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Abstract Multipoint methods for the solution of a single nonlinear equation allow higher
order of convergence without requiring higher derivatives. Such methods have an order
barrier as conjectured byKung and Traub. To overcome this barrier, one constructsmultipoint
methodswithmemory, i.e. use previously computed iterates.We comparemultipointmethods
with memory to the best methods without memory and show that the use of memory is
computationally more expensive and the methods are not competitive.
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convergence · Basin of attraction
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1 Introduction

Many applications in science and engineering require the solution of a single nonlinear
equation, for example to locate the candidates for extremum. A very well known iterative
method is Newton’s scheme which is of second order. There are many methods of higher
order, see e.g. the books by Traub [31] and Petković et al. [27] and the comparative studies
[6,7]. To develop higher order methods, one can use higher derivatives, such as in Halley
[21] or use multistep methods. The multistep methods without memory have the barrier as
conjectured by Kung and Traub [23] that a method using r + 1 function evaluations per step
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can have order 2r . In order to overcome the barrier of so called optimality, one can develop
methods with memory, see e.g Chapter 6 of [31] or Chapter 6 of the more recent book [27].

Recall that Traub classified iterative methods with memory in the following way:

1. Let xk+1 be determined by new information at xk and reused information at xk−1, . . . ,

xk−p by the iterative process

xk+1 = φ(xk; xk−1, . . . , xk−p). (1)

Then φ is called a one-point iteration function with memory, which defines an iterative
method with memory.

2. Let z j represent p + 1 quantities x j , ω1(x j ), . . . , ωp(x j ) ( j ≥ 1). If xk+1 is calculated
iteratively by

xk+1 = φ(zk, zk−1, . . . , zk−p), (2)

then φ is called a multipoint iteration function with memory.

Here we compare two multipoint methods with memory with the best multipoint methods
without memory (see [7]).

To estimate the convergence rate of the family of multipoint iterative methods (2) with
memory, we will use the concept of R-order of convergence introduced by Ortega and Rhein-
boldt [26].

In the next section we list the two multpoint methods with memory to be evaluated and
compare to the best two methods without memory. We will experiment with these four
methods and discuss the basins of attraction for each one. The idea of basin of attraction for
comparative study was used by Stewart [30] and followed by the work of Amat et al. [1–3],
Argyros and Magreñan [4], Chun et al. [9,10], Chun and Neta [8,11–14], Chicharro et al.
[5], Cordero et al. [15], Geum et al. [17–20], Neta et al. [24,25] and Scott et al. [28].

In the next section we introduced the four methods and discuss the implementaion. In
Sect. 3, we present the numerical results and the basins of attractions for the methods ran on
seven examples. We close with concluding remark.

2 Methods for comparison

As we mentioned previously, we will compare two methods with memory to the best two
methods without memory. The methods with their order of convergence (p), number of
function- (and derivative-) evaluations per step (ν) and efficiency (I ) are

1. Chun et al.’s method [9] (p = 4, ν = 3, I = 1.5874), denoted CLND

yn = xn − 2

3

f (xn)

f ′(xn)
, (3)

xn+1 = xn − f (xn)

f ′(xn)
H(t̃(xn)), (4)

where the weight function H satisfies H(0) = 1, H ′(0) = 1
2 , H ′′(0) = 1, and

t̃(xn) = 3

2

f ′(xn) − f ′(yn)
f ′(xn)

. (5)

CLND is the case where the weight function H(t) in (4) is given by

H(t) = 1 + (2g − 2c − 1/2)t + gt2

1 + (2g − 2c − 1)t + ct2
(6)
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with c = 0, g = 0, which is basically Jarratt’s fourth-order (J4) method [22]

xn+1 = xn −
[
1 − 3

2

f ′(yn) − f ′(xn)
3 f ′(yn) − f ′(xn)

]
f (xn)

f ′(xn)
, (7)

where yn is given by (3).
2. Sharma–Arora’s method [29] (p = 8, ν = 4, I = 1.6818), denoted SA8

yn = xn − f (xn)

f ′(xn)
,

zn = φ4(xn, yn),

xn+1 = zn − f [zn, yn]
f [zn, xn]

f (zn)

2 f [zn, yn] − f [zn, xn] , (8)

where

φ4(xn, yn) = yn − f (yn)

2 f [yn, xn] − f ′(xn)
. (9)

3. Ullah et al.’s method [32] (R-order 7.94449, ν = 3, I = 1.99536), denoted UKSHA,

βn = − 1

N ′
6(xn)

, pn = − N ′′
7 (wn)

2N ′
7(wn)

, λn = 1

6
N ′′′
8 (yn), n ≥ 2,

yn = xn − f (xn)

f [xn, wn] + pn f (wn)
, wn = xn + βn f (xn), n ≥ 0,

xn+1 = yn − f (yn)

f [xn, yn] + f [wn, xn, yn](yn − xn) + λn(yn − xn)(yn − wn)
, (10)

where
N6(t) = N6(t; xn, yn−1, wn−1, xn−1, yn−2, wn−2, xn−2), (11)

is an interpolaion polynomial of sixth degree, passing through xn, yn−1, wn−1, xn−1,

yn−2, wn−2, xn−2,

N7(t) = N7(t;wn, xn, yn−1, wn−1, xn−1, yn−2, wn−2, xn−2), (12)

is an interpolaion polynomial of seventh degree, passing through wn, xn, yn−1, wn−1,

xn−1, yn−2, wn−2, xn−2, and

N8(t) = N8(t; yn, wn, xn, yn−1, wn−1, xn−1, yn−2, wn−2, xn−2), (13)

is an interpolaion polynomial of eighth degree, passing through yn, wn, xn, yn−1, wn−1,

xn−1, yn−2, wn−2, xn−2.

In the case where n = 1, this method uses

βn = − 1

N ′
3(xn)

, pn = − N ′′
4 (wn)

2N ′
4(wn)

, λn = 1

6
N ′′′
5 (yn), (14)

where
N3(t) = N3(t; xn, yn−1, wn−1, xn−1), (15)

is an interpolaion polynomial of third degree, passing through xn, yn−1, wn−1, xn−1,

N4(t) = N4(t;wn, xn, yn−1, wn−1, xn−1), (16)
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Table 1 Average number of function evaluations per point for each example (1–7) and each of the methods

Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Average

CLND 9.59 11.19 11.85 10.19 14.50 13.49 9.34 11.45

SA8 8.65 9.68 10.46 10.20 12.11 11.57 9.12 10.25

UKSHA 6.15 37.7 6.68 6.53 29.94 25.23 10.70 17.56

DPP 5.44 23.48 8.15 6.54 39.49 23.08 6.41 16.08

Table 2 CPU time (in seconds) required for each example (1–7) and each of the methods

Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Average

CLND 164.752 257.542 275.529 309.646 426.382 1216.745 361.438 430.290

SA8 152.381 224.969 241.178 318.273 359.240 1272.032 333.967 414.577

UKSHA 992.151 6452.779 1385.539 1522.46 5477.227 10276.925 2141.753 4035.547

DPP 283.454 787.462 470.015 515.661 1302.842 4538.803 568.967 1209.600

Table 3 Number of points requiring 40 iterations for each example (1–7) and each of the methods

Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Average

CLND 601 1 0 601 16 0 627 263.71

SA8 601 1 0 601 1 0 514 245.42

UKSHA 184 98,876 56 334 55,620 40,876 13,081 29,861

DPP 29 34,834 166 896 67,682 26,307 1328 18,748.85

is an interpolaion polynomial of fourth degree, passing through wn, xn, yn−1, wn−1,

xn−1, and
N5(t) = N5(t; yn, wn, xn, yn−1, wn−1, xn−1), (17)

is an interpolaion polynomial of fifth degree, passing through yn, wn, xn, yn−1, wn−1,

xn−1.

In the case of n = 0, the initial approximations βn, pn, λn could be considered as very
small positive values.

4. Dz̆unić et al.’s method [16] (R-order 2(2+ √
5) ≈ 8.47, ν = 4, I = 2.86926), denoted

DPP,

γn = − xn − xn−1

f (xn) − f (xn−1)
, n ≥ 0,

yn = xn − f (xn)

φn
, wn = xn + γn f (xn), n ≥ 0,

zn = yn − h(sn, vn)
f (yn)

φn
, n ≥ 0,

xn+1 = zn − f (zn)

N ′
3(zn; zn, yn, xn, wn)

, n ≥ 0, (18)
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Fig. 1 The top row for CLND (left) and SA8 (right). Second row for UKSHA (left) and DPP (right) for the
roots of the polynomial z2 − 1

where φn is defined by

φn = f (wn) − f (xn)

γn f (xn)
, (19)

h is a weight function of two variables that satisfies h(0, 0) = hs(0, 0) = hv(0, 0) =
1, hvv(0, 0) = 2, sn = f (yn)

f (xn)
, vn = f (yn)

f (wn)
, and N ′

3(zn; zn, yn, xn, wn) is the derivative
of Newton’s interpolating polynomial of degree three at the points zn, yn, xn , and wn

evaluated at zn , which is given by

N ′
3(zn; zn, yn, xn, wn) = f [zn, yn] + f [zn, yn, xn](zn − yn)

+ f [zn, yn, xn, wn](zn − yn)(zn − xn). (20)

For the function h, we experimented with h(s, v) = 1+s
1+v

. Given x−1, we ran the method
with γn taken as a very small positive value to find an additional starting value x0.
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618 C. Chun, B. Neta

Fig. 2 The top row for CLND (left) and SA8 (right). Second row for UKSHA (left) and DPP (right) for the
roots of the polynomial z3 − 1

3 Numerical experiments

In this section, we detail the experiments we have used with each of the methods. All the
examples have roots within a square of [−3, 3] by [−3, 3].We have taken 6012 equally spaced
points in the square as initial points for the methods and we have registered the total number
of function-evaluations per point on average (NFEA) required to converge to a root (in Table
1) and also to which root it converged. We have also collected the CPU time (in seconds)
required to run each method on all the points using Dell Optiplex 990 desktop computer (see
Table 2) and the number of points requiring 40 iterations in Table 3. These points are painted
black and we refer to them as black points or NBP.

Example 1 The first example is the quadratic polynomial

p1(z) = z2 − 1 (21)
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Fig. 3 The top row for CLND (left) and SA8 (right). Second row for UKSHA (left) and DPP (right) for the
roots of the polynomial z3 − z

whose roots are at ±1. The basins are given in Fig. 1. The top row shows the basins of the
methods without memory and the bottom for those with memory. It is clear that the best
methods are those without memory, since the domain is divided equally by the vertical axis.
DPP is better than UKSHA, since there is no preference to the root z = −1 over the other.
For a more quantitative comparison, we refer to the Tables 1, 2 and 3. In Table 1 we have
compared the NFEA. In Table 2 we compared the CPU time in seconds to run the method on
all 6012 points and in Table 3 we listed the number of points for which the method did not
converge after 40 iterations (NBP). The CPU results show that the DPP is much faster than
UKSHA and slower than the methods without memory. DPP has also the lowest NBP and
the lowest NFEA. This seems encouraging for multipoint methods with memory.

Example 2 The second example is the cubic polynomial

p2(z) = z3 − 1 (22)

having the 3 roots of unity.
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620 C. Chun, B. Neta

Fig. 4 The top row for CLND (left) and SA8 (right). Second row for UKSHA (left) and DPP (right) for the
roots of the polynomial z4 − 10z2 + 9

The basins of attraction are given in Fig. 2. Now we see that multipoint methods with
memory have many black points. It could be that when the roots are not real, the methods
have difficulty. We will check that in the rest of experiments. Based on Table 1 we find that
SA8 has the lowest NFEA. SA8 is the fastest (224.969s) and has only one black point (exactly
as CLND).

Example 3 The third example is another cubic polynomial, but with real roots only, i.e. the
polynomial is given by:

p3(z) = z3 − z. (23)

The basins of attraction are displayed in Fig. 3. All methods look reasonable. It is possible
that the fact that all roots are real as in Example 1 that we do not have many black points for
the methods with memory. UKSHA has the lowest NFEA but took more CPU (1385.539s)
than any othermethod. It is clear that each step ofUKSHA ismore computationally expensive
than other methods. CLND and SA8 have no black points.

123

Author's personal copy



How good are methods with memory for the. . . 621

Fig. 5 The top row for CLND (left) and SA8 (right). Second row for UKSHA (left) and DPP (right) for the
roots of the polynomial z5 − 1

Example 4 The fourth example is a quartic polynomial with real roots at ±1, ±3

p4(z) = z4 − 10z2 + 9. (24)

The basins are displayed in Fig. 4. Again all the roots are real and the methods with
memory do not have as many black points as in Example 2. The methods of memory use
about the same NFEA and it is less than for CLND and SA8. In terms of CPU, CLND is
fastest (309.646s) followed by SA8 (318.273s) and DPP (515.661s). UKSHA has fewest
black points.

Example 5 The fifth example is a fifth degree polynomial

p5(z) = z5 − 1. (25)

The basins are displayed in Fig. 5. Now that the roots are not all real, we see more black
points in the basins of methods with memory (see also Table 3). They also require higher
NFEA and are very slow (over 1000s versus around 400s for SA8 and CLND).
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Fig. 6 The top row for CLND (left) and SA8 (right). Second row for UKSHA (left) and DPP (right) for the
roots of the polynomial z6 − 1

2 z
5 + 11(i+1)

4 z4 − 3i+19
4 z3 + 5i+11

4 z2 − i+11
4 z + 3

2 − 3i

Example 6 The next example is a polynomial of degree 6 with complex coefficients

p6(z) = z6 − 1

2
z5 + 11(i + 1)

4
z4 − 3i + 19

4
z3 + 5i + 11

4
z2 − i + 11

4
z + 3

2
− 3i. (26)

This is an example that was difficult for many methods. The basins are displayed in Fig.
6. It is clear that the basins for UKSHA are not as well defined as for the other methods. SA8
uses the least NFEA and UKSHA the most such number. The CPU time for methods without
memory is about 1200s versus DPP with 4538.803s and UKSHA with 10276.925s. CLND
and SA8 have NO black points and UKSHA about twice the number of black points as DPP.

We now run a non-polynomial example.

Example 7
p7(z) = (ez+1 − 1)(z − 1). (27)

The roots are ±1 and the basins are given in Fig. 7. Notice that in all methods the basin for
z = +1 is much smaller. The basin for z = +1 is the largest for SA8. DPP uses 6.41 function
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Fig. 7 The top row for CLND (left) and SA8 (right). Second row for UKSHA (left) and DPP (right) for the
roots of the polynomial (ez+1 − 1)(z − 1)

evaluations per point and about 9 for SA8 and CLND. SA8 is the fastest followed closely
by CLND and the slowest is UKSHA. In terms of the number of black points, it is clear that
UKSHA has the most and the methods SA8 and CLND have the least.

In order to pick the best method overall, we have averaged the results in Tables 1, 2 and 3
across the seven examples. It is clear that SA8 uses the least NFEA (10.25) followed closely
by CLND (11.45) and UKSHA uses the highest such number (17.56). The fastest method
on average is SA8 (414.577s) and the slowest is UKSHA (4035.547s). Even DPP is much
slower than SA8 and CLND. The average number of black points is the highest for methods
with memory (over 18,000 versus 245–263 for SA8 and CLND, respectively).

Conclusions

We can see that the two methods with memory performed poorly when the function has
complex roots. They are also computationally more expensive and require more function
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evaluations per point on average. We thus do not recommend the use of multipoint methods
with memory.
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