
SIAM J. ScI. STAT. COMPUT.
Vol. 12, No. 6, pp. 1480-1485, November 1991

()1991 Society for Industrial and Applied Mathematics
015

SOLUTION OF LINEAR SYSTEMS OF ORDINARY DIFFERENTIAL
EQUATIONS ON AN INTEL HYPERCUBE*

L. LUSTMAN, B. NETA, AND C. P. KATTI$

Abstract. In this paper there is developed and tested a parallel scheme for the solution of
linear systems of ordinary initial value problems based on the box scheme and a modified recursive
doubling technique. The box scheme may be replaced by any stable integrator. The algorithm can
be modified to solve boundary value problems. Software for both problems is available upon request.

Key words, initial value problems, parallel processing, hypercube, box scheme, recursive
doubling

AMS(MOS) subject classifications. 65L, 65W

1. Introduction. We consider the solution of linear problems on a hypercube.
By a hypercube we intend "a distributed memory MIMD computer with communica-
tion between processors via a network having the topology of a p-dimensional cube,
with the vertices considered as processors and the edges as communication links" [4].
See also Fox [1], [2] and Fox and Otto [3]. Our method of solution is based on the box
scheme to discretize the system of initial value problems:

y’ Ay + f(x),

where y and f are n-dimensional vectors and A is an n n matrix. We obtain, in
parallel, fundamental solutions on subintervals. The resulting system of equations
is solved by a modified version of the recursive doubling technique (see Stone, [7]).
Another technique that parallelizes the solution by subinterval decomposition has been
proposed by Skeel [6].

In the next section, the general problem is stated and some information on the
INTEL Hypercube is given. The algorithm for initial value problems is described
in 3, and the efficiency of the algorithm is discussed in 4, where we detail the
numerical experiments performed with our algorithm. In the last section we present
our conclusions.

2. The general problem. The numerical solution of ordinary differential sys-
tems is an intrinsically sequential procedure: given the data at a point x (or at several
points x, x- h,..., x- Kh), one advances to the following point x+ h. In order to par-
allelize this procedure, we make the basic remark that for a linear system y A(x)y
on an interval [a, b], the solution at the right endpoint is a linear function of the values
at the left endpoint:

y(b)-- Y[a,b]y(a).

*Received by the editors September 24, 1990; accepted for publication (in revised form) July
2, 1991. This research was conducted for the Office of Naval Research and was funded by the Naval
Postgraduate School. Preliminary results were obtained by the last two authors, whose research
was partially supported by the National Science Foundation, through grants INT-8519159 and INT-
8613396.

Naval Postgraduate School, Department of Mathematics, Monterey, California 93943.

:Jawaharlal Nehru University, School of Computer and Systems Sciences, New Delhi 110067,
India.

1480



TIMELY COMMUNICATION 1481

Here Y[a,b] is the value at x b of Y, the fundamental solution on the interval, which
is defined by:

Y’ A(x)Y, Y(a) I, the identity matrix.

To solve a problem on the interval [Xmin, Xmax], we propose to assign several
contiguous subintervals:

with x0 Xmin, XN Xmax to the N processors, and let each of them compute in
parallel the corresponding fundamental solution. This is a task that may require a
large number of sequential steps, for the numerical evaluation of Y[x,x+l]. After these
quantities are ready, one may obtain y(x) from the initial data y(Xmin) by matrix
multiplication, as obviously

Y’[a,b]Y[b,c] Y[a,c].
Let us remark at the outset that this elementary procedure may be extended to

inhomogeneous equations, with the following initial data:

y’ A(x)y + f(x),
y(Xmin) given,

or two-point boundary data:

y’ A(x)y + f(x),
B1 y(Xmin)- - B2 y(Xmax) given.

Xmin

_
X

_
Xmax,

Such extensions necessitate only the linearity of the equations and initial or boundary
conditions. We shall discuss these general algorithms, as well as the steps necessary
to obtain computational efficiency.

In order to address efficiency matters, we must also briefly present the machine
on which the algorithm is run. The iPSC/2 Intel Hypercube is a MIMD (multiple
instruction-multiple data) machine, consisting of several processors in hypercube con-
nection. Each such processormalso called a node--executes its own program, on data
in its own memory. The nodes are controlled by another processormthe host--which
loads the programs into the nodes and starts them running. Host and nodes com-
municate by message passing; these messages are strings of arbitrary length, with an
arbitrary "message type" (an integer), which may be sent from any processor to any
other processor. At any moment a processor may send a message, find whether mes-
sages of a certain type are pending, or receive messages. The communication may be
performed synchronously, i.e., the processing stops until a message is sent or received,
or asynchronously, where processing and communication overlap.

It is seen, therefore, that an algorithm is optimal on such a machine if it may
be set as several parallel processes, each working on its own data, with a minimum
of interprocess communication. We shall see that our ordinary differential equation
solvers fit very well the Intel architecture.

3. The algorithm for the initial value problem.
Step 1. Using N processors to solve the linear inhomogeneous system with initial

conditions:
y’ A(x)y + f(x),

y(Xmin) g,



1482 TIMELY COMMUNICATION

divide the required interval into N subintervals:

Ix0, xl], Ix1, x21,’", [xN-1, xg], with x0 Xmin, XN Xmax.

The algorithm will produce numerical approximations for y(xj), j 1,-.., N.
Step 2. Do in parallel:

Processor j, working on the interval [xj_ 1, xj] solves numerically
the following two systems:

Y A(x)Y,
Y(xj-1) I, the identity matrix,

and
A(x) + f(x),

Cj(xj-1) -0.

In our program this is done using the box scheme (see, e.g., Neta and Katti, [5]).
The matrix Y is the fundamental solution on the subinterval, whereas Cj incorporates
the inhomogeneous effect of the forcing function f. When this step is completed, one
may recursively compute y(x.i from:

y(xl) Y1 (x)g - (1 (Xl),
y(x2) Y2(x2)y(xl) + )2(x2),

y(XN) YN(XN)y(XN-1) + CN(XN).

The last step of the algorithm is an efficient performance of the recursion above,
assuming that N 2m, as usual on a hypercube.
Step 3. (This is a modification of the recursive doubling due to Stone [7])

(3a) For 1 _< j

_
N, initialize:

u (), M Y().

Also initialize: y g / Myl, k 1.
(3b) For all j > k compute:

y yj + My

(3c) For all j > k replace M, y by M*, y*"

=, M =M;.
(3d) Set k 2k. If k < N, repeat steps (3b)-(3c) above. Otherwise

the algorithm ends with yj the numerical approximations to the solutions at xj.

4. The efficiency of the algorithm. We begin our discussion with an inves-
tigation of the communication overhead.

In Step 3 there will be interprocessor communication, as processor j obtains data
from processor j k. It is obvious that the algorithm requires only one additional
buffer per processor, to hold M* and y*--under the assumption that the matrix



TIMELY COMMUNICATION 1483

multiplications are performed in the order shown. It is also possible to perform steps
(3b)-(3c) in parallel, but then care must be exercised to avoid data corruption by
message passing.

One option is to use just one buffer, and accept data only when ready. We shall
call this the "send on request" scheme. The other option is to broadcast data as soon
as it is ready. This we shall call the "multiple buffer" scheme. Yet another possibility
is to use as temporary buffers the memory provided by the hypercube communication
technology. For example, processor 1 sends data to processor 5, in a message with
message type 1 (the identity of the sender). Processor 5, executing Step (3b) with
k 1, expects data from processor 4, so it will accept only a message with message
type 4. The data from processor 1 are left in the communication buffers, to be read
when processor 5 reaches the stage k 4. This version, the "message type" scheme,
is clearly the simplest to program.

We have implemented all three versions mentioned above. As expected, the "send
on request" program has a higher communication overhead, because about twice as
many messages are passed as in the other schemes. The multiple buffer scheme and the
message type scheme essentially run at the same speed, although the messages arrive in
a different order. The test problems show that the message type scheme is preferable,
unless the data to be transferred are so bulky as to slow down communication. This
certainly does not happen in this program, which transfers matrices of moderate size.
Moreover, as the size of the problem (i.e., the dimension of the vector y) increases,
more and more work will be done on actually solving the differential equations, and
the communication overhead will be less significant.

An idea about the magnitude of the communication overhead may be obtained
from the data in the following tables, which summarize several numerical experiments
in solving the following system:

Yi Yi + xy+l + fi,

Y10 y0 / fl0,

where fi is adjusted so that the exact solution is:

0 <_ i < 10,

y--(1, ex, e-X e2x e-2 e3 e-3x, x, sin(x),cos(x))

The first table shows the total time spent by each processor in solving the problem,
as obtained from the mclock system call.

Most of the work is done in computing the fundamental solutions, and commu-
nication is a relatively small quantity. Even the "send on request" scheme, which has
a large number of messages transmitted, does not strongly influence the run times,
which seem nearly constant on the various processors.

Another efficiency measure, critical for comparing single processor and multipro-
cessor versions of the same mathematical procedure, is the total running time needed
for the complete solution.

We can roughly estimate this quantity as follows: let the unknown vector y be
of dimension n, and assume that the numerical solution involves s steps (of size h) to
reach Xmax from Xmin. A single processor algorithm will need a time proportional to

as it evaluates n right-hand sides s times (we assume that most of the computational
work is spent on obtaining the right-hand sides of the differential equations, and



1484 TIMELY COMMUNICATION

TABLE 1
System of order 10, "send on request." Total busy time in msec.

Processor 1 2 3 4 5 6 7 8

No. of steps
per processor

10 871 856 847 827 873 852 834 825
20 1641 1630 1621 1600 1637 1617 1608 1597
40 3183 3163 3162 3139 3188 3159 3153 3138
80 6265 6244 6244 6221 6270 6234 6240 6220

ignore matrix-vector or matrix-matrix multiplications). Our parallel algorithm, using
N processors, will have a running time of:

8

because each processor executes only siN steps; the quantity computed is the funda-
mental solution, an n n matrix. Thus, it appears that there will be a gain only if
n < N, i.e., the order of the differential system is less than the number of processors.

Even if there is no obvious gain in parallelization if all one needs is the solution
of one differential problem, the algorithm proposed may become efficient when used
as the first step of an inverse problem, or distributed parameter problem. In such a

case, the same system is solved repeatedly with different initial conditions (say); then,
after obtaining the quantities Mj, Cj in the processors, one may use Step 3 of the
algorithm to obtain sets of values yj from sets of initial conditions.

The discussion and numerical experiment data of this section have been concerned
only with initial value problems. It is also valid for the parallel solution of boundary
value problems.

5. Conclusion. We have presented a parallel algorithm for solving ordinary
initial value problems. We have shown that this algorithm is easy to program, and
that machine-dependent optimization is readily achievable. Moreover, the algorithm
is very flexible: as the equations are solved independently on each subinterval, it
is possible to use different subinterval sizes, or different solution strategies in each
subinterval, in order to control the error or balance the work among processors. The
algorithm can be modified slightly to solve boundary value problems.

We have identified certain classes of practical mathematical procedures, for which
our methods will be useful; these include various forms of inverse problems.

The basic limitation of our algorithm is that it applies only to linear problems. We
are currently working on a method of parallelizing the solution of general, nonlinear
ordinary differential systems.

Acknowledgments.The authors gratefully acknowledge comments and correc-
tions by the editor and referees.

[1]

REFERENCES

G. C. Fox, Concurrent processing for scientific calculations, Proc. COMPCON 1984, 1984,
pp. 70-73.



TIMELY COMMUNICATION 1485

[2] G. C. Fox, Are concurrent processors general purpose computers?, IEEE Trans. Nucl. Sci.,
NS-32 (1984), pp. 182-186.

[3] G. C. Fox AND S. W. OTTO, Algorithm for concurrent processors, Physics Today, 37 (1984),
pp. 50-59.

[4] H. B. KELLER AND P. NELSON, Hypercube implementations of parallel shooting, Appl. Math.
Comp., 31 (1986), pp. 574-603.

[5] B. NETA AND C. P. KATTI, Solution of linear initial value problems on a hypercube, Tech.
Report NPS-53-89-001, Naval Postgraduate School, Monterey, CA, 1988.

[6] R. D. SKEEL, Waveform iteration and the shifted Picard splitting, SIAM J. Sci. Statist.
Comput., 10 (1989), pp. 756-776.

[7] H. S. STONE, An ecient parallel algorithm for the solution of a tridiagonal linear system of
equations, J. Assoc. Comput. Mach., 20 (1973), pp. 27-38.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


