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1. Introduction

In 1694 Halley [1] developed the third order method given by
xnþ1 ¼ xn �
fn

f 0n �
fnf 00n
2f 0n

: ð1Þ
Here, and in the following, we denote fn ¼ f ðxnÞ and similarly for the derivatives.
Since the method requires the evaluation of the function and its first and second derivatives, then we can say that the

efficiency index (see Traub [2]) is E ¼ p1=d ¼ 3ð1=3Þ ¼ 1:442, which is higher than Newton’s efficiency index of 1.4142. This
is assuming that the cost of the derivatives is the same as the function.

Remark. Wynn [3] noted that methods using second derivatives are very useful for evaluating zeros of functions satisfying a
second order ordinary differential equation (e.g., Bessel’s functions). In such cases the evaluation of second derivatives is
trivial and thus the increase in efficiency.

See also Candela and Marquina [4], Hernandez [5], Melman [6] and Scavo [7].
The method can also be obtained as a special case of Hansen and Patrick’s family of methods [8]
xnþ1 ¼ xn �
ðaþ 1Þfn

af 0n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf 0nÞ

2 � ðaþ 1Þfnf 00n

q ; ð2Þ
where a ¼ 1 and the square root is approximated linearly. It can also be obtained as a member of the family8 9

xnþ1 ¼ xn þ ðe� 1Þ f 0n

f 00n
1� e

e� 1
fnf 00n
ðf 0nÞ

2

" #1=e

� 1
<
:

=
;; ð3Þ
developed by Popovski [9] upon taking e ¼ �1.
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This process was rediscovered by others (e.g., Frame [10], Hartree [11], Hamilton [12], Richmond [13], Salehov [14],
Schröder [15] and Wall [16]). See also Neta [17] for a collection of algorithms for the solution of nonlinear equations and
a comparison of their efficiency indices. Recently Petković et al. [18] have published a book on multipoint methods that uni-
fied many of the methods appearing in the literature.

In order to see the similarity to other methods, we use a different form of Halley’s method, that is
xnþ1 ¼ xn �
fn

f 0n
� fn

f 0n �
fnf 00n
2f 0n

� fn

f 0n

2
4

3
5:
Upon simplifying the term in brackets, we get
xnþ1 ¼ xn �
fn

f 0n
� f 2

n f 00n
2ðf 0nÞ

3 � fnf 0nf 00n
: ð4Þ
In this paper we consider the family of methods based on this form of Halley’s method (4). Halley’s method was originally
developed in 1694 and rediscovered by many. There have been many attempts to improve on the method. We will show that
some other methods are just special cases of this and find the best member of the family in terms of simpler boundaries of
the basin of attraction. Therefore, we can conclude that Halley’s method (1) is the best third order available as was concluded
by Neta et al. [19] based on several numerical experiments.

2. Halley-like family of methods

The one parameter family of methods we consider is
xnþ1 ¼ xn �
fn

f 0n
� f 2

n f 00n
2ðf 0nÞ

3 � Afnf 0nf 00n
: ð5Þ
Notice that this is just (4) with an additional parameter. Upon choosing A ¼ 1 we have Halley’s method (4). The choice
A ¼ 0 yields the well known Euler–Chebyshev method [20]. This latter method is also a special case of Hansen and Patrick’s
family (2) with a ¼ 1 or Popovski’s family (3) with e ¼ 1

2. The choice A ¼ 2 gives the BSC method [21].

Theorem 1. Let g 2 I be a simple root of a sufficiently differentiable function f : I! R for an open interval I. If x0 is sufficiently
close to g, then the method defined by (5) has third-order convergence, and satisfies the error equation
enþ1 ¼ �B3 þ ð2� AÞB2
2

� �
e3

n þ Oðe4
nÞ; ð6Þ
where en ¼ xn � g and Bi ¼ f ðiÞðgÞ
i!f 0 ðgÞ.
Proof. Using Taylor expansion of f ðxnÞ about g, we have
f ðxnÞ ¼ enð1þ B2en þ B3e2
n þ B4e3

n þ B5e4
n þ B6e5

n þ Oðe6
nÞÞ; ð7Þ

f 0ðxnÞ ¼ 1þ 2B2en þ 3B3e2
n þ 4B4e3

n þ 5B5e4
n þ 6B6e5

n þ Oðe6
nÞ; ð8Þ

f 00ðxnÞ ¼ 2B2 þ 6B3en þ 12B4e2
n þ 20B5e3

n þ 30B6e4
n þ Oðe5

nÞ; ð9Þ
where Bi ¼ f ðiÞðgÞ
i!f 0 ðgÞ and en ¼ xn � g.

Dividing (7) by (8) gives us
f ðxnÞ
f 0ðxnÞ

¼ en � B2e2
n þ L3e3

n þ L4e4
n þ Oðe5

nÞ; ð10Þ
where
L3 ¼ �2B3 þ 2B2
2;

L4 ¼ �3B4 � 4B3
2 þ 7B2B3
and similarly upon dividing (9) by (8) we have
f 00ðxnÞ
f 0ðxnÞ

¼ 2B2 þ K1en þ K2e2
n þ K3e3

n þ K4e4
n þ Oðe5

nÞ; ð11Þ
where
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K1 ¼ 6B3 � 4B2
2;

K2 ¼ 12B4 þ 8B3
2 � 18B2B3;

K3 ¼ 20B5 � 18B2
3 � 32B2B4 þ 48B3B2

2 � 16B4
2;

K4 ¼ 90B2B2
3 þ 32B5

2 þ 80B2
2B4 � 50B2B5 � 120B3

2B3 þ 30B6 � 60B3B4:
We now use Maple to collect all these expansions into (5) to have the denominator 1� A=2f ðxnÞ=f 0ðxnÞ f 00ðxnÞ=f 0ðxnÞ given by
1� A=2ðen � B2e2
n þ L3e3

n þ L4e4
nÞð2B2 þ K1en þ K2e2

n þ K3e3
n þ K4e4

nÞ þ Oðe5
nÞ ð12Þ
and the numerator ð1=2Þ ½f ðxnÞ=f 0ðxnÞ�2 f 00ðxnÞ=f 0ðxnÞ given by
ðen þ B2e2
n þ L3e3

n þ L4e4
nÞ

2ð2B2 þ K1en þ K2e2
n þ K3e3

n þ K4e4
nÞ=2þ Oðe5

nÞ: ð13Þ
Therefore when we collect terms we have
enþ1 ¼ N3 e3
n þ N4 e4

n þ Oðe5
nÞ ð14Þ
where
N3 ¼ �AB2
2 � B3 þ 2B2

2;

N4 ¼ 12B2B3 � A2B3
2 � 6AB2B3 � 9B3

2 þ 7AB3
2 � 3B4;
which indicates that the order of convergence of the methods defined by (5) is at least three. The error constant is the coef-
ficient N3. This completes the proof. h
Remark. As a special case, we get the constant for Halley’s method (see also e.g. Traub [2])
N3 ¼ �B3 þ B2
2;
for Euler–Chebyshev method (A ¼ 0)
N3 ¼ �B3 þ 2B2
2

and for BSC method (A ¼ 2)
N3 ¼ �B3:
One may conclude that the BSC method is superior to the others. We will see later that the asymptotic error constant is not
the best indicator.
3. Corresponding conjugacy maps for quadratic polynomials

Given two maps f and g from the Riemann sphere into itself, an analytic conjugacy between the two maps is a diffeomor-
phism h from the Riemann sphere onto itself such that h � f ¼ g � h. Here we consider only quadratic polynomials.

Theorem 2 (Halley’s family of methods(5)). For a rational map RpðzÞ arising from Halley’s method applied to
pðzÞ ¼ ðz� aÞðz� bÞ; a – b; RpðzÞ is conjugate via the Möbius transformation given by MðzÞ ¼ z�a

z�b to
SðzÞ ¼ �z� 2þ A
�2zþ Az� 1

z3:
Proof. Let pðzÞ ¼ ðz� aÞðz� bÞ; a – b and let M be the Möbius transformation given by MðzÞ ¼ z�a
z�b with its inverse

M�1ðuÞ ¼ ub�a
u�1 , which may be considered as a map from C [ f1g. We then have
SðuÞ ¼ M � Rp �M�1ðuÞ ¼ M � Rp
ub� a
u� 1

� �
¼ �u� 2þ A
�2uþ Au� 1

u3:
As a special case we see that for Halley’s method (A ¼ 1) we have SðzÞ ¼ z3. For BSC method ðA ¼ 2Þ, we have SðzÞ ¼ z4 and for
Euler–Chebyshev ðA ¼ 0Þ, we have SðzÞ ¼ zþ2

2zþ1 z3. h
4. Extraneous fixed points

In solving a nonlinear equation iteratively we are looking for fixed points which are zeros of the given nonlinear function.
Many iterative methods have fixed points that are not zeros of the function of interest. Those points are called extraneous
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fixed points (see Vrcsay and Gilbert [22]). Those points could be attractive which will trap an iteration sequence and give
erroneous results. Even if those extraneous fixed points are repulsive or indifferent they can complicate the situation by con-
verging to a root not close to the initial guess.

The Halley family of methods can be written as
xnþ1 ¼ xn � unHf ðxnÞ:
Clearly the root g of f ðxÞ is a fixed point of the method, since un vanishes at g. The points n – g at which Hf ðnÞ ¼ 0 are also
fixed points of the family, since the second term on the right vanishes.

It is easy to see that for the family of Halley-like methods we have
Hf ðnÞ ¼ 1þ f ðnÞf 00ðnÞ
2f 0ðnÞ2 � Af ðnÞf 00ðnÞ
or
Hf ðnÞ ¼
2f 0ðnÞ2 � ðA� 1Þf ðnÞf 00ðnÞ

2f 0ðnÞ2 � Af ðnÞf 00ðnÞ
: ð15Þ
Theorem 3. There are no extraneous fixed points for Halley’s method.
Proof. For Halley’s method (1) we have
Hf ¼
1

1� 1
2

f ðnÞ
f 0 ðnÞ

f 00ðnÞ
f 0 ðnÞ

:

This function does not vanish and therefore there are no extraneous fixed points. h
Theorem 4. There are two extraneous fixed points for Halley-like family of methods. They are the roots of
2f 0ðnÞ2 � ðA� 1Þf ðnÞf 00ðnÞ ¼ 0: ð16Þ
Proof. The extraneous fixed point can be found by solving (15). For the quadratic polynomial z2 � 1 this leads to the
equation
ðA� 5Þz2 � Aþ 1
ðA� 4Þz2 � A

¼ 0
for which the roots are �
ffiffiffiffiffiffiffiffiffi
ðA�1Þ
ð5�AÞ

q
i. These fixed points are repulsive if 6� A > 1, i.e. A < 5. Vrcsay and Gilbert [22] show that if

the points are attractive then the method will give erroneous results. If the points are repulsive then the method may not
converge to a root near the initial guess.

The poles are at z ¼ �
ffiffiffiffiffiffiffi

A
4�A

q
i. For the three members mentioned above the poles are on the imaginary axis. One should not

choose A P 4 since in those cases we have poles on the real axis. h
Remark. Since we are discussing the quadratic polynomial z2 � 1, then theoretically the imaginary axis is the boundary
between the two basins, see Kneisl [23]. Any extraneous root on the imaginary axis will either give erroneous results or com-
plicate the situation as discussed earlier. Any pole will cause the method to diverge and thus it should be on the boundary. In
order for the poles and the extraneous roots to be on the imaginary axis, we must have 1 6 A 6 4. In the case A ¼ 1 there are
no extraneous roots.

Recently Basto et al. [24] have experimented with Halley, Euler–Chebyshev and BSC methods. They have constructed ba-
sins of attraction for these methods for nine nonlinear equations. They concluded that Halley’s method shows the simplest
boundaries and confirms the best performance already suggested by the studies made by Scott et al. [25] and Neta et al.
[19,26]. Such numerical studies were initiated by Stewart [27] and followed by the works of Amat et al. [28–31] and Chun
et al. [32].

Remark. For the BSC and Euler–Chebyshev the extraneous fixed points are repulsive. For Halley’s method there are no
extraneous fixed points. This is why Halley’s method perform better than Euler–Chebyshev and BSC.
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[32] C. Chun, M.Y. Lee, B. Neta, J. Dz̆unić, On optimal fourth-order iterative methods free from second derivative and their dynamics, Appl. Math. Comput.

218 (2012) 6427–6438.


	On a family of Halley-like methods to find simple roots of nonlinear equations
	1 Introduction
	2 Halley-like family of methods
	3 Corresponding conjugacy maps for quadratic polynomials
	4 Extraneous fixed points
	References


