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A class of three-point sixth-order multiple-root finders and the dynamics behind their ex- 

traneous fixed points are investigated by extending modified Newton-like methods with 

the introduction of the multivariate weight functions in the intermediate steps. The mul- 

tivariate weight functions dependent on function-to-function ratios play a key role in con- 

structing higher-order iterative methods. Extensive investigation of extraneous fixed points 

of the proposed iterative methods is carried out for the study of the dynamics associated 

with corresponding basins of attraction. Numerical experiments applied to a number of 

test equations strongly support the underlying theory pursued in this paper. Relevant dy- 

namics of the proposed methods is well presented with a variety of illustrative basins of 

attraction applied to various test polynomials. 
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1. Introduction 

Newton’s method locates a numerical root of a nonlinear equation without difficulty under normal circumstances, pro-

vided that a proper initial guess is selected close to the true solution. Unfortunately, it has only linear convergence when

locating repeated roots. For repeated roots of a nonlinear equation of the form f (x ) = 0 , given the multiplicity m ≥ 1 a

priori, modified Newton’s method [36,37] in the following form 

x n +1 = x n − m 

f (x n ) 

f ′ (x n ) 
, n = 0 , 1 , 2 , . . . (1.1)

efficiently locates the desired multiple-root with quadratic-order convergence. It is known that numerical scheme (1.1) is a

second-order one-point optimal [23] method on the basis of Kung-Traub’s conjecture [23] that any multipoint method [35]

without memory can reach its convergence order of at most 2 r−1 for r functional evaluations. We can find other higher-order

multiple-zero finders in a number of literatures [16–18,21,24,25,31,32,40,45] . 
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Assuming a known multiplicity of m ≥ 1, we propose in this paper a family of new three-point sixth-order multiple-root

finders of modified Newton type in the form of: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

y n = x n − m · f (x n ) 

f ′ (x n ) 
, 

w n = x n − m · Q f (x n ) · f (x n ) 

f ′ (x n ) 
, 

x n +1 = x n − m · K f (x n ) · f (x n ) 

f ′ (x n ) 
, 

(1.2)

where the desired forms of weight functions Q f and K f will be extensively studied for sixth-order of convergence in

Section 3 . As a consequence, one can regard the last equation in (1.2) as a family of modified Newton-like methods. 

The remaining portion of this paper is organized as follows. Section 2 shortly surveys existing studies on multiple-root

finders. Fully described in Section 3 is methodology and convergence analysis for newly proposed multiple-root finders. A

main theorem on the properties of the family of proposed methods (1.2) is drawn to discover convergence order of six as

well as to induce asymptotic error constants and error equations by use of a family of weight functions Q f and K f dependent

on two principal roots of function-to-function ratios. In Section 4 , special cases of weight functions are considered based

on polynomials and low-order rational functions. Section 5 extensively investigates the extraneous fixed points and related

dynamics underlying the basins of attraction. Tabulated in Section 6 are computational results for a variety of numerical

examples. Table 5 compares the magnitudes of e n = x n − α of the proposed methods with those of a member of an existing

sixth-order family of methods. Dynamical characteristics of the proposed methods along with their illustrative basins of

attraction are depicted at great length with detailed analyses, comparisons and comments. Briefly stated at the end is overall

conclusion together with a possible development of future work. 

2. Review of existing sixth-order multiple-root finders 

The orders of convergence of existing multiple-root finders are mostly found to be less than or equal to 4, and more

higher-order multiple-root finders are rarely to be found. Very recently Geum–Kim–Neta [19] have developed a class of two-

point sixth-order multiple-root finders by extending the classical modified double-Newton method with extensive analysis

of their relevant dynamics behind the basins of attraction from the viewpoint of the extraneous fixed points. One member

of the class is introduced as follows shown by (2.1) : 

Let a function f : C → C have a repeated zero α with integer multiplicity m > 1 and be analytic [1] in a small neighbor-

hood of α. ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

y n = x n − m 

f (x n ) 

f ′ (x n ) 
, 

x n +1 = y n − m + a 1 u 

1 + b 1 u + b 2 u 

2 
× 1 

1 + 2(m − 1) t 
· f (y n ) 

f ′ (y n ) 
, u = 

[ 
f (y n ) 

f (x n ) 

] 1 
m 

, t = 

[ 
f ′ (y n ) 

f ′ (x n ) 

] 1 
m −1 

, 

(2.1)

where a 1 = 

2 m (4 m 

4 −16 m 

3 +31 m 

2 −30 m +13) 

(m −1)(4 m 

2 −8 m +7) 
, b 1 = 

4(2 m 

2 −4 m +3) 

(m −1)(4 m 

2 −8 m +7) 
and b 2 = − 4 m 

2 −8 m +3 
4 m 

2 −8 m +7 
. This member will be compared with an-

other family of sixth-order multiple-root finders to be developed in the next section of this paper. 

3. Methodology and convergence analysis 

We assume that a function f : C → C has a repeated zero α with integer multiplicity m ≥ 1 and is analytic in a small

neighborhood of α. Given an initial guess x 0 sufficiently close to α, new three-point iterative methods proposed in (1.2) to

find an approximate zero α of multiplicity m will take the specific form of: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

y n = x n − m · f (x n ) 

f ′ (x n ) 
, 

w n = x n − m · Q f (s ) · f (x n ) 

f ′ (x n ) 
, 

x n +1 = x n − m · K f (s, v ) · f (x n ) 

f ′ (x n ) 
, 

(3.1)

where 

s = 

[ 
f (y n ) 

f (x n ) 

] 1 
m 

, (3.2)

v = 

[ 
f (w n ) 

f (x n ) 

] 1 
m 

, (3.3)
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and where Q f : C → C is analytic in a neighborhood of 0 and K f : C 

2 → C is holomorphic [20,39] in a neighborhood of (0, 0).

Since s and v are respectively one-to- m multiple-valued functions, we consider their principal analytic branches [1] . Hence,

it is convenient to treat s as a principal root given by s = exp [ 1 m 

Log ( f (y n ) 
f (x n ) 

)] , with Log ( f (y n ) 
f (x n ) 

) = Log 
∣∣ f (y n ) 

f (x n ) 

∣∣ + i Arg ( f (y n ) 
f (x n ) 

)

for −π < Arg ( f (y n ) 
f (x n ) 

) ≤ π ; this convention of Arg( z ) for z ∈ C agrees with that of Log[ z ] command of Mathematica [44]

to be employed later in numerical experiments of Section 6 . By means of further inspection of s , we find that s =∣∣ f (y n ) 
f (x n ) 

∣∣ 1 
m · exp [ i 

m 

Arg ( f (y n ) 
f (x n ) 

)] = O (e n ) . Similarly we treat v = 

∣∣ f (w n ) 
f (x n ) 

∣∣ 1 
m · exp [ i 

m 

Arg ( f (w n ) 
f (x n ) 

)] = O (e 3 n ) . In addition, we find that

O ( f (x n ) 
f ′ (x n ) 

) = O (e n ) . 

Definition 1 (Error equation, asymptotic error constant, order of convergence) . Let x 0 , x 1 , . . . , x n , . . . be a sequence converg-

ing to α and e n = x n − α be the n th iterate error. If there exist real numbers p ∈ R and b ∈ R − { 0 } such that the following

error equation holds 

e n +1 = b e n 
p + O (e p+1 

n ) , (3.4) 

then b or | b | is called the asymptotic error constant and p is called the order of convergence [42] . 

In this paper, we investigate the maximal convergence order of proposed methods (3.1) . We here establish a main theo-

rem describing the convergence analysis regarding proposed methods (3.1) and find out how to construct weight functions

Q f and K f for sixth-order convergence. It suffices to consider both weight functions Q f and K f up to the fifth-order terms in

e n due to the fact that O ( f (x n ) 
f ′ (x n ) 

) = O (e n ) . 

Applying the Taylor’s series expansion of f about α, we get the following relations: 

f (x n ) = 

f (m ) (α) 

m ! 
e n 

m 

[
1 + θ2 e n + θ3 e 

2 
n + θ4 e 

3 
n + θ5 e 

4 
n + θ6 e 

5 
n + θ7 e 

6 
n + O (e 7 n ) 

]
, (3.5) 

f ′ (x n ) = 

f (m ) (α) 

(m − 1)! 
e n 

m −1 
[ 

1 + 

m + 1 

m 

θ2 e n + 

m + 2 

m 

θ3 e 
2 
n + 

m + 3 

m 

θ4 e 
3 
n + 

m + 4 

m 

θ5 e 
4 
n + 

m + 5 

m 

θ6 e 
5 
n + O (e 6 n ) 

] 
, (3.6) 

where θk = 

m ! 
(m −1+ k )! 

f (m −1+ k ) (α) 

f (m ) (α) 
for k ∈ N − { 1 } . For convenience, we denote e n by e without subscript n whenever required

to do so. 

Dividing (3.5) by (3.6) , we have 

f (x n ) 

f ′ (x n ) 
= 

e 

m 

− θ2 e 
2 

m 

2 
+ 

Y 3 e 
3 

m 

3 
+ 

Y 4 e 
4 

m 

4 
+ 

Y 5 e 
5 

m 

5 
+ 

Y 6 e 
6 

m 

6 
+ O (e 7 ) , (3.7) 

where Y 3 = (1 + m ) θ2 
2 

− 2 mθ3 , Y 4 = −(1 + m ) 2 θ3 
2 

+ m (4 + 3 m ) θ2 θ3 − 3 m 

2 θ4 , Y 5 = (1 + m ) 3 θ4 
2 

− 2 m (1 + m )(3 + 2 m ) θ2 
2 
θ3 +

2 m 

2 (3 + 2 m ) θ2 θ4 + 2 m 

2 ((2 + m ) θ2 
3 − 2 mθ5 ) and Y 6 = −(1 + m ) 4 θ5 

2 
+ m (1 + m ) 2 (8 + 5 m ) θ3 

2 
θ3 − m 

2 (1 + m )(9 + 5 m ) θ2 
2 θ4 +

m 

2 θ2 (−(2 + m )(6 + 5 m ) θ2 
3 

+ m (8 + 5 m ) θ5 ) + m 

3 ((12 + 5 m ) θ3 θ4 − 5 mθ6 ) . 

Thus, from relation (3.7) , we obtain 

y n = α + 

θ2 e 
2 

m 

− Y 3 e 
3 

m 

2 
− Y 4 e 

4 

m 

3 
− Y 5 e 

5 

m 

4 
− Y 6 e 

6 

m 

5 
+ O (e 7 ) . (3.8) 

f (y n ) = 

f (m ) (α) 

m ! 

(
θ2 

m 

)m 

e 2 m 

{ 

1 − Y 3 
θ2 

e + 

(m − 1) Y 2 3 − 2 Y 4 θ2 + 2 θ4 
2 

2 mθ2 
2 

e 2 

− (m − 1)(m − 2) Y 3 3 + 6 Y 5 θ
2 
2 + 6 Y 3 θ2 (Y 4 − mY 4 + (m + 1) θ3 

2 ) 

6 m 

2 θ3 
2 

e 3 

+ 

1 

24 m 

3 θ4 
2 

[(m − 1)(m − 2)(m − 3)(m − 3) Y 4 3 + 24(m − 1) Y 3 Y 5 θ
2 
2 

+ 12 Y 2 3 θ2 (−(m − 1)(m − 2) Y 4 + m (m + 1) θ3 
2 ) 

+ 12 θ2 
2 ((m − 1) Y 2 4 − 2 Y 6 θ2 − 2(m + 1) Y 4 θ

3 
2 + 2 mθ4 

2 θ3 )] e 4 + O (e 5 ) 
} 

. (3.9) 

By Taylor’s expansion or multinomial expansion, we get an expression s in (3.2) as follows: 

s = 

θ2 

m 

e − Y 3 + θ2 
2 

m 

2 
e 2 + 

−2 Y 4 + θ2 (2 Y 3 + (m + 3) θ2 
2 − 2 mθ3 ) 

2 m 

3 
e 3 + 

W 4 

6 m 

4 
e 4 + 

W 5 

24 m 

5 
e 5 + O (e 6 ) , (3.10)

where W 4 = (2 m 

2 + 3 m + 7) θ4 
2 + 3 θ2 

2 ((m + 5) Y 3 − 2 m (m + 1) θ3 ) + 6(Y 5 − mY 3 θ3 ) + 6 θ2 (−Y 4 + m 

2 θ4 ) , and W 5 = (6 m 

3 +
11 m 

2 + 6 m + 25) θ5 
2 

+ 4 θ3 
2 
((2 m 

2 + 3 m + 13) Y 3 − 3 m (m + 1)(2 m + 1) θ3 ) + 24(−Y 6 + mY 4 θ3 ) + 24 m 

2 Y 3 θ4 + θ2 
2 
(−12(m + 5) Y 4 + 

24 m 

2 (m + 1) θ4 ) + θ2 [12(2 Y 2 + 2 Y 5 − 2 m (m + 1) Y 3 θ3 + m 

2 (m + 1) θ2 ) − 24 m 

3 θ5 ] . 
3 3 
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With the use of s in (3.10) , expanding Taylor series of Q f ( s ) about 0 up to fifth-order terms we find: 

Q f (s ) = A 0 + A 1 s + A 2 s 
2 + A 3 s 

3 + A 4 s 
4 + A 5 s 

5 + O (e 6 ) , (3.11)

where A j = 

Q 
( j) 
f 

(0) 

j! 
for 0 ≤ j ≤ 5. 

Hence by substituting (3.5) –(3.11) into w n in (3.1) with explicit use of Y j (3 ≤ j ≤ 6) from relation (3.7) , we find: 

w n = α + (1 − A 0 ) e + 

(A 0 − A 1 ) 

m 

θ2 e 
2 + 

2 m (A 0 − A 1 ) θ3 − [(m + 1) A 0 − (m + 3) A 1 + A 2 ] θ
2 
2 

m 

2 
e 3 

+ Z 4 e 
4 + Z 5 e 

5 + Z 6 e 
6 + O (e 7 ) , (3.12)

where Z i = Z i (θ2 , θ3 . . . , θ7 , A 0 , A 1 , . . . , A 3 ) for 4 ≤ i ≤ 6. By selecting A 0 = 1 , A 1 = 1 , A 2 = 2 , we have 

w n = α + 

(m + 9 − 2 A 3 ) θ
3 
2 − 2 mθ2 θ3 

2 m 

3 
e 4 + Z 5 e 

5 + Z 6 e 
6 + O (e 7 ) , (3.13)

Hence, we obtain f (w n ) as follows: 

f (w n ) = 

f (m ) (α) 

m ! 

(
θ2 

2 m 

3 

)m 

e 4 m 

[ 
((9 + m − 2 A 3 ) θ

2 
2 − 2 mθ3 ) 

m + 

2 m 

4 Z 5 ((9 + m − 2 A 3 ) θ
2 
2 − 2 mθ3 ) 

m −1 

θ2 

e 

+ 

2 m 

4 ((m − 1) m 

3 Z 2 5 + (9 + m − 2 A 3 ) Z 6 θ
3 
2 − 2 mZ 6 θ2 θ3 )((9 + m − 2 A 3 ) θ

2 
2 − 2 mθ3 ) 

m −2 

θ2 
2 

e 2 + O (e ) 3 
] 
. (3.14)

With the use of (3.9) and (3.14) , we get an expression v in (3.3) after Taylor’s expansion or multinomial expansion as

follows: 

v = 

θ2 ((9 + m − 2 A 3 ) θ2 
2 − 2 mθ3 ) e 

3 

2 m 

3 
+ 

(
Z 5 + 

−(9 + m − 2 A 3 ) θ4 
2 + 2 mθ2 

2 θ3 

2 m 

4 

)
e 4 

+ 

4 m 

4 (mZ 6 − Z 5 θ2 ) + (9 − 2 A 3 ) θ5 
2 − 2 m (A 3 − 5) θ3 

2 (θ
2 
2 − 2 θ3 ) + m 

2 θ2 (θ2 
2 − 2 θ3 ) 

2 

4 m 

5 
e 5 + O (e 6 ) . (3.15)

Using s in (3.10) and v in (3.15) and expanding Taylor series of K f (s, v ) about (0, 0) up to fifth-order terms we find: 

K f (s, v ) = K 00 + K 10 s + K 20 s 
2 + K 30 s 

3 + K 40 s 
4 + K 50 s 

5 + (K 01 + K 11 s + K 21 s 
2 ) v + O (e 6 ) , (3.16)

where K i j = 

1 
i ! j! 

∂ i + j 
∂ s i ∂ v j K f (s, v ) | (s =0 , v =0) for 0 ≤ i < 5 and 0 < j ≤ 1. 

Hence by substituting (3.5) –(3.16) into the proposed method (3.1) with explicit uses of Y j (3 ≤ j ≤ 6), Z 5 , Z 6 , we obtain

the error equation as 

x n +1 − α = x n − α − K f (s, v ) · f (x n ) 

f ′ (x n ) 
= L 1 e + L 2 e 

2 + L 3 e 
3 + L 4 e 

4 + L 5 e 
5 + L 6 e 

6 + O (e 7 ) , (3.17)

where L 1 = (1 − K 00 ) and the coefficients L i (2 ≤ i ≤ 6) generally depend on m , the parameters Q j ( j = 0 , 1 , · · · , 5) and θi (i =
1 , 2 , · · · , ) . Solving L 1 = 0 for K 00 , we get 

K 00 = 1 . (3.18)

Substituting K 00 = 1 into L 2 = 0 and simplifying, we obtain 

(1 −K 10 ) 
m 

θ2 = 0 , from which 

K 10 = 1 (3.19)

follows independently of θ2 . Substituting K 00 = 1 , K 10 = 1 into L 3 = 0 and simplifying yields: 

− (K 20 − 2) 

m 

2 
θ2 

2 = 0 , (3.20)

from which we find 

K 20 = 2 . (3.21)

Substituting K 00 = 1 , K 10 = 1 , K 20 = 2 into L 4 = 0 and simplifying yields: 

L 4 = 

9 − 2 K 30 + m − K 01 (9 + m − 2 A 3 ) 

2 m 

3 
θ3 

2 + 

(K 01 − 1) 

m 

2 
θ2 θ3 = 0 , (3.22)

from which 

K 01 = 1 , K 30 = A 3 (3.23)

follows independently of θ2 and θ3 . 

Substituting K 00 = 1 , K 10 = 1 , K 20 = 2 , K 01 = 1 , K 30 = A 3 into L 5 = 0 and simplifying yields: 

L 5 = θ2 
2 

(−K 11 (9 + m − 2 A 3 ) + 2(9 − K 40 + m − 2 A 3 + A 4 )) θ
2 
2 + 2(K 11 − 2) mθ3 

2 m 

4 
= 0 , (3.24)
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from which we obtain independently of θ2 and θ3 : 

K 40 = A 4 , K 11 = 2 . (3.25) 

Substituting K 00 = 1 , K 10 = 1 , K 20 = 2 , K 01 = 1 , K 30 = A 3 , K 40 = A 4 , K 11 = 2 into L 6 , we obtain 

L 6 = 

θ2 

4 m 

5 

[
φθ4 

2 + 4 m (K 21 − 10 − m + A 3 ) θ
2 
2 θ3 + 4 m 

2 θ2 
3 

]
, (3.26)

where 

φ = 99 − 4 K 50 + 20 m + m 

2 − 2 K 21 (9 + m − 2 A 3 ) − 2(11 + m ) A 3 + 4 A 5 . (3.27)

The consequence of the analysis carried out thus far immediately leads us to the following theorem. 

Theorem 3.1. Let m ∈ N be given. Let f : C → C have a zero α of multiplicity m and be analytic in a small neighborhood of α. Let

k ∈ N be given. Let θ j = 

m ! 
(m −1+ j)! 

· f (m −1+ j) (α) 

f (m ) (α) 
for j ∈ N − { 1 } . Let x 0 be an initial guess chosen in a sufficiently small neighborhood

of α. Let A j (0 ≤ j ≤ 5) and K ij (0 ≤ i ≤ 5, 0 ≤ j ≤ 1) be respectively defined in (3.11) and (3.16) . Suppose that A 0 = A 1 =
1 , A 2 = 2 , | A 3 | < ∞ , | A 4 | < ∞ , | A 5 | < ∞ , and K 00 = K 10 = K 01 = 1 , K 11 = K 20 = 2 , K 30 = A 3 , K 40 = A 4 , | K 50 | < ∞ , | K 21 | < ∞ hold.

Then iterative methods (3.1) are of sixth-order and possess the following error equation: 

e n +1 = 

θ2 

4 m 

5 

[
φθ4 

2 + 4 m (K 21 − 10 − m + A 3 ) θ
2 
2 θ3 + 4 m 

2 θ2 
3 

]
e 6 n + O (e 7 n ) , (3.28)

where φ is given in (3.27) . 

4. Special cases of weight functions 

As a result of Theorem 3.1 , Taylor-polynomial forms of Q f ( s ) and K f (s, v ) are easily given by {
Q f (s ) = A 0 + A 1 s + A 2 s 

2 + A 3 s 
3 + A 4 s 

4 + A 5 s 
5 , 

K f (s, v ) = K 00 + K 10 s + K 20 s 
2 + K 30 s 

3 + K 40 s 
4 + K 50 s 

5 + (K 01 + K 11 s + K 21 s 
2 ) v , (4.1) 

where A 0 = A 1 = 1 , A 2 = 2 , A 3 , A 4 , A 5 (maybe free) and K 00 = K 01 = K 10 = 1 , K 20 = K 11 = 2 , K 30 = A 3 , K 40 = A 4 . 

Although a variety forms of weight functions Q f ( s ) and K f (s, v ) are available, we will limit ourselves to considering several

forms of low-order polynomials or simple rational functions. 

Case 1: Polynomial weight functions: A 0 = A 1 = 1 , A 2 = 2 , A 3 = A 4 = A 5 = 0 and K 00 = K 10 = K 01 = 1 , K 20 = K 11 = 2 , K 30 =
A 3 = 0 , K 40 = A 4 = 0 , K 50 , K 21 = free . {

Q f (s ) = 1 + s + 2 s 2 , 

K f (s, v ) = 1 + s + 2 s 2 + K 50 s 
5 + (1 + 2 s + K 21 s 

2 ) v , (4.2) 

Case 1A: When K 50 = K 21 = 0 {
Q f (s ) = 1 + s + 2 s 2 , 

K f (s, v ) = 1 + s + 2 s 2 + (1 + 2 s ) v , (4.3) 

Case 1B: When K 50 = 0 {
Q f (s ) = 1 + s + 2 s 2 , 

K f (s, v ) = 1 + s + 2 s 2 + (1 + 2 s + K 21 s 
2 ) v , (4.4) 

Case 1C: When K 21 = 0 {
Q f (s ) = 1 + s + 2 s 2 , 

K f (s, v ) = 1 + s + 2 s 2 + K 50 s 
5 + (1 + 2 s ) v , (4.5) 

Case 2: Rational weight functions ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

1 + (b − 1) s + bs 2 

1 + (b − 2) s 
, b ∈ R − { 2 } , 

K f (s, v ) = 

q 0 + q 1 s + q 2 s 
2 + (q 3 + q 4 s ) v 

1 + r 1 s + r 2 s 2 + (r 3 + r 4 s ) v 
, 

(4.6) 

with A 3 = 2(2 − b) , A 4 = 2(2 − b) 2 , A 5 = 2(2 − b) 3 and q 0 = 1 , q 1 = −1 + b, q 2 = b, q 3 = 1 − b + q 4 − r 4 , r 1 = −2 + b, r 2 =
0 , r 3 = −b + q 4 − r 4 . If b = 2 , then Q f becomes a polynomial being equivalent to Case 1 . One should note that four parame-

ters q 3 , q 4 , r 3 , r 4 define a linear system of rank 2, if b is given. Hence, any two of them can be solved in terms of remaining

two free parameters for a given b . The following sub-cases are of interest with a choice of b = 1 , q = 0 , q = 1 and r = −1 .
1 2 1 
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Case 2A: b = 1 , r 3 = −1 , q 3 = 0 , r 4 = q 4 = 0 . ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

1 + s 2 

1 − s 
, 

K f (s, v ) = 

1 + s 2 

1 − s − v 
. 

(4.7)

Case 2B: b = 1 , r 3 = −2 , q 3 = −1 , r 4 = 1 , q 4 = 0 . ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

1 + s 2 

1 − s 
, 

K f (s, v ) = 

1 + s 2 − v 
1 − s + (s − 2) v 

. 

(4.8)

Case 2C: b = 1 , r 3 = −1 , q 3 = 0 , r 4 = 1 , q 4 = 1 . ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

1 + s 2 

1 − s 
, 

K f (s, v ) = 

1 + s 2 + s v 
1 − s + (s − 1) v 

. 

(4.9)

Case 3: Mixture of rational and polynomial weight functions ⎧ ⎨ 

⎩ 

Q f (s ) = 

1 + (b − 1) s + bs 2 

1 + (b − 2) s 
, b ∈ R − { 2 } , 

K f (s, v ) = 1 + s + 2 s 2 + 2(2 − b) s 3 + 2(2 − b) 2 s 4 + K 50 s 
5 + (1 + 2 s + K 21 s 

2 ) v . 
(4.10)

Case 3A: b = 1 , K 50 = K 21 = 0 . ⎧ ⎨ 

⎩ 

Q f (s ) = 

1 + s 2 

1 − s 
, 

K f (s, v ) = 1 + s + 2 s 2 + 2 s 3 + 2 s 4 + (2 s + 1) v , 
(4.11)

Case 3B: b = 1 , K 50 = 0 , K 21 = 1 . ⎧ ⎨ 

⎩ 

Q f (s ) = 

1 + s 2 

1 − s 
, 

K f (s, v ) = 1 + s + 2 s 2 + 2 s 3 + 2 s 4 + (s + 1) 2 v , 
(4.12)

Case 4: Mixture of polynomial and rational weight functions ⎧ ⎨ 

⎩ 

Q f (s ) = 1 + s + 2 s 2 , 

K f (s, v ) = 

1 + s + 2 s 2 + (q 3 + q 4 s ) v 
1 + (r 3 + r 4 s ) v 

, 
(4.13)

where q 3 = 1 + r 3 , r 4 = −2 + q 4 − r 3 . One should note that four parameters q 3 , q 4 , r 3 , r 4 define a linear system of rank 2.

Hence, any two of them can be solved in terms of remaining two free parameters. The following sub-cases are of interest. 

Case 4A: r 4 = 0 , q 4 = 0 . 

K f (s, v ) = 

1 + s + 2 s 2 − v 
1 − 2 v 

, (4.14)

Case 4B: r 4 = 0 , q 3 = 0 . 

K f (s, v ) = 

1 + s + 2 s 2 + s v 
1 − v 

, (4.15)

Case 4C: q 3 = 0 , q 4 = 0 . 

K f (s, v ) = 

1 + s + 2 s 2 

1 − (1 + s ) v 
, (4.16)

Case 4D: q 4 = 0 , r 3 = 0 . 

K f (s, v ) = 

1 + s + 2 s 2 + v 
1 − 2 s v 

, (4.17)
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Case 5: Low-order weight functions for purely imaginary extraneous fixed points 

⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

1 + (b − c − 1) s + bs 2 

1 + (b − c − 2) s + cs 2 
, b, c ∈ R , 

K f (s, v ) = 

1 + (b − c − 1) s + bs 2 

1 + (b − c − 2) s + cs 2 + [(1 − b + c) s − 1] v 
, 

(4.18) 

where b, c ∈ R are free parameters excluding b = 2 , c = 0 . Both weight functions Q f and K f clearly satisfy the required con-

ditions for their coefficients stated in (4.1) . The detailed analysis for a possible combination of ( b , c )-parameters leading to

purely imaginary extraneous fixed points is described in the latter part of Section 5 . The nature of F 1 ( ζ ) in (5.5) and F 2 ( ζ )

in (5.6) enables us to consider two cases 5X and 5Y , respectively. The following sub-cases are our interest. 

Case 5X: Selection of parameters ( b , c ) leading to the negative roots of F 1 ( ζ ) given by (5.5) . 

Case 5XA: b = 0 , c = 

4(2+ b) 
3 = 

8 
3 . ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

3 − 11 s 

( 2 s − 3)(4 s − 1) 
, 

K f (s, v ) = 

3 − 11 s 

3 − 14 s + 8 s 2 − (3 − 11 s ) v 
. 

(4.19) 

Case 5XB: b = 1 , c = 

4(2+ b) 
3 = 4 . 

⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

1 − 4 s + s 2 

( s − 1)(4 s − 1) 
, 

K f (s, v ) = 

1 − 4 s + s 2 

( 4 s − 1)(s + v − 1) 
. 

(4.20) 

Case 5XC: b = 2 , c = 

4(2+ b) 
3 = 

16 
3 . ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

3 − 13 s + 6 s 2 

( 4 s − 3)(4 s − 1) 
, 

K f (s, v ) = 

3 − 13 s + 6 s 2 

3 − 16 s + 16 s 2 − (3 − 13 s ) v 
. 

(4.21) 

Case 5XD: b = 4 , c = 

4(2+ b) 
3 = 8 . 

⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

s − 1 

2 s − 1 

, 

K f (s, v ) = 

(s − 1)(4 s − 1) 

1 − 6 s + 8 s 2 − (1 − 5 s ) v 
. 

(4.22) 

Case 5XE: b = 

1 
2 , c = 

1 
2 . ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

2 − 2 s + s 2 

2 − 4 s + s 2 
, 

K f (s, v ) = 

2 − 2 s + s 2 

2 − 4 s + s 2 − 2(1 − s ) v 
. 

(4.23) 

Case 5XF: b = 

6 
5 , c = 3 . 

⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

5 − 14 s + 6 s 2 

5 − 19 s + 15 s 2 
, 

K f (s, v ) = 

5 − 14 s + 6 s 2 

5 − 19 s + 15 s 2 − (5 − 14 s ) v 
. 

(4.24) 



Y.H. Geum et al. / Applied Mathematics and Computation 283 (2016) 120–140 127 

 

 

 

 

 

 

 

 

 

 

Case 5XG: b = 1 , c = 2 . ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

s − 1 

2 s − 1 

, 

K f (s, v ) = 

(s − 1) 2 

( 2 s − 1)(s − 1 + v ) 
. 

(4.25)

Case 5XH: b = 5 , c = 9 . ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

1 − 5 s + 5 s 2 

( 3 s − 1) 2 
, 

K f (s, v ) = 

1 − 5 s + 5 s 2 

1 − 6 s + 9 s 2 − (1 − 5 s ) v 
. 

(4.26)

Note that sub-cases 5XA, 5XB, 5XC, 5XD and 5XE, 5XF, 5XG, 5XH yield uniparametric and biparametric negative roots of

F 1 ( ζ ), respectively. 

Case 5Y: Selection of parameters ( b , c ) leading to the negative roots of F 2 ( ζ ) given by (5.6) . 

Case 5YA : b = 12 , c = 

(12+5 b) 
4 = 18 . ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

(3 s − 1)(4 s − 1) 

1 − 8 s + 18 s 2 
, 

K f (s, v ) = 

(3 s − 1)(4 s − 1) 

1 − 8 s + 18 s 2 − (1 − 7 s ) v 
. 

(4.27)

Case 5YB: b = 6 , c = 

(12+5 b) 
4 = 

21 
2 . ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

(3 s − 2)(4 s − 1) 

( 3 s − 1)(7 s − 2) 
, 

K f (s, v ) = 

(3 s − 2)(4 s − 1) 

2 − 13 s + 21 s 2 − (2 − 11 s ) v 
. 

(4.28)

Case 5YC: b = 8 , c = 

(12+5 b) 
4 = 13 . ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

(2 s − 1)(4 s − 1) 

1 − 7 s + 13 s 2 
, 

K f (s, v ) = 

(2 s − 1)(4 s − 1) 

1 − 7 s + 13 s 2 − (1 − 6 s ) v 
. 

(4.29)

Case 5YD: b = 1 , c = 

5 
2 . ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

(s − 2)(2 s − 1) 

( s − 1)(5 s − 2) 
, 

K f (s, v ) = 

(s − 2)(2 s − 1) 

( 5 s − 2)(s + v − 1) 
. 

(4.30)

Case 5YE: b = 4 , c = 7 . ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

(2 s − 1) 2 

1 − 5 s + 7 s 2 
, 

K f (s, v ) = 

(2 s − 1) 2 

1 − 5 s + 7 s 2 + (4 s − 1) v 
. 

(4.31)

Case 5YF: b = 

1 
6 , c = 0 . ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q f (s ) = 

(s − 3)(s − 2) 

6 − 11 s 
, 

K f (s, v ) = 

(s − 3)(s − 2) 

6 − 11 s + (5 s − 6) v 
. 

(4.32)

Note that sub-cases 5YA, 5YB, 5YC and 5YD, 5YE, 5YF yield uniparametric and biparametric negative roots of F 2 ( ζ ),

respectively. 

For selected cases 5XA , 5XH, 5YA , 5YF , Table 2 lists the corresponding purely imaginary extraneous fixed points. 
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5. Extraneous fixed points 

In this section, we will investigate the extraneous fixed points [22,43] of the iterative map (3.1) and relevant dynamics

associated with their basins of attraction. The dynamics underlying basins of attraction was initiated by Stewart [41] and

followed by works of Amat et al. [2–5] , Scott et al. [38] , Chun et al. [10] , Chun-Neta [11] , Chicharro et al. [8] , Cordero et al.

[15] , Neta et al. [28,33] , Argyros-Magreñan [7] , Magreñan [27] , Magreñan et al. [26] , Andreu et al. [6] and Chun et al. [12] .

The only papers comparing basins of attraction for methods to obtain multiple roots are due to Neta et al. [29] , Neta-Chun

[30,34] , Chun-Neta [13,14] and Geum-Kim-Neta [19] . 

A zero α of a nonlinear equation f (x ) = 0 can be located by a fixed point ξ of iterative methods of the form 

x n +1 = R f (x n ) , n = 0 , 1 , . . . , (5.1)

where R f is the iteration function under consideration. In general, R f might possess other fixed points ξ 	 = α. Such fixed

points are called the extraneous fixed points of the iteration function R f . Extraneous fixed points may result in attractive,

indifferent or repulsive cycles as well as other periodic orbits influencing the dynamics behind the basins of attraction.

Exploration of such dynamics is clearly another goal of our current analysis, which leads us to a more specific form of

iterative maps (5.1) as follows: 

x n +1 = R f (x n ) = x n − f (x n ) 

f ′ (x n ) 
H f (x n ) , (5.2) 

where H f (x n ) = m · K f (s, v ) can be regarded as a weight function of the classical Newton’s method. It is obvious that α is a

fixed point of R f . The points ξ 	 = α for which H f (ξ ) = 0 are extraneous fixed points of R f . 

For an analysis of the relevant dynamics, we limit ourselves to considering only combinations of weight functions Q f ( s )

and K f (s, v ) in the form of quadratic rational functions as shown in Case 5 of Section 4 . Other types of combinations have

empirically shown poor convergence in the existing studies by [13,19,29,34] . A special attention will be paid to some selected

cases 1A , 2A , 2B, 2C, 3A , 4A as well as all 5X and 5Y in order to pursue further properties of extraneous fixed points and

relevant dynamics associated with their basins of attraction. The existence of such extraneous fixed points would affect the

global iteration dynamics, which was demonstrated for simple zeros via König functions and Schröder functions applied to

a family of functions { f k (x ) = x k − 1 , k ≥ 2 } by Vrscay and Gilbert [43] . Especially the presence of attractive cycles induced

by the extraneous fixed points of R f may alter the basins of attraction due to the trapped sequence { x n }. Even in the case

of repulsive or indifferent fixed points, an initial value x 0 chosen near a desired root may converge to another unwanted

remote root. Indeed, these aspects of the Schröder functions [43] were observed in an application to the same family of

functions { f k (x ) = x k − 1 , k ≥ 2 } . 
For simplified analysis of such dynamics related to the extraneous fixed points underlying the basins of attraction for

iterative maps (5.2) , we first choose a quadratic polynomial from the family of functions { f k (x ) = x k − 1 , k ≥ 2 } employed by

Vrscay and Gilbert [43] . By closely following the works of Chun et al. [9,13] and Neta et al. [28,33,34] , we then construct

H f (x n ) = m · K f (s, v ) in (5.2) . We now take the multiplicity m of the zeros α into consideration and apply a polynomial

f (z) = (z 2 − 1) m to H f ( x n ) and construct H ( z ), with a change of a variable ζ = z 2 , in the form of 

H(z) = A (ζ ) · F (ζ ) , (5.3) 

where A (ζ ) may represent a term of a repeated zero root ζ of integer multiplicity with a constant factor which may be

dependent on m ; F ( ζ ) may indeed contain the extraneous fixed points H . Thus the extraneous fixed points ξ of H can be

found from the roots ζ 	 = 0 (other wise s in (3.2) is not defined) of F ( ζ ) via relation ξ = ζ
1 
2 . Note that F ( ζ ) contains ra-

tional terms with fractional powers. It must be emphasized that any general algebraic ways of zero-finding of F ( ζ ) seem to

be infeasible. By a suitable change of variables for the terms with fractional powers as well as through a finite number of

algebraic operations, F ( ζ ) can be transformed into a multivariate rational function, which then can be solved with known

polynomial root-finding methods. In fact, F ( ζ ) for the selected cases 1A, 2A, 2B, 2C, 3A, 4A as well as all 5X and 5Y fortu-

nately form rational equations in ζ , whose numbers of roots ζ 	 = 0 are respectively given by 6, 4, 5, 6, 6, 5, 3, 4, 4, 3, 6, 6,

6, 6, 5, 5, 5, 5, 6, 4, after a close inspection of their numerators. From Remark 5.1 , we find that the desired extraneous fixed

points are determined regardlessly of m . Functions A (ζ ) , F ( ζ ) and the number of ζ are explicitly displayed for the selected

cases 1A, 2A, 2B, 2C, 3A, 4A as well as all 5X and 5Y in Table 2 . 

Remark 5.1. With Q f (s ) = 

1+(b−c−1) s + bs 2 

1+(b−c−2) s + cs 2 
for f (z) = (z 2 − 1) m , we find that s and v are independent of m below: s =[

f (y ) 
f (x ) 

] 1 
m = 

1 
4 (1 − 1 

z 2 
) and v = 

[
f (w ) 
f (x ) 

] 1 
m = 

(z 2 −1) 3 [ b 2 +2(−5 b 2 −2 c 2 + b(4+6 c)) z 2 +(4+3 b−2 c) 2 z 4 ] 

4 z 2 [ c+2(4 −2 b+ c) z 2 +(8+4 b−3 c) z 4 ] 2 
, where y = z − m · f (z) 

f ′ (z) 
and w = y − m ·

Q f (s ) f (z) 
f ′ (z) 

. As a result, K f (s, v ) in (4.18) is independent of m . Hence, the roots of H(z) = m · K f (s, v ) = 0 , i.e., the roots of

K f (s, v ) = 0 other than zeros of f are the desired extraneous fixed points, being independent of m . 

It is interesting to find a combination of Q f and K f leading to purely imaginary extraneous fixed points, whose investiga-

tion was done by Chun et al. [9] . We first describe the following lemma on the negative real roots of a quadratic equation

for later use. 
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Lemma 5.1. Let q (x ) = ax 2 + bx + c be a quadratic equation with real coefficients a 	 = 0, b , c satisfying b 2 − 4 ac ≥ 0 . Let r 1 and

r 2 be the two roots of q (x ) = 0 . Then both roots r 1 < 0 and r 2 < 0 hold if and only if all three coefficients a , b , c have the same

sign. 

Proof. The hypothesis b 2 − 4 ac ≥ 0 guarantees that all the roots of q (x ) = 0 are real. One should note that r 1 < 0 and r 2 <

0 hold if and only if − b 
a = r 1 + r 2 < 0 and 

c 
a = r 1 r 2 > 0 . We easily get ab > 0 and ac > 0 from relations − b 

a < 0 and 

c 
a > 0 .

Hence, r 1 < 0 and r 2 < 0 if and only if all three coefficients a , b , c have the same sign. �

We now consider Case 5 described by (4.18) to discuss purely imaginary extraneous fixed points. After applying f (z) =
(z 2 − 1) m to compute s and v , we get K f with ζ = z 1 / 2 below: 

K f (s, v ) = 

F 1 (ζ ) 2 · F 2 (ζ ) 

c 3 + b 2 (1 + c − b) + 

∑ 6 
j=1 ρ j ζ j 

, (5.4)

where 

F 1 (ζ ) = c + 2(4 − 2 b + c) ζ + (8 + 4 b − 3 c) ζ 2 , (5.5)

F 2 (ζ ) = b − 2(−2 + 3 b − 2 c) ζ + (12 + 5 b − 4 c) ζ 2 , (5.6)

and ρ j (1 ≤ j ≤ 6) is a bivariate polynomial in b and c . 

As a result, we can obtain the extraneous fixed points ξ = ζ 1 / 2 by finding the zeros ζ of F 1 or F 2 . The corresponding

repeated real zeros ζ of F 1 are easily found to be: 

ζ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

2 b − c − 4 ± 2 

√ 

b 2 + c 2 − 2 b(2 + c) + 4 

4 b − 3 c + 8 

, if 4 b − 3 c + 8 	 = 0 and b 2 + c 2 − 2 b(2 + c) + 4 ≥ 0 , 

b + 2 

b − 10 

, if 4 b − 3 c + 8 = 0 and b 	 = 10 . 

(5.7)

Similarly, the corresponding real zeros ζ of F 2 are found to be: 

ζ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

3 b − 2 c − 2 ± 2 

√ 

b 2 + (1 + c) 2 − 2 b(3 + c) 

5 b − 4 c + 12 

, if 5 b − 4 c + 12 	 = 0 and b 2 + (1 + c) 2 − 2 b(3 + c) ≥ 0 , 

b 

b − 16 

, if 5 b − 4 c + 12 = 0 and b 	 = 16 . 

(5.8)

One should be aware that the one-parametric second solutions in (5.7) and (5.8) are found from the degenerated linear

cases of F 1 ( ζ ) and F 2 ( ζ ) with vanishing coefficients in their quadratic-order terms. We are now ready to begin an analysis

leading to purely imaginary extraneous fixed points from the roots of F 1 and F 2 . We start with F 1 for its one-parametric

solution followed by its two-parametric solution. In view of relation ξ = ζ 1 / 2 between extraneous fixed points ξ and the

zero ζ , values of one-parametric zeros ζ should be negative for purely imaginary extraneous fixed points ξ . Hence 

ζ = 

b + 2 

b − 10 

< 0 , (5.9)

from which the value of b must satisfy the inequality 

−2 < b < 10 , (5.10)

and the corresponding purely imaginary extraneous fixed points ξ are given by: 

ξ = 

(
b + 2 

b − 10 

)1 / 2 

for − 2 < b < 10 . (5.11)

Typical values of b ∈ {0, 1, 2, 4} with c = 

4(2+ b) 
3 are considered in sub-cases 5XA, 5XB, 5XC, 5XD . 

For all values of two-parametric zeros ζ of F 1 to be negative, all the coefficients should have the same sign according

to Lemma 5.1 . After a lengthy algebra to have the coefficients of the same sign with the help of Mathematica symbolic

capability, we find that ( b , c ) satisfies the relation for desired negative values of ζ : ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

0 < c < 

4(2 + b) 

3 

, if − 2 < b ≤ 1 , 

0 < c ≤ −2 

√ 

b − 1 + b or 2 

√ 

b − 1 + b ≤ c < 

4(2 + b) 

3 

, if 1 < b ≤ 2 , 

2 

√ 

b − 1 + b ≤ c < 

4(2 + b) 

3 

, if 2 < b < 10 , 

(5.12)
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Fig. 1. Regions of selectable ( b , c )-parameters for negative roots of F 1 ( ζ ) and F 2 ( ζ ), respectively from top to bottom. 

 

 

 

 

 

 

 

 

 

 

 

 

and obtain the desired purely imaginary extraneous fixed points ξ given by: 

ξ = 

( 

2 b − c − 4 ± 2 

√ 

b 2 + c 2 − 2 b(2 + c) + 4 

4 b − 3 c + 8 

) 1 / 2 

. (5.13) 

Typical values of (b, c) ∈ { ( 1 2 , 
1 
2 ) , ( 

6 
5 , 3) , (1 , 2) , (5 , 9) } are considered in sub-cases 5XE, 5XF, 5XG, 5XH . 

Similar treatment for F 2 leads us to obtaining purely imaginary extraneous fixed points ξ given by: 

ξ = 

(
b 

b − 16 

)1 / 2 

for 0 < b < 16 . (5.14) 

as well as 

ξ = 

( 

3 b − 2 c − 2 ± 2 

√ 

b 2 + (1 + c) 2 − 2 b(3 + c) 

5 b − 4 c + 12 

) 1 / 2 

, (5.15) 

for ( b , c ) satisfying the relation below: 

−1 + 2 

√ 

b + b ≤ c < 

1 
4 
(12 + 5 b) , for 0 < b < 16 . (5.16) 

Typical values of b ∈ {4, 6, 8} and c = 

12+5 b 
4 are considered in sub-cases 5YA, 5YB, 5YC as well as (b, c) ∈ { (1 , 5 2 ) ,

(4 , 7) , ( 1 6 , 0) } in sub-cases 5YD, 5YE, 5YF . Indeed, Fig. 1 illustrates appropriate shaded ( b , c )-parameter regions for a bi-

parametric family of negative roots of F 1 and F 2 . Consequently, combinations of parameters ( b , c ) can be selected from these

shaded regions for purely imaginary extraneous fixed points, and some of them are shown in sub-cases of Case 5 , which

give the desired purely imaginary extraneous fixed points listed in Table 1 . 

Our next goal is to extensively investigate the complex dynamics of the iterative map R p of the form 

z n +1 = R p (z n ) = z n − p(z n ) 

p ′ (z n ) 
H p (z n ) , (5.17) 

in connection with the basins of attraction for a variety of polynomials p ( z n ) and a weight function H p ( z n ). Indeed, R p ( z )

represents the classical Newton’s method with weight function H p ( z ) and may possess its fixed points as zeros of p ( z ) or

extraneous fixed points associated with H p ( z ). As a result, basins of attraction for the fixed points or the extraneous fixed

points as well as their attracting periodic orbits would reflect complex dynamics whose illustrative description will be made

for various polynomials in the latter part of Section 6 . 

We now continue to describe the dynamical behavior of (5.17) when p(z) = (z 2 − 1) m with selected values of m ∈ {2, 3,

4, 5}. Table 2 lists corresponding extraneous fixed points ξ of H for any value of m . By direct computation of multipliers

R ′ p (ξ ) , we find that the parabolic fixed points are given by ξ = ζ 1 / 2 satisfying repeated roots arising from cases 2A, 5XA,

5XH, 5YA, 5YF , which are highlighted in bold face in Table 2 . Attractive extraneous fixed points are indicated by framed
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Table 1 

A (ζ ) , F (ζ ) and number of nonzero roots ζ for the selected cases. 

Case A (ζ ) F ( ζ ) No. of ζ

1A m 
512 

1 −12 ζ+73 ζ 2 −232 ζ 3 +427 ζ 4 −524 ζ 5 +779 ζ 6 

ζ 6 6 

2A 4 m ζ (1+3 ζ ) 2 (1 −2 ζ+17 ζ 2 ) 
1 −5 ζ+74 ζ 2 −10 ζ 3 +581 ζ 4 +383 ζ 5 4 

2B 4 m ζ 1 −ζ+74 ζ 2 −98 ζ 3 +485 ζ 4 +563 ζ 5 

1+2 ζ+23 ζ 2 +316 ζ 3 −353 ζ 4 +2722 ζ 5 +1385 ζ 6 5 

2C m 

1 −6 ζ+79 ζ 2 −148 ζ 3 +527 ζ 4 +1146 ζ 5 +2497 ζ 6 

1 −2 ζ+43 ζ 2 +84 ζ 3 +263 ζ 4 +2126 ζ 5 +1581 ζ 6 6 

3A m 
64 

1 −5 ζ+34 ζ 2 −138 ζ 3 +309 ζ 4 −65 ζ 5 +888 ζ 6 

ζ 4 (1+3 ζ ) 2 
6 

4A m 
2 

1 −9 ζ+46 ζ 2 −62 ζ 3 −47 ζ 4 +327 ζ 5 

1 −9 ζ+46 ζ 2 −94 ζ 3 +81 ζ 4 +103 ζ 5 5 

5XA -16 ζ (11+ ζ )(1+5 ζ ) 2 

−32 −304 ζ−2923 ζ 2 −3488 ζ 3 −158 ζ 4 −8 ζ 5 + ζ 6 3 

5XB -4 (1+3 ζ ) 2 (1+14 ζ+ ζ 2 ) 
−17 −123 ζ−490 ζ 2 −374 ζ 3 −21 ζ 4 + ζ 5 4 

5XC 128 (1+2 ζ ) 2 (3+20 ζ+ ζ 2 ) 
1141+5498 ζ+13559 ζ 2 +7084 ζ 3 +403 ζ 4 −38 ζ 5 + ζ 6 4 

5XD 16 (1+ ζ ) 2 (1+3 ζ ) 
37+80 ζ+114 ζ 2 +24 ζ 3 + ζ 4 3 

5XE 1 (1+6 ζ+25 ζ 2 )(1+14 ζ+17 ζ 2 ) 2 

(3+10 ζ+19 ζ 2 )(1+20 ζ+190 ζ 2 +580 ζ 3 +233 ζ 4 ) 
6 

5XF 2 (3+22 ζ+15 ζ 2 )(15+46 ζ+19 ζ 2 ) 2 

(3+ ζ )(1293+9767 ζ+32626 ζ 2 +47550 ζ 3 +30289 ζ 4 +6475 ζ 5 ) 
6 

5XG 1 (7+18 ζ+7 ζ 2 ) 2 (3+18 ζ+11 ζ 2 ) 
397+2586 ζ+7771 ζ 2 +11148 ζ 3 +7923 ζ 4 +2618 ζ 5 +325 ζ 6 6 

5XH 

1 
2 

(3+ ζ ) 4 (5+10 ζ+ ζ 2 ) 
427+544 ζ+787 ζ 2 +216 ζ 3 +65 ζ 4 +8 ζ 5 + ζ 6 6 

5YA 2 (3+ ζ )(9 −2 ζ+ ζ 2 ) 2 

855 −960 ζ+1049 ζ 2 −632 ζ 3 +249 ζ 4 −56 ζ 5 +7 ζ 6 5 

5YB 4 (3+ ζ ) 2 (7+ ζ ) 2 (3+5 ζ ) 
10845+8178 ζ+13283 ζ 2 −260 ζ 3 +723 ζ 4 −14 ζ 5 +13 ζ 6 5 

5YC 8 (1+ ζ )(13+2 ζ+ ζ 2 ) 2 

2581 −290 ζ+2303 ζ 2 −780 ζ 3 +323 ζ 4 −50 ζ 5 +9 ζ 6 5 

5YD 2 (1+ ζ )(1+3 ζ ) 2 (5+3 ζ )(1+7 ζ ) 
29+255 ζ+946 ζ 2 +1550 ζ 3 +1089 ζ 4 +227 ζ 5 5 

5YE 4 (1+ ζ ) 2 (7+6 ζ+3 ζ 2 ) 2 

407+738 ζ+1261 ζ 2 +1004 ζ 3 +513 ζ 4 +146 ζ 5 +27 ζ 6 6 

5YF 16 ζ 2 (1+7 ζ )(1+11 ζ )(11+13 ζ ) 2 

5+194 ζ+3755 ζ 2 +86556 ζ 3 +273355 ζ 4 +394114 ζ 5 +126757 ζ 6 4 

Table 2 

Extraneous fixed points ξ = ζ 1 / 2 for selected cases for any m ≥ 1. 

Case ξ No. of ξ

1A ± 0.526337 ± 0.570728 i , ±0.523321 ± 0.138562 i , ±0.40816 ± 0.190345 i 12 

2A ± 0.57735 i , ±0.57735 i , ±0.388175 ± 0.303078 i 8 

2B ± 1.05974 i , ±0.241527 ± 0.250925 i , ±0.481292 ± 0.310196 i 10 

2C ± 0.3314 4 4 ± 0.712687 i , ±0.281664 ± 0.219642 i , ±0.442388 ± 0.24126 i 12 

3A ± 0.47636 ± 0.639187 i , ±0.307256 ± 0.320966 i , ±0.497158 ± 0.142524 i 12 

4A ± 0.795894 i , ±0.384237 ± 0.186681 i , ±0.572952 ± 0.22907 i 10 

5XA ± 3.31662 i , ±0.447214 i , ±0.447214 i 6 

5XB ± 3.73205 i , ±0.57735 i , ±0.57735 i , ±0.267949 i 8 

5XC ± 4.45521 i , ±0 . 707107 i,±0 . 707107 i,±0 . 38877 i 8 

5XD ± 1.0 i , ±1.0 i , ±0.57735 i 6 

5XE ± 0.862856 i , ±0.862856 i , ±0.2 ± 0.4 i , ±0.281085 i , ±0.281085 i 12 

5XF ± 1.42571 i , ±1.42571 i , ±1.14653 i , ±0.623213 i , ±0.623213 i , ±0.39006 i 12 

5XG ± 1.44701 i , ±1.44701 i , ±1.20334 i , ±0.69108i , ±0.69108i , ±0.433988 i 12 

5XH ± 3.07768 i , ±1 . 73205 i, ±1 . 73205 i, ±1 . 73205 i, ±1 . 73205 i, ±0 . 726543 i 12 

5YA ± 1.73205 i , ±1.41421 ± 1.0 i , ±1.41421 ± 1.0 i 10 

5YB ± 2.64575 i , ±2.64575 i , ±1.73205 i , ±1.73205 i , ±0.774597 i 10 

5YC ± 1.0 i , ±1.14139 ± 1.51749 i , ±1.14139 ± 1.51749 i 10 

5YD ± 1.29099 i , ±1.0 i , ±0.57735 i , ±0.57735 i , ±0.377964 i 10 

5YE ± 1.0 i , ±1.0 i , ±0.513578 ± 1.12417 i , ±0.513578 ± 1.12417 i 12 

5YF ±0 . 919866 i, ±0 . 919866 i, ±0 . 377964 i, ± 0.301511 i 8 

 

 

 

values in Table 2 for three cases 5XC, 5XH and 5YF . All other extraneous fixed points ξ of H in each case are found to be

repulsive. 

Before closing this section, we denote 20 iterative maps in Table 1 corresponding to cases 1A, 2A, 2B, 2C, 3A, 4A as

well as all 5X and 5Y respectively by GKN1A , GKN2A , GKN2B, GKN2C, GKN3A , GKN4A and GKN5XA through GKN5YF for

convenience and later use. In addition, the map for iterative method (2.1) is denoted by GKNPA . 
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Table 3 

Additional test functions f i ( x ) with zeros α, multiplicity m and initial guesses x 0 . 

i f i ( x ) α m x 0 

1 (4 + 3 sin x − 2 x 2 ) 3 1.85471014256339 3 1.90 

2 [2 x − π + cos 2 xe 1 −x 2 ] 7 π
2 

7 1.6 

3 [2 x 2 + 3 e −x + 4 sin (x 3 ) − 5] 6 ≈ 0.846491745344542 6 0.86 

4 [ x cos ( πx 
6 

) + 

1 
x 3 +1 

− 1 
28 

](x − 3) 3 3 4 3.05 

5 (x − 1) 2 + 

1 
12 

− log ( 25 
12 

− 2 x + x 2 ) 1 −i 
√ 

3 
6 

2 1 . 05 − 0 . 28 i 

6 (x log x − √ 

x + x 3 ) 3 1 3 1.05 

Here log z(z ∈ C ) represents a principal analytic branch with −π ≤ Im ( log z) < π . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Numerical experiments and complex dynamics 

This section is basically composed of two parts. The first part deals with computational aspects of proposed methods

(3.1) for a variety of test functions in comparison with other existing methods. Selected cases 1A, 2A, 2B, 2C, 3A, 4A as well

as all 5X and 5Y have been implemented to verify the convergence developed in this paper. Later on in the second part of

this section, the complex dynamics will be explored together with basins of attraction of selected rational iterative maps

GKN1A , GKN2A , GKN2B, GKN2C, GKN3A , GKN4A and GKN5XA through GKN5YF . 

A number of numerical experiments have been implemented with Mathematica programming to confirm the developed

theory. Throughout these experiments, we have maintained 160 digits of minimum number of precision, via Mathematica

command $ MinP recision = 160 , to achieve the specified accuracy. In case that α is not exact, it is replaced by a more accurate

value which has more number of significant digits than the preassigned number $ MinP recision = 160 . 

Definition 2 (Computational Convergence Order) . Assume that theoretical asymptotic error constant η = lim n →∞ 

| e n | 
| e n −1 | p and

convergence order p ≥ 1 are known. Define p n = 

log | e n /η| 
log | e n −1 | as the computational convergence order. Note that lim n →∞ 

p n = p.

Remark 6.1. Note that p n requires knowledge at two points x n , x n −1 , while the usual COC(computational order of conver-

gence) 
log (| x n −x n −1 | / | x n −1 −x n −2 | ) 

log (| x n −1 −x n −2 | / | x n −2 −x n −3 | ) does require knowledge at four points x n , x n −1 , x n −2 , x n −3 . Hence p n can be handled with a

less number of working precision digits than the usual COC whose number of working precision digits is at least p times as

large as that of p n . 

Computed values of x n are accurate up to $ MinPrecision significant digits. If α has the same accuracy of $ MinPrecision as

that of x n , then e n = x n − α would be nearly zero and hence computing | e n +1 | /e 
p 
n | would unfavorably break down. To clearly

observe the convergence behavior, we desire α to have more significant digits that are � digits higher than $MinPrecision.

To supply such α, a set of following Mathematica commands are used: 

sol = F indRoot[ f (x ) , { x, x 0 } , P recisionGoal → � + $ MinP recision, 

W orkingP recision → 2 ∗ $ MinP recision ] ;
α = sol[[1 , 2]] 

In this experiment, we assign � = 16 . As a result, the numbers of significant digits of x n and α are found to be 160 and 176,

respectively. Nonetheless, the limited paper space allows us to list both of them only up to 15 significant digits. We set the

error bound ε to 1 
2 × 10 −112 satisfying | x n − α| < ε. 

Iterative methods (3.1) associated with case numbers are identified by W-prefixed names. Typical methods with cases

1A , 2A , 3A , 4A are respectively identified by W1A , W2A , W3A , W4A . These four typical methods have been successfully

applied to the test functions F 1 − F 4 below: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

W1A : F 1 (x ) = 

[ 
cos 

(
πx 

2 

)
+ e 1 −x 2 − x − 2 

] 4 
, m = 4 , α = −1 

W2A : F 2 (x ) = [ cos (x 2 + 1) − x log (x 2 − π + 2) + 1] 2 (x 2 + 1 − π) , m = 3 , α = 

√ 

π − 1 , 

W3A : F 3 (x ) = [ sin 

−1 (x 2 − 1) + e 2 −x 2 − 5 x − 3] 2 , m = 2 , α ≈ 1 . 46341814037882 , 

W4A : F 4 (x ) = x 2 [ x 4 + log (1 + x 3 )] , m = 5 , α ≈ 0 . 434401024257508 , 

where log z(z ∈ C ) represents a principal analytic branch such that − π < Im ( log z) ≤ π

As seen in Table 4 , they clearly confirmed sextic-order convergence. The values of computational asymptotic error con-

stant agree up to 10 significant digits with η. It appears that the computational convergence order well approaches 6. 

Table 3 shows additional test functions to further confirm the convergence behavior of proposed scheme (3.1) . 

In Table 5 , we compare numerical errors | x n − α| of proposed methods W1A, W2A, W2B, W2C, W3A, W4A, W5XA,

W5XH, W5YA, W5YF with those of method WPA which identifies method (2.1) . The least errors within the prescribed error

bound are highlighted in bold face. Although we are limited to the selected current experiments, within two iterations, a
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Table 4 

Convergence for test functions F 1 (x ) − F 4 (x ) with typically selected methods W1A, W2A, W3A, W4A. 

MT F n x n | F ( x n )| | x n − α| | e n /e 6 n −1 | η p n 

0 −0.92 0.00199559 0.080 0 0 0 0 

1 −0.999999923690214 1 . 481 × 10 −27 7 . 630 × 10 −8 0.2910987337 0.699148242 6.34691 

W1A F 1 2 −1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . 586 × 10 −170 1 . 380 × 10 −43 0.6991476541 6.0 0 0 0 0 

3 −1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 × 10 −638 0 . 0 × 10 −160 

0 1.425 0.00335045 0.0384181 

1 1.46341813420998 1 . 260 × 10 −23 6 . 168 × 10 −9 1.918604750 2.837841985 6.12010 

W2A F 2 2 1.46341814037882 2 . 053 × 10 −145 1 . 563 × 10 −49 2.837841806 6.0 0 0 0 0 

3 1.46341814037882 0 . 0 × 10 −479 0 . 0 × 10 −159 

0 0.45 0.0192094 0.0155990 

1 0.434401024265989 5 . 608 × 10 −21 8 . 481 × 10 −12 0.5887215858 0.7002340415 6.04169 

w3A F 3 2 0.434401024257508 5 . 299 × 10 −132 0 . 0 × 10 −160 0.7002340415 6.0 0 0 0 0 

0 0.01 1 . 010 × 10 −10 0.01 

1 8 . 679 × 10 −15 4 . 925 × 10 −71 8 . 679 × 10 −15 0.008679381883 0.00896 6.00691 

W4A F 4 2 3 . 830 × 10 −87 8 . 245 × 10 −433 3 . 830 × 10 −87 0.0 08960 0 0 0 0 0 0 6.0 0 0 0 0 

3 0 . 0 × 10 −246 0 . 0 × 10 −1230 0 . 0 × 10 −246 

MT = method. 

Table 5 

Comparison of | x n − α| for selected multiple-zero finders. 

f , x 0 ; m | x n − α| W1A W2A W2B W2C W3A W4A W5XE W5XF W5YD W5YF WPA 

f 1 , 1.9; 3 | x 1 − α| 2.66e-9 ∗ 5.96e-10 3.20e-10 8.65e-10 1.82e-9 9.49e-10 2.43e-10 1.11e-10 1.22e-10 1.75e-10 2.69e-9 

| x 2 − α| 1.40e-52 3.64e-57 4.65e-59 5.04e-56 9.53e-54 9.78e-56 6.63e-60 2.74e-62 5.20e-62 6.59e-61 1.61e-52 

f 2 , 1.6; 5 | x 1 − α| 4.20e-12 7.64e-12 7.43e-12 7.83e-12 8.43e-12 7.99e-12 7.27e-12 7.19e-12 7.17e-12 7.17e-12 8.03e-12 

| x 2 − α| 1.03e-68 3.59e-69 2.93e-69 4.30e-69 7.39e-69 5.01e-69 2.48e-69 2.29e-69 2.25e-69 2.26e-69 6.51e-69 

f 3 , 0.86; 6 | x 1 − α| 4.20e-11 2.20e-11 1.88e-11 2.49e-11 3.46e-11 2.70e-11 1.68e-11 1.55e-11 1.537e-11 1.56e-11 6.08e-11 

| x 2 − α| 4.85e-62 4.73e-64 1.57e-64 1.17e-63 1.23e-62 2.08e-63 6.84e-65 3.82e-65 3.57e-65 3.98e-65 7.45e-61 

f 4 , 3.05; 4 | x 1 − α| 2.96e-12 1.28e-12 1.03e-12 1.52e-12 2.32e-12 1.68e-12 8.85e-13 7.79e-13 7.71e-13 7.94e-13 3.91e-12 

| x 2 − α| 1.44e-73 3.98e-76 8.90e-77 1.34e-75 2.64e-74 2.70e-75 2.89e-77 1.18e-77 1.10e-77 1.35e-77 1.04e-72 

f 5 , 1.05 | x 1 − α| 4.86e-4 2.79e-4 2.77e-4 2.80e-4 2.83e-4 4.78e-4 8.27e-7 2.06e-5 2.65e-7 5.38e-7 1.16e-5 

−0 . 28 i ; 2 | x 2 − α| 9.59e-18 6.29e-20 2.72e-20 1.01e-19 2.50e-19 2.69e-18 5.27e-12 8.17e-28 5.41e-13 2.23e-12 2.32e-14 

f 6 , 1.05; 3 | x 1 − α| 3.12e-7 6.54e-8 3.12e-8 9.82e-8 2.11e-7 1.04e-7 2.37e-8 5.45e-9 7.67e-9 1.59e-8 2.75e-7 

| x 2 − α| 3.03e-38 4.66e-43 2.46e-45 8.34e-42 1.94e-39 1.29e-41 3.58e-46 1.21 e-50 1.28e-49 2.13e-47 1.49e-38 

∗ 2.66e-9 denotes 2 . 66 × 10 −9 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

strict comparison shows that Method W5XF displays slightly better convergence for test functions f 1 , f 2 , f 5 , f 6 , while Method

W5YF for test functions f 3 and f 4 . 

By inspecting the asymptotic error constant η(θi , m, Q f , K f ) = 

| x n +1 −α| 
| x n −α| p when p is known, we should be aware that the

local convergence is dependent on the function f ( x ), an initial value x 0 , the multiplicity m , the zero α itself and the weight

functions Q f and K f . Accordingly, for a given set of test functions, one method is hardly expected to always show better

performance than the others. 

We introduce the efficiency index [42] defined by EI = p 
1 
d where p is the order of convergence and d is the number

of distinct functional or derivative evaluations per iteration. The proposed methods (3.1) evidently show a reasonable EI of

6 1/4 ≈ 1.56508 as compared with that of classical modified Newton’s method. Weight functions Q f and K f dependent on two

function-to function ratios [ f (y n ) 
f (x n ) 

] 
1 
m and [ f (w n ) 

f (x n ) 
] 

1 
m play a crucial role in obtaining sixth-order of convergence for proposed

methods (3.1) . 

It is, in general, a matter of importance to properly select initial values influencing the convergence behavior of iterative

methods. For ensured convergence of iterative map (5.17) with a weight function H p ( z ), it requires good initial values close

to zero α. It is, however, not a simple task to determine how close the initial values are to zero α, since initial values

are generally dependent upon computational precision, error bound and the given function f ( x ) under consideration. One

effective way of selecting stable initial values is to directly use visual basins of attraction. Since the area of convergence

can be seen on the basins of attraction, it would be reasonable to say that a method having a larger area of convergence

implies a more stable method. Clearly a quantitative analysis becomes an essential tool for measuring the size of area of

convergence. 

To this end, we provide Table 6 featuring a statistical data describing the average number of iterations per point. In the

following 6 examples, we take a 6 by 6 square centered at the origin and containing all the zeros of the given functions. We

assume that all zeros are of the same multiplicity m . We then take 360,0 0 0 equally spaced points in the square as initial

points for the iterative methods. We color the point based on the root it converged to. This way we can find out if the

method converged within the maximum number of iteration allowed and if it converged to the root closer to the initial

point. 
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Table 6 

Average number of iterations per point for each example (1–6). 

Map Example 

1: m = 2 2: m = 3 3: m = 3 4: m = 4 5: m = 5 6: m = 5 Average 

GKN5XA 8.8286 9.69 15.23 - - - - 

GKN5XB 6.1744 6.92 10.44 7.89 12.31 17.86 10.26 

GKN5XC 8.9915 14.44 - - - - - 

GKN5XD 11.2374 10.47 15.15 - - - - 

GKN5XE 4.1803 6.50 12.14 6.80 7.07 17.18 8.98 

GKN5XF 3.824 51.19 8.87 6.20 5.93 12.10 7.02 

GKN5XG 4.5768 7.67 10.86 8.89 9.34 17.07 9.73 

GKN5XH 25.5374 - - - - - - 

GKN5YA 37.5688 - - - - - - 

GKN5YB 29.4858 - - - - - - 

GKN5YC 32.3239 - - - - - - 

GKN5YD 3.8273 5.09 6.69 6.06 5.85 8.87 6.06 

GKN5YE 14.4975 - - - - - - 

GKN5YF 4.2731 7.43 14.80 - - - - 

GKNPA 8.1742 7.7825 9.9977 8.8558 13.1151 14.9314 10.4761 

Table 7 

CPU time (in seconds) required for each example (1–6) using a Dell Multiplex-990. 

Map Example 

1: m = 2 2: m = 3 3: m = 3 4: m = 4 5: m = 5 6: m = 5 Average 

GKN5XA 1400.53 4617. 817 6959.048 - - - - 

GKN5XB 1014.007 3362.055 4 857.66 8 3506.106 5256.19 8340.91 4389.488 

GKN5XC 1477.08 7001.918 - - - - - 

GKN5XD 1801.453 5074.26 6987.862 - - - - 

GKN5XE 708.369 3136.463 5736.375 3079.117 3092.47 7964.1 3952.815 

GKN5XF 665.796 2500.322 4273.007 2732.622 2691.984 5622.775 3081.084 

GKN5XG 736.746 3652.311 4976.821 3777.564 3994.531 7708.649 4141.104 

GKN5XH 4158.176 - - - - - - 

GKN5YA 6073.945 - - - - - - 

GKN5YB 4813.754 - - - - - - 

GKN5YC 5316.202 - - - - - - 

GKN5YD 643.909 2410.387 3148.443 2713.325 2500.431 4113.84 2588.389 

GKN5YE 2309.829 - - - - - - 

GKN5YF 667.778 3471.927 6036.489 - - - - 

GKNPA 987.27 2914.50 3275.10 3520.85 5183.44 6586.66 3744.64 

 

 

 

 

 

 

 

 

 

 

 

We now are ready to discuss the complex dynamics of selected iterative maps GKN1A, GKN2A, GKN2B, GKN2C, GKN3A,

GKN4A and GKN5XA through GKN5YF applied to various polynomials p k (z) , k ∈ N . 

Example 1. As a first example, we have taken a quadratic polynomial raised to the power of 2 with all real roots: 

p 1 (z) = (z 2 − 1) 2 . (6.1) 

Clearly the roots are ± 1 with multiplicity 2. Basins of attraction for GKN5XA – GKN5XH are given in the top two rows

of Fig. 2 . The last two rows present the basins of attraction for GKN5YA – GKN5YF . It is clear that the best methods are

GKN5XF and GKN5YD and the worst are GKN5XH , GKN5YA – GKN5YC and GKN5YE . Consulting Tables 6–8 , we find the

methods GKN5XF and GKN5YD use the least number of iterations per point on average, they also use the least amount of

CPU time and have the least number of black points. The method GKN5YF is the next best. In the following examples we

will not show the 5 worst methods. 

Example 2. In our second example, we have taken a cubic polynomial raised to the power of 3: 

p 2 (z) = (z 3 + 4 z 2 − 10) 3 . (6.2) 

Basins of attraction are given in Fig. 3 . In the top row the basins for GKN5XA – GKN5XD , center row for GKN5XE

– GKN5XG and on the bottom row the basins for GKN5YD and GKN5YF . It is clear that the best methods are GKN5XF

and GKN5YD and the worst are GKN5XA and GKN5XC . Based on Tables 6 –8 , we find that GKN5YD is fastest followed by

GKN5XF and the slowest is GKN5XC . The average number of iterations per point is least for GKN5YD (5.09) followed by

GKN5XE (6.50) and GKN5XB (6.92) and the highest is for GKN5XF (51.19). The least number of black points is for GKN5YD

(652) and the highest for GKN5XA and GKN5XC . We will therefore eliminate GKN5XC from the rest of the experiments. 
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Fig. 2. The top row for 5XA , 5XB , 5XC , 5XD in order from left to right, the second row for 5XE , 5XF , 5XG , 5XH , the third row for 5YA , 5YB , 5YC , and the 

bottom row for 5YD , 5YE , 5YF , for the roots of the polynomial (z 2 − 1) 2 . 

 

 

 

 

 

 

 

Example 3. As a third example, we have taken a quintic polynomial raised to the power of 3: 

p 3 (z) = (z 5 − 1) 3 . (6.3)

The basins for this example are plotted in Fig. 4 . In the top row, we have the basins for 5XA , 5XB and 5XD . Below that we

have the basins for 5XE , 5XF and 5XG and on the third row the basins for 5YD and 5YF . The best methods are 5XB , 5XF and

5YD . The worst are 5XA and 5YF . Upon consulting Table 6 , we find that 5YD uses the least number of iterations per point

(6.69) followed by 5XF with 8.87 iterations. The methods 5XA , 5XD and 5YF require between 14.80 and 15.23 iterations per

point. Based on the CPU in Table 7 , we arrive at the same conclusion. Based on the number of black points, we find that

5YD is by far the best (5488 points) with the rest having at least 24843 points. The worst are 5YF with 94342 points, 5XD

with 70466 points and 5XA with 68063 points. These 3 methods will be excluded from the rest of the experiments. 
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Fig. 3. The top row for 5XA , 5XB , 5XC , 5XD in order from left to right, the second row for 5XE , 5XF , and 5XG , and the bottom row for 5YD , and 5YF , for 

the roots of the polynomial (z 3 + 4 z 2 − 10) 3 . 

 

 

 

 

 

 

 

 

 

 

Example 4. As a fourth example, we have taken a different cubic polynomial raised to the power of 4: 

p 4 (z) = (z 3 − z) 4 . (6.4) 

Now all the roots are real. The basins are given in Fig. 5 in two rows. The top row have 5XB , 5XE and 5XF . The bottom

row shows the basins for 5XG and 5YD . The best are 5YD and 5XF . The worst methods are 5XB and 5XG . the number

of iterations per point is now in the range of 6.06 (for 5YD ) to 8.89 (for 5XG ). The fastest methods are 5YD (2713.325 s)

followed by 5XF (2732.622 s) and the slowest is 5XG with 3777.564 s.The method 5YD has the least number of black points

(1642) and 5XG has the most (30584) black points. 

Example 5. As a fifth example, we have taken a quadratic polynomial raised to the power of 5: 

p 5 (z) = (z 2 − 1) 5 . (6.5) 

The basins for the best 5 methods so far are plotted in Fig. 6 . Based on the plots and the Tables, we conclude that 5YD

is the best performer followed closely by 5XF and the worst is 5XB . 

Example 6. As a last example, we have taken a quartic polynomial raised to the power of 5: 

p 6 (z) = (z 4 − 1) 5 . (6.6) 

The basins for the best 5 methods left are plotted in Fig. 7 . The conclusions are the same as in the previous example

based on the plots and the tables. 

In summary, we find that 5YD is best followed closely by 5XF . The worst is 5XB . To summarize the results of the 6

examples, we have averaged the results in Tables 6 –8 across examples. Based on Table 6 we find that 5YD uses the least

number of iterations per point (6.06 on average) followed closely by 5XF (7.02). The method requiring the highest number

of iterations per point is 5XB (10.26) which is slightly less than the best sixth order method GKNPA in our previous paper
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Fig. 4. The top row for 5XA , 5XB , 5XD in order from left to right, the second row for 5XE , 5XF , and 5XG , and the bottom row for 5YD , and 5YF , for the 

roots of the polynomial (z 5 − 1) 3 . 

Fig. 5. The top row for 5XB , 5XE , 5XF , in order from left to right, and the bottom row for 5XG , and 5YD , for the roots of the polynomial (z 3 − z) 4 . 
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Fig. 6. The top row for 5XB , 5XE , 5XF , in order from left to right, and the bottom row for 5XG , and 5YD , for the roots of the polynomial (z 2 − 1) 5 . 

Fig. 7. The top row for 5XB , 5XE , 5XF , in order from left to right, and the bottom row for 5XG , and 5YD , for the roots of the polynomial (z 4 − 1) 5 . 

 

 

 

 

 

 

 

 

 

 

[19] . The fastest method is 5YD (2588.39 s) followed by 5XF (3081.08 s). The slowest is 5XB (4389.49 s), slower than GKNPA

(3744 s). As for the number of black points (see Table 8 ) we find that GKNPA has the lowest number (426 points) followed

by 5YD (3351 points). 

We conclude the current study as follows. Convergence order of proposed methods (3.1) has been improved with the

introduction of weight functions expressed in terms of function-to-function ratios. Computational aspects through a variety

of test equations in a number of selected cases well agree with the developed theory, verifying the convergence order and

asymptotic error constants. To determine what type of initial values of the proposed methods chosen near the zero α must

be given for their ensured convergence, we have not only carefully investigated the extraneous fixed points of the proposed

maps applied to a polynomial f (z) = (z 2 − 1) m motivated by the earlier work of Vrscay and Gilbert [43] , but also extensively

illustrated relevant complex dynamics of a family of selected methods 5X and 5Y behind the basins of attraction for a wide

variety of exemplary polynomials p ( z ). We conclude that 5YD is the best method overall. We have tried to find connection
k 
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Table 8 

Number of points requiring 40 iterations for each example (1–6). 

Map Example 

1: m = 2 2: m = 3 3: m = 3 4: m = 4 5: m = 5 6: m = 5 Average 

GKN5XA 47311 41564 68063 - - - - 

GKN5XB 17797 2970 24843 5654 40125 71921 27218 

GKN5XC 24161 41102 - - - - - 

GKN5XD 67853 17300 70466 - - - - 

GKN5XE 1117 3038 58168 3256 1617 96321 27253 

GKN5XF 1133 2210 30559 3810 1523 49141 14729 

GKN5XG 5993 21922 46058 30584 31775 107633 40672 

GKN5XH 215319 - - - - - - 

GKN5YA 332263 - - - - - - 

GKN5YB 254945 - - - - - - 

GKN5YC 283479 - - - - - - 

GKN5YD 791 652 5488 1642 861 10673 3351 

GKN5YE 102871 - - - - - - 

GKN5YF 2319 11576 94342 - - - - 

GKNPA 601 2 1128 0 7 817 425.83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

between location and multiplicity of the extraneous fixed points (see Table 2 ) and the performance of the methods. Most

methods have purely imaginary extraneous fixed point except 5XE , 5YA , 5YC and 5YE . Of these 4 methods only 5XE did

reasonably well but not as well as 5YD . We can conclude that if the extraneous fixed points are not on the imaginary axis,

the method will not perform well. We conjecture that 5XH did not perform well because one of the extraneous fixed points

has a multiplicity 4 and the rest have only double roots. 

As our future work developing a family of new higher-order multiple-zero finders, we essentially need to make the best

use of principal analytic branches of function-to-function ratios in selecting free parameters of the weight functions that

would enhance relevant basins of attraction under consideration. 
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