The Journal of the Astronautical Sciences, Vol. 41, No. 2, April-June 1993, pp. 207-216

Parallelization of the Naval

Space Surveillance Satellite
Motion Model

Warren E. Phipps Jr., Beny Neta, and D. A. Danielson'

Abstract

The Naval Space Surveillance Center (NAVSPASUR) uses an analytic satellite motion
model based on the Brouwer-Lyddane theory to track objects orbiting the Earth. In this
paper we develop several parallel algorithms based on this model. These have been imple-
mented on the INTEL iPSC/2 hypercube multicomputer. The speedup and efficiency
of these algorithms will be obtained. We show that the best of these algorithms achieves
87% efficiency if one uses a 16-node hypercube.

Introduction

The Naval Space Surveillance Center (NAVSPASUR) uses an analytic satellite
motion model to track objects orbiting the Earth. This model is implemented in
the Fortran subroutine PPT2. This subroutine predicts an artificial satellite’s
position and velocity vectors at a selected time to aid in the tracking endeavor.
Several calls to the subroutine may be required to aid in the identification of one
object. A substantial increase in the number of objects or a desire to increase the
accuracy of the model will require a similar increase in computer time. Parallel
computing offers one option to decrease the computation time without sacrific-
ing accuracy.

For a multicomputer, the user must partition the problem among the proces-
sors. Two decompositions are possible and will be discussed here, control decom-
position and domain decomposition.

In this paper we determine the parallel computing potential of the current
NAVSPASUR model as applied to a MIMD computer (see Hwang and Briggs [1],
Flynn [2] or Quinn [3]) and simulated on an iPSC/2 hypercube. In the next sec-
tion, we develop a control decomposition method and discuss the speedup
attained by our numerical experiments on a 4-node hypercube. Following that, we
discuss a domain decomposition method. We show that domain decomposition

'Naval Postgraduate School, Department of Mathematics, Code MA/Nd, Monterey, CA 93943.

207

208 Phipps, Neta, and Danielson

yields a higher speedup. We also develop a model showing that 16 nodes yield
optimal efficiency (almost 90%) and discuss how to utilize larger dimension
hypercubes without losing efficiency.

Control Decomposition

Control decomposition is the strategy of dividing tasks among the nodes. This
is recommended for problems with irregular data structures or unpredictable con-
trol flows [4]. The exact tasks required of each node are explicitly stated in the
parallel program.

In order to predict a satellite’s state vector considering the secular and periodic
correction terms due to the zonal harmonics and a correction term for each ele-
ment due to the sectoral harmonics, the NAVSPASUR model requires the com-
pletion of 55 major tasks. These tasks are described by Phipps [5]. The first step
in partitioning these tasks among the nodes was to determine which tasks could
be completed concurrently. Concurrency was determined by the development of
a hierarchy of the formulas used by the NAVSPASUR model. Each of the individ-
ual tasks were listed with its respective required input. Tasks which could be exe-
cuted concurrently are listed by row in Table 1. (The equation numbers in the
table refer to Phipps [5].)

From this table, one can see that the number of tasks that could be computed
concurrently at each level ranges from 2 to 14. Additionally, the computational re-
quirements vary considerably among the tasks. For example, the computational
requirement for the solution of Kepler’s equation by Steffensen’s method depends
on the number of iterations necessary to achieve convergence. This variance in
the number of operations required by the various tasks presented a potential
problem in load balancing. In other words, bottlenecks are due to the fact that
nodes are awaiting to receive results from computations performed by other pro-
cessors. It was shown by Phipps [5] that a manager-worker algorithm (to achieve
load balancing) will increase the communication and thus decrease efficiency.
Thus prescheduling of tasks is done. The optimal number of nodes is found to be
four. In Table 2, we list the tasks scheduled for each node. A computer program,
P’T~-4, was developed for the hypercube. Experiments with this program show
that the computation time (¢.) for P*T-4 is about half that of PPT2. Unfortu-
nately, the communication time (.,) was so high that the total time for P*T-4
was larger (see Table 3).

One method to reduce the ratio of communication to computation is by com-
puting the path of n satellites at the same time. In other words, currently the pro-
gram PPT2 reads the initial values of one satellite and computes its position at a
given time, and then moves on to the computation of the next satellite position.
Since each communication requires an overhead, it is cheaper to send a long mes-
sage. To arrange that, we suggest that the program reads initial values of several
satellites and computes the paths concurrently. This will require the same num-
ber of messages, but each one is n times longer. The efficiency, E,, is given by

nt,
Ep=—"0
Popnte + ta)

209

Parallelization of the Naval Space Surveillance Sateilite Motion Model

(09D
£ST1A

(09D
ISTA

(09
ISTA

(avNNT)
_m‘_n:uom

(65D)
IEHTA

(81°7)
Qmw

(65)
IZHIA

(s9°7)
yig./ uis

(65°2)
IIHIA

(£9°)
17¢2

(65°7)
£1A

(19°27)
g

(65°7)
1A

(69°T)
D
(L927)
zlg

(65°7)
191A

(89°7)

V4

(z97) (L92)
2@ 729
(6s7) (850
yilguis Jus
(650)

TTIA

(ts7) (Lsd)
2 :G
(8€0)

Y

“

(zL'o)
fsoo
(oL'2)
1
(99°27)
ye(z/ruis
(85D
:L
(8s2)
.J 09
(ss2)
=N

(sv'2)
2

Le7)
a
(LeD)
5..3
(oL'2)
(oL2)

¥9°2)
192
(650
1'¢a
(ss2)
Eﬂ\
(zs'D)
p/yp
(1v'2)

Sm.d

op

(Led)
4 It
(Le2)
4 o1
(1.7
g 6
(oL2)
I {8)e] w
(y9°2)
9 L
(65°7)
1'e 9
(657
alg S
(ss0)
W3 ¥
(157)
p/3p €
#s2)
28 r4
(8-Lv'20)
Al I

[2A97]

syse], [PPO 31qI0 UNSVASAVN WarImuo) I ATAVL

210

TABLE 2. Tasks for Each Nede

Phipps, Neta, and Danielson

Node 0 Node 1 Node 2 Node 3
Recover a" Compute T2
137 flops 113 flops

send 8 bytes

Compute secular
corrections-/, a, and e
45 flops
send 24 bytes

Compute long period
correction-/
63 flops

Compute short period
correction-/
46 flops
send 8 bytes

Compute short period
correction-a
24 flops

Solve Kepler’s Equation
~308 flops

Collect all terms

Compute state vector
74 flops

Compute secular
correction-g
80 flops

send 8 bytes

Compute long period
corrections-e and /
64 flops

Compute short period
corrections-¢ and /
88 flops
send 16 bytes

send 8 bytes

Compute long period
correction-z
113 flops

Solve Kepler’s
Equation
~308 flops

Compute short period
correction-z
14 flops
send 8 bytes

Compute secular
correction-h
85 flops

send 8 bytes

Compute sectoral
terms
528 flops
send 48 bytes

Compute long period
correction-h
69 flops

Compute short period
correction-h
52 flops
send 24 bytes

TABLE 3. P’T-4 Execution Time Breakdown

Algorithm t. (milliseconds) tm (milliseconds) 1, (milliseconds)
PPT2

one node 11.2 NA 11.2
Pr-4

node 0 4.3 19.0 23.3

node 1 2.2 15.9 18.1

node 2 2.7 14.7 17.4

node 3 58 15.7 21.5

since the communication time is not affected by the length of the message. As
one increases the number #, the limit is

limE"

n—wo

t

Ptc.

Using the values in Table 3 one finds that the efficiency is bounded by 0.49. This
is the best we were able to achieve. The reason is that the computation time for

Parallelization of the Naval Space Surveillance Satellite Motion Model 21

one satellite is 5.8 seconds on 4 nodes and 11.2 seconds on 1 node. Thus the maxi-
mum achievable efficiency is bounded by .5. Since this is not high enough, we have
tried domain decomposition. This is discussed in the next section.

Domain Decomposition

The strategy of domain decomposition is to reduce the computation time
by the concurrent computation of several satellite state vectors. Each node of
the hypercube would complete identical tasks on different satellite data sets,
simultaneously.

Unlike the application of the control decomposition strategy, the application of
the domain decomposition strategy to the NAVSPASUR model was seemingly
less arduous. First, because each node propagates satellite data sets independent
of the other nodes, there exists no requirement for communication or synchroni-
zation among the nodes. This lack of communication simplifies the load balancing
and sequential bottleneck problems present in the P*T-4 parallel algorithm.

Second, because each node may perform the satellite state vector prediction
tasks serially, the existing subroutine PPT2 may be used with only minor modifi-
cations. Developing a parallel algorithm for predicting an individual satellite’s
state vector was a major task for the control decomposition strategy. Additionally,
by using the existing PPT2 code, the other tasks completed by PPT2 may be re-
quested by the user using the same control variables as used by the original PPT2
subroutine. The P>T-4 program set was restricted to only predicting a satellite’s
state vector.

Finally, by using the serial subroutine PPT2, this strategy may be reduced to
only developing an algorithm to distribute the data in a timely manner. Maximum
efficiency will be achieved if the nodes do not have to wait for satellite data to
propagate.

Intuitively, this strategy seems perfect for parallelization. Although the various
tasks performed by PPT2 require different computation times, the total execution
time for each node will be essentially the same if it is assumed that the various
tasks are randomly distributed throughout the input data sets. The concern for
this algorithm was the potential sequential bottlenecks at input/output portions of
the program set. Reading and writing to external files can be very time consum-
ing. In addition to the actual time spent reading/writing to an external file, a cer-
tain amount of time is spent to access the file. In order to minimize this time, the
number of calls to read/write to a file should be minimized.

With the specific iPSC/2 hypercube available, inputfoutput is completed
sequentially. Each node must compete with the other nodes to read and write to
external files. To minimize time lost to accessing the file cataloging the set of
satellites, a node was devoted to both the reading/distributing of input satellite
data and to the collecting/writing of the results. The idea of using a single node
to read the data and a single node to subsequently write the output is simple to
implement and proved to be fastest method to overcome the bottlenecks with the
input/output. The remaining nodes of the hypercube implement the NAVSPASUR
model using a slightly modified PPT2. The diagram in Fig. 1 depicts how the
satellite data is distributed. The cost of using this simple algorithm to distribute
and collect the data is the loss of two nodes. The only restriction on the size of

212 Phipps, Neta, and Danielson

Oistributing
Node
Working
Nodes
Node

FIG. 1. P’T Algorithm.

the hypercube required by this algorithm, which we called P*T, is that the at-
tached cube must contain at least four nodes to achieve any speedup.

The graph in Fig. 2 depicts the mean execution time for P*T versus the number
of satellites propagated using hypercubes of four and eight nodes respectively. P*T
was successful in reducing the overall execution time to propagate several satel-
lites. Table 4 shows the speedup and efficiency of P°T for a various number of
satellites. As seen in Table 4, the speedup achieved using all eight nodes of the
hypercube was approximately three times larger than the speedup achieved using
four nodes. With this parallel algorithm using six “working” nodes for an eight
processor hypercube and only two “working” nodes for a four processor hyper-
cube, an increase in speedup by approximately a factor of three was expected. In
other words, since two processors are tied to input/output and cannot be used for
computation, one should expect the gain to increase until we recover the loss of
those two. More notable was the increase in efficiency using eight versus four
nodes. The efficiency increased from .45 to .67. This increase in efficiency indi-
cates that P’T applied to a hypercube of greater dimension could yield even
greater speedup and efficiency.

Table 4 also indicates that P’T performance increased somewhat with an in-
crease in the total number of satellites propagated. Because with this parallel al-
gorithm the computation to communication ratio does not vary with the number
of satellites, this small increase in performance must be primarily due to the di-
minishing impact of the algorithm’s overhead on total execution time. This over-
head includes one additional message containing the total number of satellites to
propagate from the distributing node to the other nodes; some small computa-
tions by working nodes to determine number of data sets to receive; and a halting
message sent by the collecting node to the host once all of the nodes are finished.

Parallelization of the Naval Space Surveillance Satellite Motion Model

- «—— PPT2 EXECUTION TIME
——— P31 EXECUTION TIME (4 NODES)
° ——s— P31 EXECUTION TIME (8 NODES)
; -
~
®
* -
wn N
0O -
5 L
O
Wa
S 2L
= x
5 -
©
- I
[2]
(=] .2 1

LOG(NUMBER OF SATELLITES)

FIG. 2. PT Execution Times.

TABLE 4. Speedup and Efficiency Comparison

T Number of Satellites S, E,

8 nodes 1728 5.53 .69
144 5.45 .68

12 4.82 .60

4 nodes 1728 1.86 47
144 1.86 47

12 1.82 46

Because these additional messages and computations are only completed once
in the program, the time cost associated with this overhead becomes negligible
as the number of satellites propagated is increased. The speedup and efficiency

remained fairly constant for greater than 144 satellites.

The performance results of this algorithm using only four and eight nodes indi-
cated a potential increase in both speedup and efficiency if this algorithm could
be applied to a hypercube of greater dimension. Because the number of working
nodes is not fixed for this algorithm, P*T could be applied easily to any size hyper-

cube with no modifications.

214 Phipps, Neta, and Danielson

The efficiency of the algorithm should increase with the number of processors
until the time to distribute a separate satellite data to each working node exceeds
the time required by a node to propagate a single satellite. A model was used to
estimate the optimal number of nodes. The total execution time for P*T to propa-
gate n satellites with p processors, ¢t(p), can be modelled by

t(p) = tw(p) + tw2(p) + t(p),

where t,,(p) is the time the last node must wait to receive its first satellite data
set, fu2(p) is the total time the last node must wait to receive all of its subsequent
satellite data sets, and t.(p) is the computation time for each node to propagate
its share of the n satellites. For this algorithm, there are p — 2 working nodes.
Denoting the time to send a single message between the distributing node and a
working node as t,(1), the t,,(p) may be modeled by the following:

tu(p) = (p — Ita(1)

where t,(1) denotes the time to send a single message between the distributing
and working nodes. For the iPSC/2 it was found that

tm(1) = .693 msec.
The wait time ¢, is zero unless the number of working nodes is large enough, i.e.
0 twl(p) = h

th(P) = [twl(P) - tl] (# - 1), twl(p) > t

where ¢, is the computation time to propagate a single satellite (11.2 msec). Note
that the factor n/(p — 2) — 1 is the number of subsequent satellite data sets. The
computation time ¢, is given by

n
p—2

Therefore, the speedup and efficiency are given by

tc(p) . t.

S = nt,
" ta(p) + tw(p) + t(p)’

E. = nt,
P pltw(p) + ta(p) + t(p)l
Figures 3 and 4 depict these theoretical estimates of S, and E, for propagating

2044 satellites using 4 to 1024 processors. Using the above model, P°T is capable
of achieving a maximum speedup of 13.95 and an efficiency of 0.87 using 16 nodes.

Conclusions

In this paper we have developed two ideas, control decomposition and domain
decomposition, to parallelize the NAVSPASUR satellite motion model. The con-
trol decomposition idea is not efficient because the model is not computationally

Parallelization of the Naval Space Surveillance Satellite Motion Model 215

187

14 4
124
104
8

Speedup

6 -
4
2

0 T T T T 1
0 2 4 6 8 10

Log number of processors

FIG. 3. Theoretical Speedup for Propagating 2044 Satellites.

14

0.8
=)
6}
c 0.6+
o
2
[}
D
G 0.4+
o
%]
0.2
0 T T T T T
0 2 4 6 8 10

Log number of processors
FIG. 4. Theoretical Efficiency for Propagating 2044 Satellites.

intensive enough. The domain decomposition can reach an efficiency of 87%
when using a 16 node hypercube.

There are many orbit models in use nowadays. Several questions can be raised
as a result of this research. How should an orbit theory be organized to take ad-
vantage of MIMD computers? How should a semianalytic theory be organized for
parallel computers? We are now working on a parallel version for the analytical
model SGP4 in use by USSPACECOM and for the semianalytic satellite model
developed at Draper Laboratory.

Acknowledgments

This research was conducted for the Office of Naval Research. The last two authors
were supported in part by the Naval Postgraduate School. The authors would like to thank
the referees for their valuable comments.

216 Phipps, Neta, and Danielson

- References

[1] HWANG, K., and BRIGGS, F. A. Computer Architecture and Parallel Processing, McGraw-
Hill, New York, 1984.

[2] FLYNN, M.J. “Very High-Speed Computing Systems,” Proceedings of the IEEE, Vol. 54,
1966, pp. 1901-1909.

[3] QUINN, M.J. Designing Efficient Algorithms for Parallel Computers, McGraw-Hill, New
York, 1987.

[4] iPSC/2 Users Guide, INTEL Corporation, Santa Clara, California, 1990.

[5] PHIPPS, W.E. “Parallelization of the Naval Space Surveillance Center (NAVSPASUR) Satel-
lite Motion Model,” M.S. Thesis, Naval Postgraduate School, Monterey, California, 1992,

