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Galerkin’s method with appropriate discretization in time is considered for

approximating the solution of the nonlinear integro-differential equation

.t b/
ufx,0)=| a(t—1) P o(u(x, 7)) dt + f(x, t),

o X
O0<x<l1l, O0<t<T

An error estimate in a suitable norm will be derived for the difference u — u”
between the exact solution u and the approximant x”. It turns out that the rate of
convergence of u" to u as h— 0 is optimal. This result was confirmed by the

numerical experiments.

1. INTRODUCTION

The nonlinear problem

ulx, t) = ﬂ a(t—r1) 6% o(u.(x, 7)) dr +f(x, t),
O0<x<l1, 0<t<T,

u©,t)=u(l,£)=0,

u(x, 0) = uy(x),

(1)
(2)
3)

serves as a very special model for one-dimensional heat flow in materials
with memory [7]. The problem also arises in the theory of one-dimensional
viscoelasticity [3, 11-13]. It is also an example in the general theory of

equations of the form

() = — j a(t — 1) g(u(2)) dr + /(1)
598
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u(0) = u, ()

on a Hilbert space H, with g a nonlinear-unbounded operator [1].
As a special case of (1)-(3) one obtains the damped nonlinear-wave
equation. Let

a(t)=e ™, a>0 6)
g(x, t) =ﬁ(x’ 1) +af (x, 1), (7)

then (1) can be written in the form

Uy (%, 1) + au (x, 1)

0
=ao(ux(x, t)) + g(x, 1), O<x<l1, 0<t<T, (8)

with the initial conditions,
u(x9 O) = uo(x)’ (9)
u(x, 0) =1 (x,0), ‘ (10)

and the same boundary conditions (2).

In [18], Nohel studied the global existence, uniqueness, and continuous
dependence on data of smooth solutions to (8)—(10), and (2). For the special
case g =0, Nishida [17] established the existence and uniqueness of global-
smooth solutions for smooth and sufficiently small data (9)-(10).

- This result was generalized to several space dimensions (still with g =0)
by Matsumara [14, 15] and Klainerman [8]. The case a =0 and g=0 is
treated in [5, 6,9, 10].

For our special model (1)~(3), MacCamy [12] and recently Staffans [19]
discussed the existence, uniqueness, boundedness, and asymptotic behavior
of solutions.

The purpose of this paper is to describe a Galerkin-type method for
approximating the solution of (1)-(3). We shall follow the assumptions in
[12] to ensure the existence of a unique solution. For completeness we shall
give those conditions:

a € C*[0, o), a(0) > 0, a(0) < 0, (11)
fa® eL,(0,0), k=0,1,2, j<3+N forsome N>0, (12)

Red(in) > 0 forall n, (13)
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where d(s) is the Laplace transform of a(¢).

0 € C*(~w,®), 0a(0)=0, (14)
0Sugao'(@)<y  foral ¢ (15)
fE€C¥([0, 1] X [0, 0)), (16)
f(®) € L,(0,0)NL,0, ) L_(0, ©), (17)
where
f@)= sup (/6 0l 1/tx ) (18)

As a special case one obtains the approximate solution of the nonlinear
hyperbolic equation (8)-(10), and (2). Dendy [4] discussed Galerkin’s
method for a special case of this problem (a =0).

An error estimate in the norm

/2

G ol = |f” [ 18760 + B35 ) e | (19)

will be derived. It turned out that the rate of convergence of the approximant
u" to the exact solution u as & — 0 is optimal.

The next section will be devoted to the variational formulation of the
problem. The error estimate will be derived in Section 3. In Section 4 the
numerical solution will be discussed. Some of the numerical experiments
performed will be described in the last section.

2. VARIATIONAL FORMULATION

Consider the problem (1.1)—(1.3). One of the ingredients of finite-element
method is a variational formulation of the problem (see, e.g., [2, 20]). Let us
denote by H the linear space of functions u satisfying

u@,t)=u(l,t)=0, (1)
lu(, )]s < o0, (2)
where
1 r i ' 2 1/2
Ju o= |f) Guee.of + 3 | ZR2 a0
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The variational formulation of the problem can be stated as follows:
Find a function u(x, t) € H for which

(v,u,)+ f a(t — 1) < a(u,(x, 1)),

v,(x, 1) > dr=(v,f), Vv € H, (4)
and
(v, u(x, 0)) = (v, uy(x)), Yv € H, )
where
(P01 9) = [ plx) q(x) (6)
and
I pllo = {p(x), p(x))"">. (7

To approximate the solution of (4)-(5) we require that # and v lie in a
finite-dimensional subspace S, of H for each f (See, e.g., [16].) The
following property concerning approximability in S, can be readily verified
for finite-element spaces. (See, e.g., [20].)

Approximation Property

There is an integer r > 2 and numbers C,, C, independent of /4 such that
for any v € H there exists a v" € S, satisfying

lv—v*||, <Ch" " v|l, forOLIKlandI<tr. (8)
The approximation u" € S, to u is defined by the following variational

analog of (4)-(5):
Find a " € S, such that

Whut) + [ alt—1) < ol(x, )

v*(x, £) > dr = (v, f), Yo' e S, 9)
and

" u"(x, 0)) = (", uy(x)), | Vo' e S,. (10)

Once a basis has been selected for S,, (9)-(10) are equivalent to a set of
N integro-differential equations. The solution of such a system will be
discussed in Section 4.
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3. ERROR ESTIMATES

In this section we shall estimate the error in the finite-element approx-
imation using the norm (1.19)

T ) 1/2
= |[) [ 1560 + Bl 0] e (1)
0 Y0
We will also use the following norms:
i 2 1/2
0el, = 3 [ sup |2 5("; ) ] dx% , @)
0 j=0 | o<t<T ox ‘
1 .T r 1/2

This error estimate depends upon the assumption that there exists > 0
such that for any function w(x, ¢)

JT J‘ at—1) jl o' (w(x, 1)) &(x, 7) &(x, t) dxdrdt

ﬂA2 T 2 ' .
> 500 ), 1), 16 aldry dx, )

where 4 =infy,_, , a(f). This assumption analogous to the inequality for
positive-definite functions proved by Staffans [19, Lemma 4.1]. It becomes
the consequence of that lemma if o’(w(x, 7)) = p.

THEOREM. The error in the finite-element approximation u" generated by
(2.9)-(2.10) satisfies the relation

=l B (CHA? gl + (CHA/2) D
FOMECYP B+ ], 5)

Proof. Subtracting (2.9) from (2.4) with v" instead of v we obtain
" (x, 1), uf(x, 1))
¢
+ j a(t — 1) < o(u(x, 7)), vi(x, ) > dr
0

= <vh(xs t)a ut(xa t»
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+ j{: a(t — t){o(u,(x, 7)), v(x, 1)) dt
for all v* € §,.
Let #" be any function in S, then
", (" —a"),)

+ fot a(t - W o(u?) — a(@?), v dr

=", (u—ad"),)
- j(: a(t — 1)(o(u,) — o(@%), v’y dr
for all v" € §,.

Let

e(x,)=u"(x,t) — 4" (x, 1)

E(x, t)=u(x, t) — @*(x, t).

603

(6)

(7

(8)
©)

Since e €S, we can let v” =e. Using the mean value theorem for the

function o,
() — 0z) = 0'(€)(w — 2)
one obtains from (7)~(9),
(e, 1) 05 1)
+ [ al = (0" (€ D) eyl D e )

= <e(xa t)’ E,(x, t)>

+ J' a(t — )0’ (&(x, 7)) E(x, 1), e,(x, 1) > dr.

Note that,

(e, 1), €05, 1)) = =l

(10)

(11)

(12)
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Combining (10), (1.15), and (11) one has,
d 2
et 0l
2 "a(t — 10" (E(x, 7)) €,(x D)y e (x, 1) > dit
0
1
< ZJ e(x,t) E,(x, t)dx

+ 2y a(t — 1) ex(x, t) E (x,7) dxdr. (13)

el

Using Schwarz’s inequality on the last integral on the right and integrating
with respect to ¢ one obtains:

le(-» Dllo — lleC-, 0)llg

+2J dtJ dta(t—r)J dx o' (é(x, 7)) e (x, T) e, (x, t)

.T .1
< J dt J e(x, t) E(x,t)dx
0 0

1/2

. JJ Ei(x, 7)dr (14)

+ ZyJ de dte.(x,t)

J a*(t—1)dr

Using Schwarz’s mequahty on the integrals on the right and (4) it follows
that

T 2
J le (x, 7)| dt
0

B
leC, T + gy | @

<l O +2 d || et Dl e - sup e, )

+2yf dx f le, (x, t)]dt sup

j a*(t—s) dsg v

T 1/2
. U E(x,7) dr % . (15)
]
Using Schwarz’s inequality again and noting that [ e(-, T)|| > 0, one has

III ecllo < lleC:, 0)ls
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J:le(x, )| dt i 2 { "

+2 ;J’: dx

1/2

X Uol dx {sep |E (x, )|} dx

J Tdtlex(x, 1) § 2 % "

+ 2yM Uol dx

?

U dxj 2(x, s)ds

where

1/2

!
M = sup f a’(t—r1)de
¢ %

Since 2ab < ea® + b?/e for ¢ > 0, one has after combining like terms

((84°/a(0)) — d)lllexlllc — & llellls
<lle(- Ol + (1/e) OE, 05 + (v*M?/6) BE K.

Using Poincare’s inequality
lexllo > C, llello

one can show that

llexlllo = Cy llielllo

for possibly different constant. Let § > 0, ¢ > 0 be chosen so that
BA?/a(0)) — 6 — eC; 2 =1+ (1/C2).
Note that
el = el ™ + llell> &1 + (1/CI)lell
Thus
lellls <lleC- Ollg + (1/¢) UE, U5 + (v*M*/6) BE, ;.

Using (2.8) and noting that (see [16])
lle(-, 0)llo < Caht"{luq s

605

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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one obtains,
el < C2A* lluollz + (C5A* /e) Ou, 07
+ (y°M/0) C1h*"~Rull;.
Taking square roots of both sides yields,
lelly <A™ HC3h* lugl; + (Coh*/e) Ou, 007
+ (*MC3/0) B} (23)
Combining (23) with (2.8) and the triangle inequality we obtain (5).

Note that the result means that the error for the finite-element approx-
imation is optimal in the sense that it is of the same order as that for the best
approximation to the actual solution in the space §,.

4. NUMERICAL SOLUTION
This section is. devoted to the numerical solution of (2.9)-(2.10). Let

9,(x),..., #5(x) be a basis for S, (where N is the dimension of S,). Therefore,
any u” € S, can be represented by

u”(x, 1) = ‘{V_ﬂ u;(2) 9(x). (1)

i=1

Since (2.9)—(2.10) are valid for all v” € S, one can let v" = ¢;. This yields
the following system for the vector of weights u(¢):

Mui(r) + j(: a(t — t) K(u(r)) dr = F(¢), )
Mu(0)=W, 3)

where the entries of the so called mass matrix M are
M =(g(x), $:(x)), I<i,j<N. 4)

The entries of K, F, W are

Ku() = (0@ (x, D). 1</<N, 5)
Fj(t) = <f(x’ 1), ¢j>’ I <jN, | (6)
W, = (4y(x), 8,), <<, (1)
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To solve the system (2)—(3) we use Taylor’s expansion. Let
u(t + 4t) =u(t) + @oni(e) + 3(de)* i) + 0((41)?). (8)

Differentiating (2) with respect to ¢, one has

Mii(r) + ft a(t —7)Ku()) dr + a(0) K(u(t)) = F(t), 9)
where
F()=(f0e 1.4 1<J<N. (10)

Multiplying (8) by the matrix M and using (2) and (9) one obtains after
neglecting terms of order (4¢)°,

Mu(z + 4r) — u(r)] = (A0)[F(¢) + 3(4r) F()] — 3(41)* a(0) K (u(1))
(At)J lat — 1) + 3(4t) a,(t — )] K(u(r)) dz. (11)
Using the trapezoidal rule (0 =1¢, <?, <, <--- <t =1),

i Q) +2Q(ti—l)

{ Q()adr= (A1) + O((4r)*) (12)

~

for the integral on the right one has after neglecting terms of order (4¢),

MW+ — ) = )[F + 1(4t) F/) — 1(41)? a(0) K(v)

L3 Y (K@Y al— 1) + K al;— 1)

i=1

j=0,1,2,., (13)

where V= V(¢,) and ¢, = i(4?).
One can rewrite (13) in the form

M@+ — ') = (40)[F' + 3(d0) F] - (d1)? ZO Gia((j — i)(dD) K@),
j=0,1,2,.., (14)

where

G

i

3 for i=0,
1,

otherwise.

I

Remark 1. The only starting value needed is u’ =u(0)=M~'W.
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Remark 2. Once u® and K(u’) are computed we can solve the linear
system (14) for u' —u® and then compute u'. Note that for j=0 the
summation in (14) is null.

Remark 3. The linear system i (14) is banded. Since M is positive
definite and symmetric no pivoting is needed. In fact, one has to factor the
matrix M only once (to obtain u®) For all other time steps only back
substitution is required.

Remark 4. Storage requirements. Let B =band width of M (B=3 if
linear elements are used),
NT = number of time steps = T/(d4t). One can store M in (B +1)/2 N-
vectors (after factorization).
(NT + 1) N-vectors are needed for K(u') i =0, 1,..., NT, one N-vector (only
current is saved) is required for F' + 1(4¢) F! and
two N-vectors are required for w and uw/*'.

5. NUMERICAL EXPERIMENTS

We have developed a computer program to obtain the numerical solution
to the nonlinear integro-differential equation based upon the algorithm
described in Section 4. The computer program also gives the error in the
norm (1.19). These numerical experiments confirmed our theoretical result
concerning the rate of convergence of the approximant to the exact solution
as the mesh spacing 4 tends to zero.

Case 1.

a)=e”", ow)=uy, ux)=e

f(x, t) =~ (X+0 + 2e-—2x(e—t _ e—2t).

Exact solution: u(x, ) =e~**9,
Case 2. ‘
ait)y=e™', ou)=1+ud, uyx)=e%,
flx, )=e &0 4 2e—2x(e—t —e ),

Exact solution: u(x, ) =e~**9,

Case 3.
at)=e ¥, o(u)=ul,  uy(x)=sinux,
S(x,t)=cos(x +t) + 4[sin 2(x + ) — cos 2(x + 1)

— e~ ¥(sin 2x — cos 2x)].
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TABLE 1
h Energy norm (1.19) Rate of convergence
1/2 0.18488 . 1.8
1/3 0.08908 1.6
1/4 0.05632 20
1/5 0.03607 2.1
1/10 0.00840
et 2 v, by v
T R
|
Lo 7°
0
TABLE 1I
h Energy norm (1.19) Rate of convergence
1/2 22213 1.6
1/3 1.16074 2.1
1/4 _ 0.63792 2.5
1/5 0.36795 2.4
1/10 0.06971
TABLE III
h Energy norm (1.19) Rate of convergence
1/2 0.05182 2.1
1/3 0.02211 2.0
1/4 0.012437 2.2
1/5 0.007612 2.2
1/10 0.001657
TABLE 1V
h Energy norm (1.19) Rate of convergence
1/2 0.11758 2.0
1/3 0.05224 1.9
1/4 0.03024 2.3
1/5 0.01810 2.5

1/10 0.0032
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Exact solution: u(x, t) = sin(x + ).

Case 4.
a)=e ¥,  o(u)=1+ul,  wuyx)=sinx,
Sf(x, ) =cos(x + t) + 3[sin 2(x + £) — cos 2(x + ¢)

— e¥(sin 2x — cos 2x)].

Exact solution: u(x, t) = sin(x, t).
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