
Pergamon
Computers Math. Applic. Vol. 28, No. 8, pp. l-8, 1994

Elsevier Science Ltd. Printed in Great Britain

0898-1221(94)00165-O

Parallel Satellite Orbit Prediction
Using a Workstation Cluster

L. C. STONE, S. B. SHUKLA AND B. NETA*

Naval Postgraduate School, Code MA/Nd
Monterey, CA 93943, U.S.A.

bneta@moon.math.nps.navy.mil

(Received April 1994; accepted May 1994)

Abstract-In this paper, the benefits of parallel computing using a workstation cluster are ex-

plored for satellite orbit prediction. Data and function decomposition techniques are used. Speedup
and throughput are the performance metric studied.

The software employed for parallelization was the Parallel Virtual Machine (PVM) developed by
the Oak Ridge National Laboratory. PVM enables a network of heterogeneous workstations to appear
as a parallel multicomputer to the user programs.

A speedup of almost 6 was achieved when using 8 SUN workstations.

Keywords-Parallel computing, Orbit prediction, Domain decomposition, PVM.

1. INTRODUCTION

With the introduction of small, relatively inexpensive computers, a vast amount of computing

resources are often left idle for a long period of time. A ship often has this characteristic.

A ship’s complement of computers is usually used for intermittent word processing or single

dedicated computational tasks. With these computers networked together, a lot of unused CPU

power is available. In order to tap into these unused assets, parallelization software tools have

been developed such as PVM [l] or Linda [2]. These programs operate at the user level like an

extra layer of operating system code.

In this paper, we discuss the use of Parallel Virtual Machine (PVM) for parallelization. The

program to be parallelized is the Naval Space Command’s PPT2 satellite orbit prediction model.

PVM is a software library, currently being refined, developed by the Oak Ridge National Labora-

tory (ORNL). It is a software system that enables a collection of heterogeneous computers to be

used as a coherent and flexible concurrent computational system [l). PVM was chosen because

it is relatively easy to use, and is an emerging standard for software of its kind. It is currently

available free of charge from ORNL and installation is relatively easy. PVM Version 3.2 is used

for this paper.
Parallelization could have been accomplished using a specific parallel multicomputer, such as

the INTEL hypercube [3]. These systems tend to be large and expensive. While PVM may not
accomplish the tasks as fast as, say, an INTEL iPSC/2 hypercube (see (3]), the process execution

times were satisfactory for the application tested. A speedup of almost 6 when using a cluster of

8 workstations was achieved.

*Author to whom correspondence should be addressed.

2 L. C. STONE et al.

In the next section, we discuss parallelization of PPT2 including a variety of domain decompo-

sition schemes and give a preliminary results of our experiments on a small data set. In Section 3,

we discuss the results of our experiments with a larger data set and obtain the optimal number

of input blocks to use along with speedup results.

2. PARALLELIZATION OF PPT2

Currently, the Naval Space Command tracks over 6000 Earth orbiting objects. With more and

more countries entering space exploitation, and as the United States increases its emphasis on

space communication, this data set of satellites will forseeably increase dramatically in the future.

These increases in the satellite catalog will increase the computational demands on the computer

tasked with orbit prediction. If the NAVSPACECOM’s orbital model’s accuracy is increased or

multiple calls to the orbit prediction algorithm are made for accuracy, or the number of objects

tracked is increased, then the computational demands may be too much of a burden if the

computer were a serial machine [3]. Given these computational loads, and the time dependency

of the results, parallel processing of the catalog is a logical extension.

Given a program and its associated data set, there are two primary ways to process it in

parallel. The program can be separated into individual sections (called control decomposition)

with a processor dedicated to compute its respective part, much like a factory assembly line.

The other method domain decomposition is to divide up the data set and send parts to many

separate processors all running the same algorithm, but on different data. For PPT2, Phipps [3]

showed that control decomposition is not efficient. We thus experiment with various ways of

decomposing the satellite catalogue and distributing it to multiple nodes each propagating the

orbit to several given times.

2.1. Decomposition Strategies

The basic algorithm for all of the decomposition methods used a master/slave strategy. For

all the programs, there was one supervisor (master) node which decomposed the data set and

distributed it to the worker (slave) nodes. Sending information requires the packing (by sender)

and unpacking (by receiver) of data and buffer initialization. Each worker ran on a separate

processor and sent its results to a gathering node, which printed the results to a file and reported

to the master when the process had completed for all satellites. Figure 1 graphically presents

these relationships.

To get a general understanding of the decomposition requirements, five decomposition strate-

gies were developed. All the methods endeavored to minimize communication to computation

ratio and to keep the worker processors busy as much as possible to increase speedup and effi-

ciency. Each method is described below and denoted by dsl to ds5 (for decomposition strategy).

dsl: Send/Request One at a Time

The supervisor initially sends one satellite to each individual worker node and waits for the

workers to individually request another satellite. This method brought out the high PVM com-
munications overhead which needed to be overcome for adequate speedup. Of course, in case a
worker node is slow, this will ensure it will not get more data than it can process.

ds2: Send/No Request

The supervisor node for this routine sends one satellite at a time to each worker node in a
round-robin fashion until the input file is distributed. This process reduces the communications
overhead between the supervisor and workers, but it does not keep all the processors busy for a

sufficiently long time, since the computation time is shorter than the time until the next data is
received.

Parallel Satellite Orbit Prediction

Figure 1. Supervisor/Worker dependency graph.

ds3: Send Block
For this scheme, the master divides the number, S, of input satellites by the number, n., of

worker processors. The supervisor then sends a block of size S/n to each worker. This is much
more efficient than the previous two methods, but for n greater than 8, the workers numbered
eight and above were not getting data fast enough to notice effective processor computational
overlap.

ds4: Send Half Block
Here, the master sends blocks of size S/(2n) to each processor and sends another block of the

same size again. The smaller blocks take less time to send.

ds5: Multiple Block
The above scheme, ds4, was modified to send a variety of block sizes. The master sends a block

of data to each worker, then the worker extracted one satellite at a time from its input buffer and
sent a block of results, equal in size to its input block, to the gathering processor. Sending blocks
of data between processors vice one data element at a time, minimized the buffer manipulation
which resulted in lower execution times.

3. RESULTS OF PPT2 WITH PVM

For preliminary experimentation, PVM was started on eighteen different workstations so mea-
surements could be taken for one to sixteen working nodes. The workstations are SUN Spare II
and Spare IPX having 40 MHz processors and configured with 32 Mbytes of system memory.
The workstations are connected by a 10 Mbytes Ethernet based network. The four schemes dsl
through ds4 were used with data sets of 600 and 1200 satellites. The programs were run ten
times for each number of processors in order to get a good average time. The results for 1200
satellites are given in Figure 2. The figure shows a definite advantage in sending two input blocks
of data (ds4) to each worker node over the other schemes.

4 L. C. STONE et al.

25

20
Seconds

II w ds3
0 ds4

1 2 3 4 5 6 7 s 9 10 11 12 13 14 15 16

Number of Processors

Figure 2. The four decomposition strategies applied to PPT2 using 1200 satellites.

The rest of our experiments are with decomposition strategy ds5 and a cluster of eight work-
stations. To determine the length of time required to run the parallel program, the execution
time of each working node had to be determined. This execution time was broken down into
three phases: setup, calculation and breakdown. During the setup phase, the worker waited for
and received the next input block from the master. The calculation phase is the time it took
PPT2 to execute the entire input block. The breakdown phase was simply the period in which
the worker node packed and sent the results to the gathering node.

Using the variables defined in Table 1, Stone [4] has obtained expression for the setup time t,,

of the ith processor

t, = i(c, + cpssb) + nb(Cu,f + cu,,sb). (1)

The calculation time, t, is given by

t, = Tppt2f%, (2)

and the breakdown time tb is
tb = cf + c,,sb. (3)

Thus, the total execution time of worker i is

pi = t, + t, + tb. (4)

The execution times for eight worker nodes, given four input blocks of data are shown in
Figure 3. The processor’s phase times are described by two lines. The setup times are the lines
on the processor number axis, and the execution and breakdown times are on the line one half
space below the processor number. The blank space between the worker’s breakdown phase and
the next setup time is idle time. This idle time is clearly the result of the communication time
required by the master to send blocks to all working nodes, taking longer than the execution time
of PPT2 on each processor.

Given the fact PPT2 may need to be run several times for accuracy or tracking requirements,
the calculation time must be scales by some factor A. This variable A is the number of times
PPT2 is executed on each satellite. The total execution time of worker i is given by [4]

p, = t, + At, + tb + (nb - 1) (“,“‘) , A 2 (h-l)tb+(c;~f +CuppsSb),
2 (5)

t, + nb(& + tb), otherwise.

Parallel Satellite Orbit Prediction 5

Table 1.

Variable Definition Value

s total number of satellites 4800

t0 node process initialization time 5506.7 /LS

t9, time for gathering node to report to the 1300 /.Js

supervisor the process is complete

nb

Cf

c PS
c UPf

C UPPS

k

SP

sb

T PPt2

number of blocks sent to each worker 4

fixed communications time for buffer setup 6027.84 ,us

and network access for sending records

communications time required to pack send one satellite record 1264.52 ps

fixed communications time to unpack the input buffer 132.98 /.LS

communications time to unpack one satellite record 75.7 /Is

number of working processors used 8

number of satellites sent to each worker = S/k 600

number of satellites per data block = s&b 150

time for PPT2 to operate on one satellite record 1850 /JS

Setup/Execution/Breakdown overlop for 8 workers, and 4 data blocks

! I !
1 ts / !

8 -___._ .._... i-.tc+tb-_ i. I _-__-_-____-.~~ .~.__ . .._... _.i._ ._... _-_._ I ..___ . .._
i-j

, _--_._ __~_______~__ +___-_- ._.. . . .I-.-_-_..-.. -&__-__ ._.. i_._-- _... --.-
! - -

6 -..-.___~--_._.__,... _

I_ j_j IL- 1
_._J. ._

1
j -/

._I_ ._.. _____._. . .._. _ _....___... -..
i

5 -_. ._~~..-_~.___._--_--.__-_“-_____ ____--+-_-__ -1 _-..i-_... .-... -
-4 (

/-
4 __ ._..-_.- ..__. ____ __.- __.-.._

- / J_ i_
3 .-__-... / _._ _-___-+___--___ i ._~

---/. _u- .-..i-.--------- --.
L_._. ._.. .-- ._....

-/ -j-

.__-__-_j_-_-_.-_-- .___ _.

I-
2 _.- ..-__-L_._.. ..___ +-_._._-- .L i-i .__- __.._. __.. _.~. ___ ._. ~.__, .$._-__-_______

I / -,
I /

1 -- -~- I _ _._-_-_.c__ __..
- ! -

T-- _j
.._.__i .~ . .._. ._.____i

4
I-.__ -.___-___

0 2 4 6 8 10 12

Execution Time (sets)

Figure 3. ds5 Worker execution times using eight worker processors.

The total execution time, TE, of the parallel algorithm is

(6)

where K is the number of workers used.

3.1. Comparison

In this section, we used the above formula to compare the serial program to the parallel version
using a data set of 4800 satellites and 8 workers (see Table 1 for the empirical values obtained

from studying the performance of PVM on our SUN network). The total execution time of the

serial program was taken to be simply T&s multiplied by the total number of satellites in the

input file.

6 L. C. STONE et al.

Serial vs Parallel PPTZ execution time for 4800 satelites

-1 2 3 4 5 6 7 6 9 10

Iteration biult.iplier A

Figure 4. Serial vs. Parallel results using ds5 with eight workers.

Serial vs Parallel Speedup Ratios

1 2 3 4 5 6 7 8 9 10

Iteration Multiplier A

Figure 5. Serial vs. Parallel (ds5) speedup ratios using eight workers.

Figure 4 shows the final comparative results. The “theoretical” lines refer to using equation (6).

The “actual” lines represent data obtained from running the serial program and ds5 (utilizing

8 workers) and a value of A between one and ten. A block size of four was used for the parallel

program. It, is clear that the parallel program performed better than the serial program as

the number of calls to PPTP was increased. The theoretical and actual speedup are plotted in

Figure 5. Note that theoretically a speedup of 6 (when using eight workers) may be possible. In
all the runs, we were unable to achieve this theoretical result. One of the reasons is that it is
virtually impossible to guarantee that the network is not used by others at the same time.

Parallel Satellite Orbit Prediction

Serial vs Porollel PPTP execution time for octuol catalog data

1 2 3 4 5 6 7 8 9 10

lterution Multiplier A

Figure 6. Serial vs. Parallel (ds5) execution time comparisons using actual data.

Serial vs Porollel Speedup Ratios

1 2 3 4 5 6 7 8 9 10

7

lterotion Multiplier A

Figure 7. Serial vs. Parallel (ds5) speedup ratios using the catalog data.

The comparative results using the actual catalog of 6795 satellites are plotted in Figures 6, 7.
The actual results are closer to the theoretical ones in this case. A speedup of almost 6 using 8
processor was achieved.

4. CONCLUSION

In this paper, we demonstrated the effectiveness in reducing the overall execution time of
updating the catalog of Earth orbiting objects by using a parallel algorithm. This algorithm
was run using a parallelization software tool, PVM, on a loosely connected network of SUN

8 L. C. STONE et al.

workstations instead of a dedicated parallel multicomputer. A variety of data decomposition
schemes were used. A speed up of almost 6 was achieved when using 8 workstations.

REFERENCES
A. Geist, A. Buguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam, PVM 3 User’s Guide and
Reference Manual, Oak Ridge National Laboratory Technical Report ORNL/TM-12187, Oak Ridge, TN,
(1993).
S. Ahuja, N. Carrier0 and D. Gelernter, Linda and friends, IEEE Computer, (August 1986).
W.E. Phipps, B. Neta, and D.A. Danielson, Parallelization of the naval space surveillance satellite motion
model, J. of Astronautical Sciences 41, 207-216, (1993).
L.C. Stone, Parallel processing of navy specific applications using a workstation cluster, M.S. Thesis, Naval
Postgraduate School, Department of Electrical and Computer Engineering, Monterey, CA, (December 1993).

