of the 
Eulerian schemes if a= = .25, ay = 1 or ax = .5, ay  = .25, .5, .75, 1. The dispersion error, on the 
other hand, is always smaller for the semi-Lagrangian. 

For the case of large diffusion, the semi-Lagrangian has lost its competitiveness I This should 
be of no surprise, since the semi-Lagrangian is highly diffusive. In some cases the amplification 
error for the Eulerian is smaller. The dispersion error for the semi-Lagrangian is usually larger 
than the Eulerian (except maybe when Cy is large). 

The semi-Lagrangian method itself is second-order accurate in space and time but the accuracy 
of the numerical scheme is dependent on the order of the interpolation functions used to determine 
the departure point and on the time discretization, such as explicit, implicit or semi-implicit. In 
order to obtain second-order accuracy, the interpolation functions have to be at least second-order 
accurate, and the time discretization must be semi-implicit for advection-diffusion. In addition, 
the interpolation functions need not be Hermite or spline, but  can also be Lagrange interpolation 
functions. 

5. C O N C L U S I O N S  A N D  F U T U R E  W O R K  

A family of Eulerian and semi-Lagrangian finite-element methods were analyzed for stability 
and accuracy. This included explicit, implicit, and semi-implicit methods. The semi-implicit 
Eulerian and semi-Lagrangian methods are second-order accurate in both space and time. In 
addition, both methods are unconditionally stable. However, for very large time steps the ac- 
curacy of both methods diminishes but the semi-Lagrangian method still allows time steps two 
to four times larger than the semi-implicit Eulerian method for a given level of accuracy. This 
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property makes semi-Lagrangian methods more attractive than Eulerian methods for integrating 
atmospheric and ocean equations particularly because long time histories are sought for such 
problems. The semi-implicit Eulerian method (8 = 1/2) was shown to be too dispersive for ad- 
vection because this method has no accompanying damping for the short dispersive waves. For 
the semi-Lagrangian method, there is no dispersion associated with the long waves and for the 
short dispersive waves there is an inherent damping associated with them thereby resulting in a 
more accurate solution than obtained by the Eulerian method. 

A P P E N D I X  

The bilinear basis functions are given by 

N I =  1 - ~ x  1 - ~ y  , 

N2=~xx  1 -  

x y 
N3- 

Ax Ay'  
x 

N4 = ( 1 -  ~xx) Y 

where Ni is 1 at the vertex i and zero at the other three vertices. The index i is 1 at the lower 
left corner of the rectangles and increases in a counterclockwise direction. 

The entries of the mass matrix (because of symmetry we only need these four) are: 

/R N~ dx dy = AxA____~y 
9 ' 

/R N1N2 dx dy = /R N1Nn dx dy - - -  

R NIN3 dxdy = A x A y  
36 

A x A y  
1 8  ' 

The entries of the nonsymmetric capacitance matrix are listed separately for the x derivative 
first: 

JR ON1 Ay 
N1 -~x dx dy - 6 ' 

R ON3 Ay N1 ~ dx dy = ---~ , 

R ON1 Ay  N2 ~ dx dy - 6 ' 

R ON3 A y N2 ~ dz dy = - ~  , 

R ON~ Ay N3 ~ dx dy - 12 ' 

fR ON3 Ay N3 ~ dz dy = ---C' 

R N. ON1 Ay 4 ~ dx dy - 12 ' 

R ON3 Ay N4 ~ dz dy = --~-, 

R ON2 dx Ay N1 ~ dy = --~--, 

R ON4 dx Ay 
N1 ~ dy - 12 ' 

R ON2 dx Ay N2---~x d y =  6 ' 

/R ON, dy Ay  N2 ~ dx - 12' 

R ON2 Ay  
N3 ~ dx dy = --if, 

R ON4 Ay N3 ~ dx dy -- ----~-, 

R ON2 Ay N4 ~ dx dy = 1"-'2 ' 

R ON4 Ay  N4 ~ dx dy - 6 
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For the y derivative, the integrals are 

R ON1 Ax Yl -~y dz dy - -~ , 

R ON3 Ax N1 -~-y dxdy = 1--2' 

R ON1 A x  N2-~-ydxdy-  1 2 '  

fR ON3 Ax N2 --~y dx dy = --6-, 

fR ON1 Ax N3 -~y dx dy - 12 ' 

a ON3 Ax 
N3 -~-y dx dy = ---~-, 

/R ON1 Ax 
N4 -~y dx dy - 6 ' 

a O Na Ax 
N4 -~-y dx dy = - ~ ,  

The entries of the stiffness matr ix  are given by 

a ON2 Ax 
N, -~y dx dy = 12 ' 

R ON4 Ax N1 -~y dx dy = --~-, 

fn ON2 Ax N2 -~y dx dy - -~ , 

R ON4 Ax N2 -~y dx dy = -~ ,  

R ON2 A x  
N3 dy - 6 '  

n ON4 Ax N3 ~ dx dy = - ~ ,  

/ R N 4 ~ d x d y  - A x  
1 2 '  

R N ON4 A x  4 - -y xdy = -6- 

f.  (oN1 ]. oN, oN2 
\ Ox ] dxdy -  3 A x '  Ox O---xdxdy- 3Ax' 

In ON10N3dxdy_ A y /R ON___~l ONa dxdy_ Ay 
Ox Ox 6Ax' Ox Ox 6Ax' 

jRI (0N2~2 Ay /R ON2 ON3 dxdy_ Ay 
\ Ox ] dxdy = 3 A x '  Ox O--x- 6Ax' 

Ox Ox dx dy - JR 6 A x '  \--~-x ] dx dy 3Ax' 

/R ON3 ON4 dxdy - Ay /R (0N4~2 Ay 
Ox O--Z 3Ax' \-~x ] dx dy = 3Ax' 

\ Oy ] 3Ay' Oy Oy 6Ay' 

/R ON10N3dxdy - Ax fR ON, ONa dxdy - Ax 
Oy Oy 6 A y '  Oy Oy 3Ay' 

/R ~ON2~ 2 dxdy = Ax /R ON2 ON3 Ax 
\ Oy ] 3Ay' Oy O---y-dxdy- 3Ay' 

/R ON2 ON4 Ax . /R I ON3~2 AX 
Oy O---y - d x d y -  6Ay' \--~y ] d x d Y - 3 A y '  

fR ON3 ON4 dxdy -  Ax /R (0N4~2 Ax 
oy o--V 6Ay '  dx dy = 
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