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A new one-parameter family of methods for finding simple zeros of non-linear functions is
developed. Each member of the family requires four evaluations of the given function and
only one evaluation of the derivative per step. The order of the method is 16.
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1. INTRODUCTION

Newton's method for computing a simple zero { of a non-linear equation

f(x)=0 has been modified in a number of ways. For example, Ostrowski

(147 discusses a third-order method that evaluates the function f at every
Substep but only requires the derivative f’ at every other substep. He a.lso
Introduced 5 fourth-order scheme that uses the same information. King
.[9] has shown that there is a family of such methods. Traub [15]
Mroduced o third-order method which requires one function and two
tvative evaluation per step. Jarratt [6] developed a fourth-order
Method which uses the same information. King [8] developed a.fifth-order
Zcheme that requires two evaluations of f and f'. Werner [16] mtro'duceg
recmeth()d of order 1+./2 that requires one evaluation of f and f'. Ahnt
. ently, the author [13] developed a family of sixth-order methods tha
fquires 3 evaluations of fand one of . o

N .
oW at Department of Mathematics, Texas Tech. University, Lubbock, Tx 79409,
353



354 B. NETA

Here we construct a method of order 16. An iteration consis.ts of one
Newton substep followed by a substep of “modified” Newton (i.e., using

the derivative of f at the first substep instead of the current one) and then
two substeps of inverse interpolation.

Let us recall the definition of order (see e.g. [15]).

DEFINITION 1 Let x,, X3,...,X; be a sequence converging to {. Let

1
g=x;~_. )
If there exists a real number p and a nonzero constant C such that

2

then p is called the order of the sequence.

: asures the
There are two other concepts related to order; one me
information used and the other measures the efficiency.

; as the
DEFINITION 2 The informational usage d of a schern'e is defined
number of new pieces of information required per iteration.

DEFINITION 3 The informational efficiency EFF of a scheme 15 de
as the order p divided by the informational usage d.

)
_P
EFF—d

DEFINITION 4 The efficiency index *EFF is defined by

@
*EFF =p'/4

. ed by
whete p and 4 are as in definition 3. (This term was introduceC
Ostrowskj [14)).
will

tion
efficiency of all known methods. Se¢

€xample,

In the following section we develop the scheme. Section :
devoted o compare the

contains a smaj) nNumerica|
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2. DEVELOPMENT OF THE METHOD
Let

S
T )

W,

L fw) SO ATOw)

T ) T o)+ (A—2)f (wy) ©)
t =z __f(zn) f(xn)—f(wn)

"I 0 S o) =3 (wy)”

If we let X,+1=t, we obtain the sixth-order family in [13]. Suppose we
tompute x,, ; by inverse interpolation. Let

R(f (x))=a+b(f (x)—f (x,))+c(f () =f (x))*
+d(f (x)—f (%)) +elf (1) =f (%) (6)

be apolynomial of degree four satisfying

Xy =R(f (x,))

1
1(xa)

w, =R(f(W,))

=R'(f{x.))
™

Z.=R(f (z,))
t, =R(f(tn))

It
$ €45y 10 see from the first two equations of (7) that

a=x, ®)
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Thus, if we use the notations,

0 =0,—x,
Fy=f(0,)—S(x,) o)
0 1

e for d=w,z.1

TR RS
then the last three equations of (7) will give
c+dF, +eFi=¢,
c+dF.+eF=0¢, (10)
c+dF,+eFl =0,

Solving these equations we have:

(}5,'—(}3: _(rbwl({)_:_
_F—F, F,—F,
TR CFL
d=i’::ﬁ:-e(ﬁ+r:) ()

c=¢,—dF,—eF}.
Once the coefficients were computed, then

12)
xm=R(0)=xn—ff(x-"~)+cf2(x,,)-zif3(xn)+ef‘(xn)- ‘
J(x,)

; his
We would like to show that the scheme (5), (12) is of order p=14.To!
end, we use a result of Traub [151.

THEOREM (TRAUB) Let x,, x,_,,....x,_, be n+1 approxima

i
zero { of f. Let Q.., be the interpolatory polynomial at i Yimppeeadic
the sense of

tions 10 ¢

ki) ( ., etk . .
0= )=F® ;) for j=0,1,2,...7

ki=0,1,..,7;-1, 721

3

e e i .
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where F is the inverse of f.

Define a new approximation to { by

Xy =0, ,(0),

and let
¢ =x;—¢,

then
n
ey =M;[] el
i=0

for suitable constants Af i

In our case
n=3
0T 102 =1
73=2
Note that
";”9?-&

=3
€y ~€3

357

(14)

(135)

(16)

(7)

(18)

(The scheme constructed from the first two substeps of (5) is of order 4,

% [9]), and

€2~

i
Substityt; .
bsntutmg these in (16) yields
4
Civy~ef setyel sel y=eils

ThUS the Order iS p= 14

(19)

(20)



One can improve the order of this scheme just by replacing the third
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substep of (5) by a step similar to the fourth one. Let (

T(f (x) =2+ (x)=f(x,)+ 7 ()= 1)) +8(fix)=f(x,)
@
be a cubic polynomial satisfying
x,=T(f(x,)) |
LT ®
fx) ’
w,=T(f(w,))
=T () '
Clearly, ‘
a=x, (23 [
1 ‘
Pt |
. i
Using the notations of (9), the last two equations of (22) will be ‘}
i +0F, =0, e |
7+OF.=¢. (
The coefficients ¥, & are given by ‘
5= d)w - d): ‘
TF.-F, ®)
7= ¢’w - 6Fw
Once the coefficients were computed, then 1
\ {20 ’
tnzT(O):-X"——!;(‘—")--}-“ 2 X, —5f3(xn)'
ey )
. b
In order to obtain the order of the scheme composed of the first tW0 su
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steps of (5), (26) and (12), one uses (16). To this end, we need ¢; which is
the error at the third substep. It can be computed from (16)

e,=M,_ e,_ e85 27N

Combining (16), (27) with (18)-(19) one obtains

16
Civg~€i-3

Thus, the order p=16.

3. EFFICIENCY OF ITERATIVE METHODS

In Section 1 we stated two definitions for efficiency. In the following we
compare the efficiency of all methods mentioned in Section 1 with our
new method. This is done in two tables. In Table I the methods listed in
decreasing order of informational efficiency. This shows that our new
method is the most efficient one. In Table II we list the methods in
decreasing order of efficiency index. Our new method comes second, next
to Muller’s method.

TABLE 1

Method Reference Order Informational Usage EFF
z::a This paper 16 5 ;g
M 2 This paper 14 5 .
Muller [ 1.839 1 1.839
Pegasug (5] 1275 4 1.819
Anderson and Bjsrck [1] 8 4 2

; 3 1.667
Secant [3] 1.618 i 1.618
lmproVed Pegasus [10] 5 3 1267

1.

Neta é i 1.5
Tarraty (13 3 1-333
Ostrowskj el 4 3 1.333
King (141 4 3 1.333
King [°] 4 X 1.25
Murakami [i] 3 4 1.25
Wtrner (12] 3 /2 2 1.207
Ot [16] 1+ ! .
Traub [ 14] 3 3 1
S nsg o3 : 1
Newton 4] 3 : X
Steﬂ'ensen ‘E’% z 5 1
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TABLE II

Method Reference Order Informational Usage *EFF
Muller 1 1.839 1 1.8%
Neta This paper 16 5 1.741
Improved Pegasus [10] 3 2 1.732

5 3 1.710
Anderson and Bjdrck 1 5 3 1.710

8 4 1682
Neta This paper 14 5 1695
Pegasus [5] 7275 4 1642
Secant [3] 1.618 1 1.618
Ostrowski [14] 4 3 1.587
King £9] 4 3 1.587
Jarratt (61 4 3 1‘537
Neta [13] 6 4 1.563
Werner [16] 1+ \/2 2 1.554
Murakami [12] 5 4 1-493
Ostrowski [14] 3 3 144“;
Snyder (4] 3 3 1442
Newton [7] 2 2 1414
Steffensen (7 2 2 1414

4. NUMERICAL EXAMPLE

Let S(X)=x*+In (1+x) where In denotes the logarithm to the natural
base. Hence {=0. Starting at Xo=0.1, 0.2, 0.3, 0.4 and 0.5 we co.mpme ‘Il
by our lower order (p=14) algorithm. Calculations were done If dout
precision arithmetic on IBM 370/148 computer. hat

Result§ are summarized in the following table. The parameter A
appears in the algorithm was chosen A=2.

TABLE III

Xo Xy x5*

0.1 0.3904.10~15 107
0.2 —-0.9487.10~15 0.1638.10°°
03 —-0.5323.10°8 0.4783.1077
04 03075105 0.2684.10°°

0.5 —0.2899.10-6 0.6104.107*

vy . em——, o . o, iy, et _
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Note that x, is closer to { than x§*. In order to reliably determine the
order one would have to use higher precision, see e.g. [2].
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