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ABSTRACT

This paper introduces methods tailored especially for problems whose
solution behaves like e*¥, where X is complex. The shallow water equations
with topography admit such solution.

This paper complements the results of Pratt and others on exponential-
fitted methods and those of Gautschi, Neta, van der Houwen and others on
trigonometrically-fitted methods.

1. Introduction
In this paper we consider linear multistep methods
k k
Z a,y .4 o =h E b, f(x 1—g Y41
220 27 n+l-2 020 L ntl-27 -2

), k>1, n> k-1 (¢H]

for integrating the initial value problem

y o0 = £GLy()), y(xy = ¥ - ()

This linear multistep method is characterized by the polynomials

k k
k-2 k-2
p(x) = [ ag -, 0@ = ] b (3)
2=0 2=0
The main assumption of this paper is that it is a priori known that the solu-
tion is approximately of the form

m id.t
yx) ~ eyt ] cge J )
3=1

where Aj = vy + iwj, and the frequencies w3 are in a given interval [WL:Wu]-

The special case where ; = jwg with wg given was considered first by
Gautschi [8]. His approach was the following. Let:

0(z) = ple®) - za(e®) (5
then the local truncation error of (1) is given by Lambert [11]
d
T, = (5 v(e) 6
Inserting (4) in (6) yields
m ikjt
T oy = 90 + jzl SIC Nl s Ay = 3w (N

The coefficients bi are chosen in such a way that

¢(ihjwo) - O ’ j = O)l,""q b (8)
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for the largest value of q possible. g is then called the trigonometric
order of the method. Gautschi has chosen aj such that the methods are those
of Adams and Stormer type. However, these methods are sensitive to changes
in the frequency wy. Neta and Ford [13] developed Nystrom and generalized
Milne-Simpson type methods. These methods showed less sensitivity to pertur-
bation in wgy but require the eigenvalues of the Jacobian to be purely imag-
inary. Neta [14] has developed families of backward differentiation methods
that overcome the above-mentioned restriction. Salzer [17] has developed
predictor-corrector methods based on trigonometric polynomials. See also
Steifel and Bettis [18] and Bettis [3]. Van der Houwen and Sommeijer [10]
have developed an alternative approach. The conditions (8) were replaced by

90 = 0,
. 9

o @y =0, j=1,2,...,q,

G4

where the A are appropriately chosen points in the interval [wg,wy].

An advantage of this so-called minimax approach over the fitting approach
is the increased accuracy in cases where no accurate estimate of wg is
available or when the frequency is varying in time.

The other special case considered in the literature is where A; = iwj.
Probably the first article on the subject is due to Brock and Murray [5]
They discuss the use of exponential sums in the integration of a system of
first order ordinmary differential equations. Denmnis [7] also suggested
special methods for problems whose solution is exponential. He suggested a
transformation of variables. More recently, Carroll [6] has developed expo-
nentially fitted one-step methods for the scalar Riccati equation. For the
general first order system of equations, Pratt [16] suggests methods based
on the three parameter exponential function

I(x) = A + Be?¥ . (10)

The parameters A, B are given in terms of values of y and f. Several possi-
bilities for z are given based on results of Brandon {2] and Babcock et al.
[1].
Lyche [12] analyzes multistep methods which exactly integrate the set
w_X
{xMe ™}, where w, is real or imaginary.
In this article we developed various methods fitting exponentials and

methods obtained via the minimax approach.

2. Construction of Methods

2.1 Fitting Methods

In this subsection we discuss various fitting methods. To this end, we
separate ¢(ihjA) = 0, j = 1,2,...,q, into real and imaginary parts. This
yields the following equations relating the coefficients agp,by,

k . k .
Z azeJU(k-l)cos ju(k-2) - z ble‘w(k Q)[ju cos jv(k-2)
2=0 2=0

- jv sin jv(k-2)] = 0 ,

(11)

K ) k .
) ageJu(k_E)sin jVk-2) - bleju(k B liu sin juk-2)
2=0 2=0

+ jv cos jv(k-2)] =0 ,

where A = w + iy, u = -hY, v = hw, j = 1,2,...,q.
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For explicit methods, by = 0. For Adams type methods ag = 1, ay =-1, aj =
=1,

0 for i = 2,...,k. For Nystrom or generalized Milne-Simpson methods ag
az3 = -1 and other a; = 0.
k =1 Implicit
Adams
\)e_u + i
_ U sin Vv - v cos V
bo = 2,2 ’
(u™+v7) sin v
(12)
_ \)eu - M sin V -V cos V
by = 2.2
(W +v7) sin v
_ . 1 -cos v _ . .
For ¢ = 0, the coefficients become by = “Sinv bl’ which agree with

Gautschi [8]) if the coefficients are expanded in Taylor series with respect
to V.

k = 2 Explicit

Adams
b = (y sin 2v - v cos 2\))eu+\)cos\)—psin\)
1 (u2+v2) sin v
(13)
_ (v cos v - u sin \))e2u - ve!
by = 7.2
(U™+v7) sin v
Nystrom
— (u sin 2v - v cos 2v)e” + ve M
1 2.2 ’
(W™+v7) sin v
(14)
_ (v cos v -} sin e + ve ¥
bZ B 2 .2 :
(UW™+v7) sin v
sin v
For ¥ = 0, the coefficients become bl =2 = b2 = 0 which agree with

Neta [14].

k = 2 Tmplicit

In this case, one obtains a one-parameter family of (Adams, generalized
Milne-Simpson) methods of trigonometric order 1. The free parameter can be
used to increase the algebraic order of the method as in [13].

Backward Differentiation
U

2n

e cos 2v + a,e” cos v+ a, - boezu(u cos 2V — vV sin 2v) = 0 ,
e?'u sin 2v + aleu sin v - b0e2u(u sin 2v + v cos 2v) = 0 , (15)
1 + a; + a, =0 .

This system can be solved by MACSYMA (Project MAC's SYmbolic MAnipulation
system written in LISP and used for performing symbolic as well as numerical
mathematical manipulation [4]) or by REDUCE [9]. The solution is
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a = vezu - M4 sin 2V - V cos 2V
’
1 -eu(v cos Vv + | sin v) + u sin 2v + v cos 2v
a, = -1 - a; (16)
b. = —ezl'l sin v + eu sin 2v - sin Vv
0

-e2u(v cos V + U sin v) + eu(u sin 2v + Vv cos 2v)

For ¢ = 0, the coefficients agree with those given in [14].
k = 3 Explicit

Again here, one obtains a one-parameter family of methods of trigono-
metric order 1. In order to get methods of trigonometric order 2, one has
to construct a 3 step implicit method of Adams or generalized Milne-Simpson
type. In order to increase the trigonometric order without going to a
higher step number, ome can construct linear multistep methods for which the
coefficients ag are also functions of Y, w. Some examples are given in the
next subsection.

2.2 Generalized Fitting Methods

In this section, we construct some linear multistep methods of the form
k k
zzo 3 MYy = B zzo R an

Since ay are functions of A one has more free parameters for his disposal
which can be used to obtain higher trigonometric order methods with rela-
tively lower step number.

k=2 Tmplicit

In this case, one has to solve the following linear system of five equa-
tions for the parameters aj;, as, bo, by, by to obtain a method of trigono-
metric order 2.

1+ ay + a, =0,
ez‘J cos 2V + aleu cos Vv + a2 - boezu(u cos 2V - Vv sin 2v)
- bleu(u cos Vv - v sin v) - ubz =0,
ez"l sin 2v + aleu sin Vv - boezu(u sin 2v + V cos 2v)
- bleu(u sin v + Vv cos V) - vb2 =0, (18)
e4u cos 4v + alezu cos 2v+32 - b0e4u(2u cos 4v - 2v sin 4v)
- b1e2u(2u cos 2v - 2v sin 2v) - 2ub, = 0,
elHJ sin 4v + alezu sin 2v - b0e4u(2u sin 4v + 2v cos 4v)
- blezu(Zu sin 2V + 2V cos 2v) - 2\)b2 =0.

The system was solved by REDUCE [9]. The expressions for the coefficients
are complicated but REDUCE produces an output in the form of Fortran state-
ments that can be incorporated in a computer program for numerical experi-
ments with such a method.
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2.3 Minimax Methods

In this section we discuss minimax methods, i.e., methods obtained by
satisfying conditions (9). These conditions can be written in terms of ay,
bl as follows:

k i .
age(k-y')IJ cos(k—l)v(J)
=0
k ) . . . .
= 7 b B ain ey P Deos a1 (19)
2=0
i=L2,...,9,
k GD) .
ale(k_l)u sin(k—Z)V(J)
2=0
k (i) . . . .
= z ble(k_g')u {U(J)cos(k—l)v(J)+U(J)sin(k—2)v(3) , (20)
2=0

where u(j) = hw(j), v(j) = hw(j).

ihA(J) are the zeros of the function ¢(ihA) such that it has a small maximum
norm in the rectangle v Swiw, wl <y < wu.

To obtain the best approximation in this case is certainly not easy; but
we will assume that one can write ¢(ihk(j)).= ¢(w(j),w(j)) as a product of
2 one variable functions. Thus $(J) and w(i) can be taken as Chebyshev's
points on the corresponding interval, i.e.

@ L 1o - 25-1
] = 2(¢£ + wu) + Z(wu wl)cos 2 "
(21)
(G L. - 2j-1
v B 2(w2 * wu) + 2(wu wl)cos 2q T
ji=12,...,q .
For this choice of points, one can evaluate the coefficients a5 b£ by
solving
$(0) =0,
(22)

¢(¢(J),W(J)) =0, j=1,2,...,q9 .

We call such methods product minimax (PM2).

The number of free parameters for implicit methods 2k+l and the number of
equations is 2q+1, thus, the trigonometric order q is equal to the step
number k.

k = 1 Implicit
In this case

1y _1
oD = 2wy +u
w(l) = %(wg + wu) (23)
ag = 1= -3,

and the system of equations can be solved for bg, bj. This yields the
coefficients given by (12) where
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p=-p v s Y (24)
Thus, the product minimax method would suggest using the center of the rec-
tangle [wz,wu]x[wz,wu] as Ag. To obtain a product minimax method of trigo-
nometric order 2, one has to solve a system of 5 equations similar to
equation (18) with the unknowns bg, by, bg, ay, ag. The difference is that
in the last 2 equations one should replace 2u by u(2) and 2v by v 1n
the second and third equations of (18), the u, v, should be replaced by
u(1), v(D) respectively. The resulting system can be solved by MACSYMA [4]
or REDUCE ([9].

In the next section we implement two methods eof trigonometric order 1
and 2 and see how the product minimax methods compare with fitting methods.

3. Numerical Example

In this section we compare Adams fitting method of trigonometric order
1, the generalized fitting method of trigonometric order 2 obtained when
solving system (18), the product minimax method of trigonometric order 1
given by (23) and of trigonometric order 2 obtained when solving the system
(19)-(21).

Both systems (18) and (19)-(21) were solved by REDUCE which produced a
FORTRAN subroutine for the evaluation of the coefficients. This subroutine
is called only once during the integration.

The methods were compared for the solution of the initial value problem

2-510+1z=0, 0<t<4,
(25)

z(0) = 1

whose exact solution
()

z(t) = e R (26)

thus
il m _m
A= 7(1 +4i) , ¢=- 5 w=. (27)

In order to avoid complex arithmetic, we rewrite the differential equation
as a system of equations for the real and imaginary part of z = u + iv.

6+%(u+v)=0,

Oitf_IG
v - %(u -v)=20, (28)
u(0) =1,
v(0) =0 .

The system is solved by fitting methods of trigonometric order 1 and 2 with
h = .01 and various values of ¥ and w. 1In Table 1 we list the Euclidean
norm of the error at t = 4, It is clear that the method is not semsitive
to perturbations in the values of ¥ and w.
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error

Ay Aw first order second order
0 0 .3678 (-12) L4433 (-12)
0 1 L4482 (=7) .3508 (~11)
.1 0 L4346 (-7) L2544 (-11)
.1 1 L6342 (-7) L4421 (-11)
0 2 L9241 (-7) .8126 (-11)
.2 0 .8706 (-7) .5095 (-11)

Table 1

Using the product minimax methods of trigonometric order 1 and 2 with
h = .01 and various squares centered at ¥ = -m/2, w = w/2, the error is much
larger but again is insensitive to small perturbations in the length of the
sides of the squares. In Table 2 we list the Euclidean norm of the error at
t = 4.

error
length of side first order second order
NG .3678 (-12) .1469 (-6)
.8 .3678 (-12) .2348 (-5)
1.2 .3678 (-12) L1186 (-4)
1.6 .3678 (~12) .3728 (-4)
2 .3678 (-12) .9001 (-4)

Table 2

Note that the perturbations in the product minimax methods are larger than
those allowed in the fitting methods. It is possible that the larger errors
in the product minimax methods are due to the assumption that ¢ can be
written as a product of 2 one variable functions. Also note that for the
first order method, one always gets a good result since PM always uses the
center of the square.
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APPENDIX

Here we show that the shallow water equations with topography have a
solution of the form eAX, where A is complex. This system of equations
consists of three equations with three forecast variables, u, v and ¢.
The equations are:

Ju Ju du _ 39 _
3t +u =T 3y fv + Py 0, (A.1)
v v v 3 _
SE-+ U +v By + fu + 3y 0, (A.2)

30,3 o 2 rveem

5e + xlu(e-0p)] + SoIv (=01 = 0, (a.3)
where ¢ = gh is the geopotential height (h = height of free surface), ¢p 1is
the bottom topography (assumed to be independent of time), u, v are the
components of the wird velocity in the x, y direction, respectively, and f
is the Coriolis parameter. Linearizing the equations by letting

u=U+u', v=V+v', ¢=0+¢',

where U, V are the constant mean flow and & is independent of time. Assum-
ing that U, V are related to ¢ via the geostrophic relations

_128
£ oy’

V= (A.4)

]
¥l
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one obtains the linear system (after dropping the primes):

du du du _ 9% _

et Ua VY fv+5i=0, (A.5)

av v v 39 _

at+Uax+vay+f“+ay 0, (A.6)
3, , 28,y 20, 3, 30 0, 2% )
at ax ay 9x 3y 9x y :

where vy = & - ¢g.

If the flow is assumed to be along the topography as in [15], then the
right hand side of (A.7) is zero. In such a case, one can write the solu-
tion in the form

"= qui(Ex +ny -ot) ,

z voei(gx +ny -ot) , (A.8)

6= ¢ ei(Ex +ny -ot)
o H]

where
g=u-ip,
(A.9)
n=v-18 .
In order for (A.8) to be a solution for (A.5)-(A.7), one must have
A=-0+EU+nNnV (A.10)
satisfying
i>\[(i>\)2 - in(iny + %;E] - f[-1Af - 1iE(iny + %1—)]
+ (ify + %)(-mf +E0) =0. (A.11)
The real and imaginary parts of
A =-=0+4 pUu + wv ,
L (A.12)
Ai = ~pU - 6V ,

satisfy the following system of equationms (after dropping nonlinear terms
in A)

2 2.2 y 3y, 3 _ p 9y
Ar[f + y(§ +n)]+11(E 3x+n8y) £f(n % an),

(A.13)

A€ D B - oie® + v +nhHr =0

In general, A is complex and, thus, the shallow water equations have a
solution in the class of problems to be discussed here.
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