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ABSTRACT

In this paper Rossby wave frequencies and group velocities are analyzed for various finite element and finite
difference approximations to the vorticity-divergence form of the shallow water equations. Also included are
finite difference solutions for the primitive equations for the staggered grids B and C from Wajsowicz and for
the unstaggered grid A. The results are presented for three ratios between the grid size and the Rossby radius
of deformation. The vorticity-divergence equation schemes give superior solutions to those based on the primitive
equations. The best results come from the finite element schemes that use linear basis functions on isosceles
triangles and bilinear functions on rectangles. All of the primitive equation finite difference schemes have
problems for at least one Rossby deformation-grid size ratio.

1. Introduction

The hydrostatic primitive equation numerical mod-
els that are used for atmospheric and oceanographic
prediction permit inertial gravity waves, Rossby waves,
and advective effects. The influence of a numerical
scheme on each of these types of motion is most easily
analyzed by separating the linearized prediction equa-
tions into vertical modes with an equivalent depth
analysis (for example, see Gill 1982). In this case the
equations for each vertical mode are just the linearized
shallow equations with the appropriate equivalent
depth. In fact, one must also consider the vertical dif-
ferencing in deriving the shallow water system, but we
will not treat these effects in this paper. Arakawa and
Lamb (1977) analyzed inertial gravity wave motions
for four finite difference grids that they labeled A, B,
C, and D. They found that the geostrophic adjustment
for the unstaggered grid A and grid D is poor and that
the adjustment for grids B and C is good. Schoenstadt
(1980) studied geostrophic adjustment for finite ele-
ments with piecewise linear basis functions with the
nodal points located at the finite difference grid points.
He determined that the unstaggered finite element
scheme (grid A) gives poor adjustment for small scale
motions, but the schemes B and C are excellent. Wil-
liams (1981) examined geostrophic adjustment in the
vorticity-divergence form of the shallow water equa-

Corresponding author address: Dr. R. T. Williams, Department
of Meteorology, Naval Postgraduate School, Monterey, CA 93943-
5000.

tions with finite difference and finite element schemes.
He showed that the nonstaggered vorticity-divergence
schemes give as good geostrophic adjustment as the
best staggered shallow water schemes. Since finite ele-
ment models with staggered basis functions are much
more complicated, especially in two dimensions, the
best finite element schemes for geostrophic adjustment
use the vorticity-divergence formulation. Some ex-
amples of atmospheric prediction models of this type
are given by Staniforth and Mitchell (1977, 1978),
Staniforth and Daley (1979), and Cullen and Hall
(1979).

The objective of this study is to investigate the treat-
ment of Rossby waves in vorticity-divergence shallow
water formulations with various finite element and fi-
nite difference schemes. For comparison the finite dif-
ference primitive equation solutions for grids A, B, and
C are also included. The finite difference solutions for
grids B and C are taken from a recent and very com-
plete study by Wajsowicz (1986). An earlier, one-di-
mensional study on these grids was carried out by Mes-
inger (1979).

2. Basic equations

The linearized shallow water equations on a beta
plane can be written

ou oh

—_— —= 2.1

% fv+ga , (2.1)
ov oh

—+ — = 2.2

o fu+gay 0, (2.2)
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where A = (gH)'/?/f, is the Rossby radius of defor- 3| 5
mation. The two components of the group velocity are g 3 = w v
given by o




1441

BENY NETA AND R. T. WILLIAMS

JuLy 1989

4y v 4y Ave 4v 4ve 4y e
Uz (X302 + 1) N.m 705 Agus — fusg Tus [4 (X300 + 7)- A uss i Aurs (z/x)sod 7 A e
(T/xV)e ATV € ye
urs uis &2 urs uis b, —
0 A (T/x)ur v 0 0 0 Aurs (Z/x)u ~ 1 0 0 %
XVt xv XV € XV ¢ e
urs xuis — — uis Yuis — — urs yuIs — — — urs - uis — — — —
Aus xut v 0 \H..Nc.aq 0 0 ».N:.A<~ Aut AN\\S.AqN 0 )
4
(/X )us (7/X),500 AV~ 0 0 0 0 6/(Xu1s) - (xs00 + MV~ g/xuts« (7/x)s004v— 0 wm
ATHV)T o
0 (¢/A)uis - xus “~ 0 0 0 AT/AVIENT/X)us - XIS XV — (AVDNAS0d (T/ XIS+ T — xusyv—- 0 %
xv xv xv Xve xv o
_r . 7 —
B2 (50 + 1) e YoUS YOS —XUF§  Xusg (VEN (LS00 + 7) - XU T xvixwst " o
7
(Z/X),500 X500 X500 AS0D Y500 XTS0D m - kmoom X500 €/(XS00 + X502 [ \ A\ﬂmoo (Z/x)s00 m + kmoovm I QIM
rig
TNTIA) 509 - X WIS XV — 0 0 0 0 © 6/(xuts)-(fs00 + TXV— 9/(X502 (Z/x)uwis + xuwsyv— 0 v
D swaYdg | 2wayos V owayos JPIO-YUNOY 19p10 moaaSoum. ’ so[Sueu) S3[3050S] ouAl  aane
-puodag : -euy -AuR
JUIWS]D AL
uLoj uonenba sAnIULd OUAPIP UL JWAYOS

ULIOJ 90UISIAIP-AIONIOA

*A3o0[aA dnoId oY) 10§ pa1inbal SIANBALIAP Y, °C FTAVL



1442 MONTHLY WEATHER REVIEW VOLUME 117
0.0
0.5
-1.0 LEGEND
0 =aqa grid
©=b grid
a=¢ grid
-1.54 + = analytic
x = rectangles
o = _sosceles
v - {d 2nd
o -2.04 o= fd 4th
-2.5
3.0
-3.5
-4.0 T T T T T T T T T 1
0.0 0. 0.2 0.3 0.4 0.5 0.5 0.7 0.8 0.9 1.0
ud/n
FIG. 1. The frequency wg, for k = 0 and r* = 0.1 as a function of ud/= for the
various schemes for each value of r%, w, G* and G” are scaled to be of order one.
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3. Solutions for numerical schemes

Neta and Williams (1986) analyzed the linear ad-
vection equation for various finite element schemes
with linear basis funictions on triangular elements and
-one scheme with bilinear basis functions on rectangles.
They also included second- and fourth-order finite dif-
ferences in the study. They found that the best schemes
used the linear elements on isosceles triangles and bi-
linear elements on rectangles. In the current study for
the vorticity-divergence formulation we will restrict
ourselves to these two finite element schemes and sec-
ond- and fourth-order finite difference schemes. Each
of these schemes treats each grid point or nodal point
in the same way so that we can follow the procedure
used by Cote et al. (1983 ) and Neta et al. (1986). After
the equations (2.7)~(2.9) have been discretized in x
and y, we introduce the wave form exp[i(ux + ky)]
that leads to

parameters are given in Table 1 for the two finite ele-
ment and the two finite difference schemes for vorticity-
divergence form of the equations. The procedure for
obtaining the parameters is given in appendix A.

" The frequency can now be obtained by introducing
the dependence exp[—iwgt] into the set (3.1)-(3.3)
giving
_ —Bob

S+e+ar?’
where wr is the frequency for the numerical scheme
with continuous time variation.

Wajsowicz (1986) has derived expressions for wg
from the primitive form of the shallow water equations
for staggered grids B and C. For completeness we derive
the expression for unstaggered grid A in appendix B.
In each case, the frequency can be written in the
form (3.4 ) with the corresponding parameters given in
Table 1.

The group velocities for the numerical schemes can
be obtained by differentiating (3.4 ) as follows:

<

(34)

wr
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FIG. 2. Same as Fig. 1 except that r? = 1.
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A

FIG. 4. The frequency wp, as a function of ud/x and kd/« for r? = 0.1. The following figure labels correspond to the following schemes:
(a) finite difference scheme A, primitive equations formulation; (b) finite difference scheme B, primitive equation formulation; (c) finite
difference scheme C, primitive equation formulation; (d) analytic solution; (¢) second-order finite difference, vorticity-divergence formulation;
(f) fourth-order finite difference, vorticity-divergence formulation; (g) bilinear finite elements on rectangles, vorticity-divergence formulations;
(h) linear finite elements on isosceles triangles, vorticity-divergence formulation.
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FG. 4. (Continued)

The required derivatives for (3.5) and (3.6) are given
for the vorticity-divergence schemes and the primitive
equation schemes in Table 2.

4. Results

In this section the frequencies and group velocities
for the various numerical schemes will be represented
and discussed. Following Wajsowicz (1986), results will
be given for r2 = d?/(4)\?) = 0.1, 1.0 and 10. Also, we

set d = Ax = Ay. The parameter > measures the rel-
ative importance of the terms in the denominator of
(3.4) when the wave scale is small. In order to more
easily compare the schemes, we will first examine the
frequency for k = 0 as a function of ud/w. Figure 1
gives the frequency for each scheme for d?/(4\?)
= (.1. The analytic formula for the frequency (2.11),

shows that for k = 0, w goes to zero as either u = 0 or
u = oo and it has a minimum at g = A\7'. All of the
schemes handle the behavior as u = 0 very well because
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FiG. 5. The eastward component of gr(;up velocity G# as a function of ud/ = and kd/= for r* = 0.1, with scheme labels as in Fig. 4.

the wave resolution is exact in this limit. For u > w/
2d, however, the curves depart from the exact solution
and, in some cases, from each other. All of the schemes
except the FEM scheme with isosceles triangles go to
zero at the minimum scale whére u = w/d. This be-
havior can be explained by examining § which ap-
proximates the x-wavenumber u as defined in Table
1. All of the schemes that go to zero calculate d4/dx
in the beta term over two grid lengths since they are
represented by (sinud)/d which is zero for ud = =. The

isosceles triangle FEM scheme provides a more accu-
rate representation for dh/dx since it also’ involves
points (x + d/2, y + d/2) in the formula (see Neta
and Williams 1986). All of the other schemes, except

“our FD scheme A, are very similar, and they under-

estimate the magnitude of the frequency. The poor be-
havior of FD scheme A can be traced to the poor rep-
resentation of p? by 6 in Table 1. This is especially
critical in this case where A2 is small as can be seen
from (3.4). Also note that the group velocity for scheme
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FI1G. 5. (Continued)

A is excessively large for short wavelengths because of
the steep slope of the frequency curve.

The frequency curves for k = 0 and d?/(42\?) = 1.0
are given in Fig. 2. The general behavior is similar to
Fig. 1 with certain exceptions. All schemes have larger
errors as ud/w approaches 1 because the analytic so-
lution is near its maximum value there, and the isos-
celes FEM scheme is the best in this area since it does
not drop all the way to zero. Near ud/nw = ', FD
scheme C gives the best results, but it then drops off

to zero. The poorest schemes are FD scheme B and
the second-order vorticity-divergence FD scheme.
These schemes are equivalent whenever k = 0. The
FD scheme A does not give poor results in this case
because the A2 term in the denominator of (3.4) is
not small, so that the underestimate of 4 is not so im-
portant.

The frequency curves for k = 0 and d?/(4\?) = 10
are given in Fig. 3. In this case the analytic solution is
still decreasing at ud/ =« = 1. The isosceles triangle FEM
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FIG. 6. The northward component of group velocity Gz as a function of ud/= and kd/ = for r* = 0.1, with scheme labels as in Fig. 4.

scheme is again the best. The FD scheme C consider-
ably overshoots the analytic solution before it drops to
zero at ud/n = 1 which also occurs in Fig. 2 to a lesser
extent. This behavior is caused by the averaging that
is required in scheme C represented by « in Table 1.
This is crucial in this case because the A =2 is the dom-
inant term in the denominator of (3.4). Note that
scheme C has excessive group velocity of the wrong
sign near ud/w = 1. These three cases with k = 0 all

show that the isosceles triangles FEM scheme in the
vorticity-divergence form gives the best results and the
FEM scheme with bilinear basis functions on rectangles
the second best. All of the FD schemes (A, B, and C)
for the primitive equations give poor results in at least
one case.

With this background for the k = 0, we will now
examine the frequency and group velocity components
as functions of u and k for each scheme. The quantities
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HIG. 6. (Continued)

wr, GF*, and G are computed from (3.4), (3.5), and
(3.6) respectively, with the relations given in Tables 1
and 2. Figures 4, 5, and 6 contain wr, G&°, and G5’
for the case d?/(4\?) = 0.1. The analytic solution for
w is given in Fig. 4d. For this case, FD scheme C (Fig.
4c) is clearly better than FD schemes A (Fig. 4a) and
B (Fig. 4b) when compared with the analytic solution.
In particular, Fig. 4a shows a rapid change in wy for
scheme A near (ud/ = = 1.0, k = 0) leading to excessive

values of G/ and G” as can be seen when Figs. 5a
and 6a are compared with Figs. 5d and 6d. A similar
problem occurs for scheme B near (ud/7 = 1.0, kd/«
= 1.0) (Fig. 4b) which is associated with spuriously
large values of G# and G¢” in Figs. 5b and 6b. The
following schemes that are based on the vorticity-di-
vergence form of the equations: second-order FD (Fig.
4e), fourth-order FD (Fig. 4f) and FEM on rectangles
(Fig. 4g), are very similar, and they compare well with
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FIG. 7. Same as Fig. 4 except that r? = 10.

the exact solution (Fig. 4d). The FEM scheme is the
best of these three, and the second-order FD is the
poorest. The isosceles FEM (Fig. 4h) has a generally
similar behavior, but it is better for small k and a little
poorer near the corner (ud/w = 1.0, kd/n = 1.0). The
u—k plots for d*/(4)\?) = 1.0 will not be given because
the results given in Fig. 2 are quite representative.
The frequency wr and the group velocities G¢* and
G’ are given in Figs. 7, 8, and 9 respectively. for d/

(42?) = 10. The FD scheme C (Fig. 7c) has very large
gradients in wpnear (ud/w = 1, k = 0), and the wrong
behavior above the diagonal from this corner. Figure
8 shows that the x-group velocity has the wrong sign
and is an order of magnitude too large. A check of the
other schemes in Fig. 8 shows that they all give the
wrong group velocity direction in this region, but the
speeds are an order of magnitude less than for FD
scheme C. Figure 9 indicates that G for scheme C is
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also an order of magnitude too large above the diagonal. 5. Conclusions

The FD schemes A (Fig. 9a) and B (Fig. 9b) do not
have poor behavior, and the other schemes are similar
in pattern to the other cases. The exception is the isos-
celes triangle FEM scheme (Fig. 9h) which gives a spu-
rious positive frequency near ud/« = 1. This leads to
excessively large values of Gr. The behavior in this
region is related to the expression for d#/dx on the
isosceles triangles that leads to a poor representation
for small y-scales (see Neta and Williams 1986).

In this paper we analyze Rossby wave frequencies
and group velocities for various finite element and finite
difference approximations to the vorticity-divergence
form of the shallow water equations. Also included are
finite difference solutions for the primitive equations
for grids A, B, and C. The results for the staggered grids
B and C are taken from Wajsowicz (1986). The equa-
tions are evaluated in three categories where the grid



1452

G2 —

L]
2 ) i
3 AN /
'2'5“\2.5——/7‘5
34
° T T T T T T T
o1 02 03 04 08 08 0 08 00
pi/n
C

MONTHLY WEATHER REVIEW

VOLUME 117

(;0/9-0_—»—-9'0-—-—

il
_—
Vs
a
&

28 :

. Yo ~— 20—
04 O 1 5
© NN P P15 —]
9 \\ O~

0s 10—
- \ 05
3+ T 05— 05—
° —T T T T T T —T v T

01 02 08 04 05 08 07 08 08
ud/n

FIG. 8: Same as Fig. 5 except that r? = 10.

size is smaller than, the same order as, or larger than
the Rossby radius of deformation. The Rossby radius
of deformation can be written in terms of the equivalent
depth so that various vertical modes can be considered.

The results show that all schemes converge in the
large scale limit (ud, kd = 0). For the case where the
grid size is smaller than the Rossby radius of defor-
mation [d?/(4\?) = 0.1] grid C is the best of the prim-
itive equation schemes because grids A and B both give

spuriously large group velocities when the wave reso-
lution is poor. All of the vorticity-divergence schemes
give good results, with the isosceles triangle FEM being
the best. The arrangement of model points in the isos-
celes triangle FEM is favorable for evaluation of the
beta term in the vorticity equation, and this effect for
advection has also been discussed by Neta and Williams
(1986). When the grid size 1s of the order of the Rossby
radius [d?/(4\?) = 1.0], all the numerical schemes
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FG. 8. (Continued)

have a reasonable behavior with the isosceles triangle
and the rectangle finite element schemes giving the best
results. For the case where the grid size is greater than
the Rossby radius [d2/(4\?) = 10] primitive equation
grid C has very large group velocities when the wave
resolution is poor. The rectangular finite element
scheme gives the best solution.

Wajsowicz (1986) pointed out the large group ve-
locities for the grid C finite difference could lead to

serious errors in western boundary current simulations
in baroclinic ocean models and that scheme B could
also have problems. In addition we have found that
finite difference scheme A can also be poor on the
boundaries.

Our results show that numerical schemes based on
the vorticity-divergence form of the shallow water
equations give better Rossby wave simulations on the
whole than schemes based on the primitive form of
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FIG. 9. Same as Fig. 6 except that r2 = 10.

the shallow water equations. This is not surprising be-
cause Rossby wave dynamics are partially or totally
controlled by the vorticity equation, and the discrete
vorticity equation derived from the discrete equations
of motion will normally have more truncation error.
These results indicate that a finite element vorticity-
divergence model would be particularly useful for

ocean prediction since these models have excellent ad-
vective and geostrophic adjustment properties (see -
Neta and Williams 1986 and Williams 1981), and they
can be used easily with variable element size. Staniforth
and Daley (1979) and Cullen and Hall (1979) have
demonstrated the effectiveness of this type of model
for atmospheric prediction.
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Coefficients for Finite Element Schemes
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]33]
D= z Dj ¢j' (A.l)
n] Tin

To apply the Galerkin procedure we substitute (A.1)
into (2.7), multiply by ¢, and integrate over the domain
to force the error to be orthogonal to the basis functions

giving

JE ij‘bitbjdA + fo ,2 Djf ¢ip;dA

Bo f d¢;
5 2 ) 0 (A2)
The isosceles triangle basis function is shown in Fig.

Al. The following expressions for integration over the
triangles can be found in Zienkiewicz (1977):

AJ6 i=j
T - A/12 i #],
f 6. 2% 44 = /6, (A4)
ax
8,
f bi —d;jdA = g;/6, (A.5)
9¢; 9¢i , _ bib;
rax ax U ag (A-6)
9¢i 8¢y 1 _ Hi%
i s da="7, (A7)

where 7'is a triangular element, 4 is the area of T"and
a; and b; are defined by

ay=x3—Xx2, b=y,
GQ=x—Xx3, bh=y;—y,
a=x— X, by=y — .

The vertices of the triangle (x;, y;) are numbered coun-
terclockwise. When (A.2) is evaluated for the isosceles
triangles we obtain

VAN
N

FIG. Al. The isosceles triangle basis function.

MONTHLY WEATHER REVIEW

VOLUME 117
. 1. .- . . .
$oo0 + 5 [S10+ $orot $iyon + $-1y2a
. . 1
+ Sz + Sopalt fo {Do,o + 3 [Dio+ D_yp

+ Dyjp0 + Doyyo1 + Dyjpy + D—1/2,—1]]

Bo

+ 3f0AX

{2[h10 — ho10] + hyjoy + h—»l_/z,x

+hip1thogp1} =0, (A8)

where each triangle has a base of Ax and a height of
Ay. The super dot indicates a partial time derivative
and D,,,_, is equal to D(x + Ax/2, y — Ay). The
final form of (3.1) is obtained by introducing the spatial
dependence exp[i(px + ky)] for each dependent vari-
able. Equations (3.2) and (3.3) are obtained in the
same manner but integration by parts is required for
the Laplacian of 4 in (2.8).

The equations for the bilinear basis functions on
rectangles are obtained in the same manner as with
the triangles. The integration formulae corresponding
to (A.3) to (A.7) are given by Staniforth and Mitchell
(1977), and the details will not be reproduced here.

APPENDIX B

Coefficients for Finite Difference Scheme A

The coefficients for the nonstaggered finite difference
scheme A are derived here. The equation set (2.1)-
(2.3) for this scheme can be written

du

- Sch =0, B.1
5 S0t 8 (B.1)
v —y
5 + fu + gé,h =0, (B.2)
—3—? +H(5u +38,0)=0, (B.3)

where, for example,
Oxh =[h(x+ Ax/2)— h(x — Ax/2)]/Ax
and
B = [h(x + Ax/2) + h(x — Ax/2)]/2.
To obtain the vorticity-divergence formulation we let
t=60 —du ,
D=0 +5,0. (B.4) -

By subtracting and adding (B.1) and (B.2) and using
(B.4) the vorticity-divergence system becomes

LS + fD + pv* = 0,

3 (B.5)
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aD —xx —
= S BT+ g + 570 )=0, (B.6)

oh + HD =0,
ot
where f = fo + By and 7% = [v(y + Ay) + v(y
— Ay)]/2 is used to develop this form. The quasi-
geostrophic set is obtained by replacing (B.5) and
(B.6) with

(B.7)

a B oo -
3 + foD + I goh =0, (B.8)
~fof + 87 + 87K )=0,  (BY)

which are analogous to (2.7) and (2.8). The required
coefficients can be obtained by substituting the wave
forms into (B.7), (B.8), and (B.9).
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