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ABSTRACT

To improve the simulation of nonlinear aspects of the flow over steep topography, a potential enstrophy—
and energy-conserving finite-difference scheme for the shallow-water equations was derived by Arakawa

and Lamb.

Here a parallel algorithm is developed for the solution of these equations, which is based on Arakawa and
Lamb’s scheme. It is shown that the efficiency of the scheme on an eight-node INTEL iPSC/2 hypercube is
81%. Forty mesh points in the x direction and 19 in the y direction were used in each subdomain.

1. Introduction

Arakawa and Lamb ( 1981) have developed a finite-
difference scheme to solve the shallow-water equations
with topography. Flow over and near steep mountains
is governed during advective processes by the conser-
vation of (absolute) potential vorticity g = 5/ h where
7 is the (absolute) vorticity and #4 is the depth of the
fluid. They “have found that conventional finite dif-
ference schemes for the momentum equation, when
applied to the shallow-water equations, correspond to
very bad advection schemes for the potential vorticity
in the presence of steep mountains.” They have de-
veloped a scheme to conserve potential enstrophy and
total energy. The scheme requires the staggering of the
variables u, v, and A as shown in Fig. 1.

In the next section we summarize the scheme as
given in Arakawa and Lamb (1981). The domain de-
composition and the parallel algorithm will be detailed
in section 3. There we also comment on how domain
decomposition is performed on the sphere. We con-
clude with an example showing the efficiency of the
parallel algorithm on an INTEL iPSC/2 hypercube.

2. Finite-difference conservative scheme

Here we follow the notation used in Arakawa and
Lamb (1981) but generalize the discretization to the
case that Ax ¥ Ay. The governing equations for quasi-
static motion in a homogeneous incompressible fluid
with a free surface are
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at+quv*+V(K+<I>)=0

(1)

a—h+V-v*=O,

Y (2)

where

(absolute) potential enstrophy

(absolute) vorticity

=n/h=(f+/h

Coriolis parameter

relative vorticity = k-V X v

mass flux = Av

horizontal velocity

vertical unit vector

vertical extent of a fluid column above the bottom
surface

kinetic energy per unit mass = 1/2|v|?

gravitational acceleration

bottom surface height

=g(h+h)
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The discretization of the momentum equation (1) is
given by
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where the parameters «, 8, v, 6, ¢, and ¢ are given by
linear combinations of ¢
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The discretization of (2) is given by
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Note that (12) and (19) are the only equations af-
fected by the fact that Ax # Ay.

3. Domain decomposition

This section describes how to decompose the domain
(a channel) into p overlapping subdomains. This is
conducted for the example discussed by Arakawa and
Lamb (1981). The domain is a channel of length 6000
km and width 2000 km. Periodic boundary conditions
are assumed in the x direction and rigid-wall boundary
conditions in the y direction. The mean surface height
Hj is 5 km, the acceleration of gravity gis 9.8 m s 2,
and the Coriolis parameter fis 10~ s~!. The bottom
topography is a narrow ridge, centered at x = 3000
km, that uniformly extends across the channel in y and
has a triangular shape in x, with a maximum height
of 2 km and a bottom width of 1000 km (see Fig. 2).

The domain is decomposed into p horizontal strips;
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F1G. 2. Topography in the channel.

thus, each processor implements simple periodic
boundary conditions in x. Since Arakawa’s scheme re-
quires the lines j — 2 to j + 2 in order to advance the
solution on line j, we require the subdomains to overlap
on two grid lines (see Fig. 3). Each processor will re-
ceive and send the updated values of u, v, and /4 on
two border lines to its nearest neighbors. By using the
Gray code (see, e.g., Brualdi 1992, p. 103), the sub-
domains are distributed among the processors in such
a way that the updating of neighboring strips is always
completed by communication along the shortest path,
along one hypercube edge.

There will usually be two messages sent and two
received per time step: one for jyi, and one for jpax.
By a judicious mapping, the message data may be made
contiguous in memory, so the program must only know
the starting address and the message length. There is
no need of buffering, as these messages never overwrite
each other. It is also possible to use asynchronous rou-
tines, although the time saved seems small.

The subdomains contain about the same number of
horizontal grid lines, to promote load balancing. It is
not possible, however, to have exactly the same work
completed in each processor, because two of the pro-
cessors treat actual boundary conditions (v = 0).

Since the length of the channel is much larger than
the width, we have decided to subdivide the domain
into vertical strips instead of horizontal strips. This will
allow the use of a larger number of processors each
having enough grid points to compute the solution. As
it turns out, this is also more efficient to implement.

If one is to solve the shallow-water equations on a
hemisphere, a polar stereographic projection can be
used. This will lead to a rectangular domain. Distortion
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becomes severe, however, if the projection is extended
into the opposite hemisphere. Also, artificial boundary
conditions placed in the equatorial region give rise to
errors that eventually propagate into higher latitudes
(see Haltiner and Williams 1980). If a global model is
to be solved, we suggest that the sphere be decomposed
into latitudinal strips: that is, one subdomain contain-
ing each pole, and all have boundaries coinciding with
latitudes. The width of each strip will depend on ex-
perience that will ensure load balancing. The reason
for latitudinal strips is so that each pole will be in one
subdomain and the communication will be minimized.

4. Numerical experiments

Numerical experiments were performed on an IN-
TEL iPSC/2 hypercube using eight processors. A serial
version (running on one of the nodes) and a parallel
version (using all eight processors) of the code were
run. A grid size d = 50 km was used, so that each of
the processors will have five horizontal grid lines
[1(2000/50)]. This is a fine mesh (finer than those
used by Arakawa and Lamb), and it is required in
order to have at least one nonoverlapping line in each
subdomain.

The initial conditions are a uniform zonal current
u = 20 m s~! and a horizontal free surface. The inte-
gration is performed until = 1330 min using At = 1
min. Figure 4 shows the wind speed and height at ¢
= 1330 min using the serial version. Figure 5 shows
the result of the parallel version with eight processors.
Notice that the results are identical but the run time
for the serial is 4140 s and that of the parallel is 809 s.

T T T

x

FiG. 3. The domain decomposed into horizontal strips.
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PRIMITIVE VARIABLES AT TIME = 1330
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F1G. 4. The solution at ¢ = 1330 min using the serial version.

As mentioned earlier, this mesh size is fine, and since
the scheme as given by (3)-(19) requires a uniform
mesh (Ax = Ay = d), we had to use too many points
in the x direction. The code was run using Ax = 150
km, Ay = 50 km, and Af = 1 min, and the results were
unchanged, as shown in Fig. 6. Equations (12) and
(19) were modified in a way to accommodate Ax # Ay.

To show the benefit of this parallel algorithm, we
have measured the speedup defined by

T,(1)

20
T,(p) (20)

where T,(i) is the execution time required when using
i processors. This is the most common formulation of
speedup.

As defined, the speedup should ideally be directly
proportional to p, the number of processors used. The
efficiency, defined as

(21)

provides a quantitative measure of how closely the ob-
served speedup approaches the ideal result. For the ex-
ample shown in Figs. 4 and 5, the speedup is
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4140
S = e,— = .
309 5.12 (22)
and the efficiency is
5.12
E= i 0.64 = 64%. (23)

This is not efficient enough, and thus we have de-
cided to divide the channel by vertical lines. This turns
out to be more efficient and vields the identical solu-
tion. The run time for the same example is 635 s. Thus,

4140
=——= 4
S 635 6.52, (24)
E= 6852 81%. (25)

When using four processors, the run time is 1149 s,
and thus S = 3.6 and the efficiency increases to

3.6

E=7

= 90%. (26)

Clearly, the amount of communication is smaller
(relative to time spent on computation). If one takes
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FIG. 5. The solution at 1 = 1330 min using eight processors.
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. PRIMITIVE VARIABLES AT TIME = 1330 a simpler scheme (such as the unstaggered A grid), the
~ TTTT efficiency will be lower because the time spent on com-
o] 23 f/ putation will be closer to the communication time.

g The Fortran software developed during this project
| T—5.00 . -

> - 00/\_\_ % is available on request.

> ©
© - o -3
o o .
_— /\ 5. Conclusions
- T T T 1 T T T T T T T
1 6 1 18 21 28 31 36 41 48 51 58 61 An efficient parallel algorithm for the solution of the

shallow-water equations was developed and tested. It
is based on the potential enstrophy- and energy-con-
serving scheme developed by Arakawa and Lamb. The
efficiency of the scheme when using eight processors is
81% on an iPSCy/2 INTEL hypercube computer.
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