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A New Scheme for Trajectory
Propagation

Beny Neta' and Yoram Lipowski’

Abstract

In this paper we develop a new numerical method to integrate the equations of motion of
a celestial body. The idea is to replace the differential equation for the fast moving compo-
nent by an equation for the energy per unit mass. We use a simple first-order explicit method
for the approximation of the new system. It is shown that the radial error is much smaller
than that of some numerical schemes. It will be of interest to have a more extensive com-
parison with state-of-the-art methods currently in use for long-term trajectory propagation.
The evaluation of energy is also more accurate than in other known schemes. This method
also conserves the energy per unit mass in the case of perturbation-free flight. The idea can
be extended to higher-order methods and implicit schemes.

Introduction

In this paper we develop a method for the solution of the equations of motion of
an object acted upon by several gravitational masses. In general the motion (in
Cartesian coordinates) can be described by a special class (for which y’ is missing)
of second order initial value problems (IVPs)

y(6) = fit,y®), yO0) =y, y O =y, >0 ¢))

There is a vast literature for the numerical solution of this problem as well as for
the general second order IVPs (useful when using polar coordinates)

Y@ = f(t, y(©),y' @), ¥O0)=x, y0)=y, >0 )

See for example the excellent books by Lambert [12, 13], Burrage [6] and Butcher
[7]. The numerical integration methods for equation (1) can be divided into two dis-
tinct classes: (a) problems for which the solution period is known (even approxi-
mately) in advance and that knowledge is being exploited; (b) problems for which
the period is not known ([1]). For the first class, special methods are available based
on a priori knowledge of the frequency or a range of frequencies, see Bettis [5],
Steifel and Bettis [21], Gautschi [11], Neta and Ford [16], Lyche [15] and others.
See Neta [17] for more information and references.
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Here we only consider some methods of the second class for which the period is
unknown. Numerical methods of Runge-Kutta type as well as linear multistep
methods can be found in the literature. See also Der [9] and the references there.

Before we continue, we need several definitions. Let y; and y/ be an approxima-
tion to y(t;) and y'(#,), respectively, and let £ be an approximate value for f(1;,y,, y!).
A multistep (or k-step) method to solve the second order IVP is given by

k k
2 yusi = B2 bifoe, 3)
=0 =0}
The method is called explicit if b, = 0, and otherwise it is called implicit. We de-
fine the characteristic polynomials p and o as (see also [12])

k
p() =2 al )

=0

k
o) = 2 bl )
i=Q
The order of the method is defined to be p if for an adequately smooth arbitrary test
function £(r)

k k

Dallt + ih) — 22 bt + ih) = Cpiah” 2P (x) + O(h"™Y)

=0 =0
where C,+2 is the error constant. Clearly the coefficients are arbitrary up to a mul-
tiplicative constant. We remove this arbitrariness by choosing a, = 1. We also re-
quire that ao and b not vanish simultaneously, i.e. |ao| + |bs| # 0 otherwise, we just
shift the summation index and get a method of step & — 1. Similarly we have to as-
sume that p and ¢ have no common factor (irreducibility), or else we have a method
of smaller step (after dividing by that common factor.) In order for the method to
be of order at least one, we have to satisfy p(1) = p’(1) = 0, p"(1) = 2¢(1) (con-
sistency). The method is assumed to satisfy also the following:

k
1. X |b| # o0,

=()

2. The method is zero-stable, i.e. no root of the first characteristic polynomial has
modulus greater than one, and every root of modulus one has multiplicity not
greater than two.

The direct application of linear k-step methods (3) to problem (1), rather than the
application of a conventional linear multistep method to an equivalent first-order
system is usually recommended (Ash [2]). Clearly if one is working with polar co-
ordinates, then the system of equations does have dependence on the first deriva-
tive, see equation (8) below. In that case the scheme becomes

k A
z (l,_)’n+i = h 2 brﬁrﬂ (6)
=0 =0

and the order is p if for an adequately smooth arbitrary test function £(r)

k k
Dallt+ih) — ho bl + ih) = Coi P EP() + O(h"?)

f={} 1=()
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where C,- is the error constant. The method is consistent if it is of order at least
one, i.e. p(1) = 0, p’(1) = o(1). The method is zero-stable if no root of the first
characteristic polynomial has modulus greater than one, and if every root of modu-
lus one is simple.

Our idea here is to develop a new method that conserves the energy per unit mass
in the case of perturbation-free flight and use the energy in other cases to approxi-
mate the angular variation.

In the next section we introduce the method for perturbation-free flight and dis-
cuss its properties. In the following section, the generalization to cases where the
energy is not conserved is given. We close with numerical experiments for both
cases and compare the solution to Runge-Kutta-Fehlberg (RKF45) as implemented
in Matlab.

Development of the Method

In this section we describe our new scheme to solve the system of equations

dx k .
ar 2+ )"
d?y k

ar o + ) y 7
where k = 3.986004415 - 10" m’ sec ? is Earth’s gravitational parameter, see e.g.
Vallado [22]. This is a system of IVPs similar to (1). This is a special case where
the orbit is in the xy-plane. In general we have a third equation for z similar to the
above, and the denominator of all three equations will include 2

It is well known that Cowell’s method gives a numerical solution that spirals in-
ward. Encke’s method improves this result but requires more work [3]. See also van
Dooren [23] for a way to stabilize Cowell’s method.

It can be easily shown (see e.g. Bate et al. [3]) that the energy and angular mo-
mentum are conserved for a perturbation-free flight. The conservation of one of
these quantities will be used to approximate the fast changing variable. It is thus im-
portant to rewrite the system in polar coordinates.

d*r doy k
=r{ — —_—
dr’ dt r’

S ®)

This system is similar to equation (2) since the first order derivatives are present. If
the radius r doesn’t change much in time (this, for example, excludes cometary
flights) then we can use any method for the first equation. The value of 6 corre-
sponding to r will be obtained by integrating the relation (conservation of energy

per unit mass, E)
1| {drV doy k .
=—|{=) +[r= A
E 5 [(dt) (; dt) :| . E(0) C))

It can be shown that E is constant, and thus it can be computed from the initial
condition.
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Remark: In the three-dimensional case, we will have to use spherical coordinates

d%r doy do\| &
o 3]

d*6 2 drde dode .
=== +2——"
ar % ¢ Fdede ¢ dar dar " ¢
d¢ _ 2drdp [(doY ,
at ~  rdridr (d;) cos ¢sin ¢ (10

Again we assume that only one out of the three variables changes fast. This one will
be approximated using the energy conservation condition, which is

_ 1| (ary gy a6 Lk
E= 2[(dt> + (rdt) + <rdtcos¢>} . = E(0) an

One can use any scheme to solve the system numerically. Here we chose a first-
order explicit method. For example, we use here a second order Taylor series
method. Let r; be an approximation to r(#;) and similarly for 6(¢) and the derivatives
of each. Then the method is

1
ris1 =r + AIf‘,"F?(At)zi"i (12)
where
Fir1r = Fi + AtFi (]3)
and #; is obtained from the differential equation. In a similar fashion we find
. 1 .
0is1 = 6; + A16; + 7(At)29,- (14)
where ;11 is computed from equation (9)
de 1 k dr \
—=— /2| =+ E0) ]| = |— 15
dt r < r ( )> ( dt ) (15)

We can take the positive sign. The 8; can be computed from the differential equa-
tion. The algorithm is then as follows:

e Initialize
—Setty=0
—Choose At
—Use the initial conditions for ry, Fo, 6 and 6,
—Evaluate the energy per unit mass using equation (9)
e Every time step
Here we loop i from 0
—Evaluate #; and #; using equation (8),
—Evaluate r;+ using equation (12),
—Evaluate 6;+, using equation (14),
—Evaluate 7+, using equation (13),
—Evaluate ;. using equation (15),
¢ Plot numerical solution
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It is important to point out that the method is explicit and therefore doesn’t re-
quire any iteration.

Properties of the Scheme

The method introduced here is based on Taylor series. “Taylor algorithm may be
regarded as a one-step explicit method which involves higher order total deriva-
tives.” ([12], p. 46) these methods are special one-step cases of a more general class
of multistep methods containing higher total derivatives, called Obrechkoff methods
(see [20], [18], and [19].) Since the order of the differential equation is second and
we kept second-order terms in the Taylor expansion, our method is first-order accu-
rate. To see this, we rewrite the method in matrix form. Let z and f(z) be the vectors

(1
z= 9 (16)
r
6
r "~ 3
6
fz) = | . k 17
@= |5k (17)
r
—Z0
L
then equation (8) can be written as
7 = f(z). (18)

Now let z; and f; be the vectors z and f(z) evaluated at #;, then the numerical scheme
can be written in matrix form

Ziv) = Z; + Atl"fi (19)
where T is a block upper triangle matrix with 2 X 2 blocks given by

(1 3Au
(1 .

and I is a 2 X 2 identity matrix. It is clear from equation (19) that the method is
first-order and explicit. By definition, the method is zero stable, since the first char-
acteristic polynomial is

p)=¢—1

which has only one root of unit magnitude. To check absolute stability, we follow
Lambert [13] and consider the test system

y = Ay 1)

where the eigenvalues A;, i = 1, ..., 4 of the constant 4 X 4 matrix A (assumed dis-
tinct) have negative real parts. Therefore the general solution of the test equation
satisfies

ly@—=0 11—
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We now ask under what conditions the numerical solution for this test equation
satisfy

Izl =0t >
Our method when applied to the test equation becomes
Zor) — (I + ATA)Z, = 0 (22)

Since the eigenvalues of A have negative real parts, the question is how the matrix I’
affects these eigenvalues. We will now obtain a condition on the absolute stability
of the method.

Lemina: For a system of four first order ODEs resulting from two second-order
systems, one can choose the matrix A as the 2 X 2 block matrix

0 010

I 0 0 1
A=O ~° 23)

a B a b c d

e fgvp

The assumption that all eigenvalues have a negative real part implies
tr(A) =tr(B) <0
det(B) — tr{@) >0
det(a) = det(4) > 0
as >0 (24)

where as = fc — bg + ap — ed, det(A) is the determinant of A and tr(4) is the
trace of the matrix, i.e. the sum of the diagonal elements.

Proof: The eigenvalues of A could be all real and negative, or could be complex
conjugate pairs with negative real parts. In either case, the fourth-order character-
istic polynomial is

X=(c+p)¥+(cp—dg—a—f)¥ + ash + det(a) =0 (25)
This polynomial can be factored into
(X + ad + a) (P + ar + ay) (26)

The first factor gives the eigenvalues A, A, possibly a complex pair, i.e., A» = Ay
and the second factor gives A3, A4. In any case 91(A;) < 0,i = 1, 2, 3, 4. Note that

At + A= —q
A=
M+ A= —a3
Ashs = ay 27N

and therefore a; > 0, i = 1, 2, 3, 4. If we expand equation (26), we have
N+ a + @)X + (aias + ar + a) R + (awa3 + aia)A + aas =0 (28)

All the coefficients of this polynomial are positive, since all a; are positive. Com-
paring equations (28) with (25) and using the definition of trace and determinant of
a matrix, we have equation (24).
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Theorem: The method is absolutely stable for all £ satisfying

- 2(a) + a3)

@ if tr(e) > 0 (29)

If the trace is nonpositive, then there is no restriction on the step size.

Proof: The matrix ['A will have eigenvalues with negative real part if all the co-
efficients of the fourth degree characteristic polynomial stay positive. It is easy to
show that the characteristic polynomial I'A is

W= <tr(B) + Aétr(a))p,3 + <det(B) — tr(a) + %as + (it)zdet(a)),u,2 +
(as + At det(a))u + det(a) =0
(30)

Since as and det(w) are positive, and since tr(3) < 0, the only coefficient that may
change sign is the coefficient of the cubic term when tr(a) > 0, i.e.

—<tr(B) + %tr(a)) >0 €1}
This implies
_ 2B
At = (@) (32)

which is what we have to prove.

Generalization

The equations here are expressed more generally as

=S ta (33)

In this case the energy is not conserved. It can be shown by combining the equa-
tions (33) and using the definition of energy that

dE .
— =ta, + r’6 34
4 Fa r-fae (34
We will use Crank Nicolson [8] to approximate this to second-order and get the ap-
proximation for 6. The Crank Nicolson [8] scheme for equation (34) is
Ar 2 : ) g
Eivy = E; + ?{riarli + riGaqi + Far@rliet + riiisaglin} (35)

Now substitute for E;+; from equation (9) and solve this for 8+, to get the quadratic
equation

. . 1 k ) .
071 — Atagis10i+1 = — {2<_ + Ei> — itn + A[E; + "i+lar|i+l]} (36)

riv1 Vit1
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Note that if a, or as depend on 6 then equation (36) may become a more compli-
cated nonlinear equation (see later). Note also that if a, = a, = 0, we get the same
equation as equation (15). Now the algorithm requires the update of a, and a,.

e Initialize

—Setty=10

—Choose At

— Use the initial conditions for ro, fo, 6 and 6o

—Evaluate the a, and ag at to

— Evaluate the energy per unit mass using equation (9)

— Evaluate the time derivative of the energy per unit mass using equation (34)
e Every time step

Here we loop on i from zero

—Evaluate #; and 6; using equation (33),

—Evaluate r;+, using equation (12),

—Evaluate 6,4+, using equation (14),

—Evaluate 73, using equation (13),

—Evaluate 6;+; by solving equation (36), and a, and a,

—Evaluate the energy per unit mass using equation (9)

—Evaluate the time derivative of the energy per unit mass using equation (34)
e Plot numerical solution

Note that if a, or ap depend on @ then equation (36) may become a more com-
plicated nonlinear equation. Thus it may require a bit more work to obtain 6;+,. For
example, if a; = — 86 then equation (36) is still quadratic in the form

. 1 k ' .
(1 + 8AN0H, = = {2(- + Ei) — i+ AME + i‘i+1ar|i+l]} 37

ri+1 Yi+1

If ay is independent of , but a, = —ef then

N Y 1 k , .
Oy — At<aﬂ|i+l - 6%)&41 = 2_{2<_ + Ei) = Fip AIE:} (38)
Tisy Ti+ Fi

Numerical Experiments

In this section we compare our method (based on Taylor series second-order ap-
proximation) to a second-order approximation of the original equations and the
fourth-order Runge-Kutta-Fehlberg (RKF45) as implemented in Matlab. We experi-
ment with perturbation-free as well as non-conserving cases. We should emphasize
here that one can use any integrator to approximate the radial and energy equations.
In the first example we solve the system (8) under the initial conditions

r(0) =R + 10°

H0) = 0

80)=0

. 8000

6(0) = {0 (39)

where R = 6.3781363 X 10° m is the radius of Earth.
We compared our new first-order method to a second-order Taylor series and the
Runga-Kutta-Fehlberg (RKF45) as implemented in Matlab. The integration step is
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At = 1 sec (except RKF45 which has a variable step size) and the final time of in-
tegration is 6000 minutes. The value of r decreases (solution spiralling inward) but
at a different rate for two of the methods and increases for the RKF45. The solution
using Taylor series method loses 3%, RKF45 method gains 1.3% and our first order
method loses only 0.5% in 100 hours. It is of no surprise that the energy is con-
served with our method, what is interesting is that the angular momentum is almost
constant (drops by 0.02%), even though we haven’t tried to conserve it. In Fig. 1
we show the graph of energy as computed by Taylor series method and our scheme.
Note that the straight horizontal line is the energy for our new scheme. This is fol-
lowed by a plot of energy (Fig. 2) as computed by RKF45 and a plot of the angu-
lar momentum (Fig. 3). Again the straight line is the graph of angular momentum
as computed by our new scheme. Note that the energy using RKF45 increases but
the maximum is lower than the second-order Taylor series method.

What happens if the perturbation is proportional to r? In our second example, we
took the case a, = —Br, with 8 = 107%. Now the energy is negatively proportional
to r?, since

dE 1 d,,

dt Bri 2 R dt(r )

In the next two figures, we have plotted the radial distance and the energy at the end

of each period (Fig. 4). Notice that the maxima of r are the minima of E as expected.
We have also plotted the energy (Fig. 5) using our scheme and Taylor series ap-

proximation. The extremal values with our scheme (right) stay constant, but with

the Taylor series (left), the values are growing. A similar trend can be seen with

RKF45.

-2.9585 T T T T T T T
-2.959 4
-2.9595 E
-2.96 i
-2.9605 1
o)
<4
g -2.961f 1
w
-2.9615} 1
-2.962 1
-2.9625 b
-2.963 1
_2.9635 ' ) L ) L L L
0 0.5 1 15 2 25 3 35 4
Time x 10°

FIG. 1. Energy as a Function of Tiime for the Conservative Case. The Line Shows the
Energy for our Scheme and the Curve for the Second-Order Taylor Series.
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FIG. 2. Energy as a Function of Time for the Conservative Case Using
RKF45 Method.
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FIG. 3. Angular Momentum as a Function of Time for the Conservative Case. The
Line Shows the Angular Momentum for our Scheme and the Curve for the Second-Order
Taylor Series.
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FIG.4. r(Left) and E (Right) as a Function of Time for the Case a, = —Br, ¢y = 0 Using our
New Scheme.

4 T ol ' [ 2 28 3 1% 4
Ly Torm x'

FIG. 5. Energy as a Function of Time for the Case a, = — Br, ag = 0 Using Taylor Series (Left) and our
New Scheme (Right).

In our third example, we included a small perturbation a, = —ai with a = 10°*
and ay still zero. Clearly the energy is not conserved. The rate of change of energy
in this case is negatively proportional to the square of the rate of change of r, i.e.

E = —a(i)’

Therefore the energy is monotonically decreasing as can be seen on the left side of
Fig. 6. Notice that the energy becomes constant at some time. This is because r
becomes a constant and stays there. In fact one can get the analytic solution for
§ = cr* and then the r equation becomes

P+ oar=cr? — kr?

This equation has an asymptotic solution r = c¢/k, which can be seen in the graph
of r, on the right side of Fig. 6.
A fourth example is a case where the perturbation is a, = 0 and ap = —af with

dE
a = 107" In this case the rate of change of energy is e —ar’(@)* which is

always nonpositive, thus the energy should decrease monotonically. The graph of
energy (Fig. 7) shows that for our scheme, the energy is decreasing monotonically,
but for the Taylor series method we only get the correct trend.
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FIG. 6. Energy and r as a Function of Time for the Case a, = —ar, ag = 0 Using our Scheme.
x 10
-2.96 T T T T T T T
-2.965 .
-2.97 4
o3
o
2
w
-2.975 1
-2.98 i
_2.985 ! 1 It 1 1 1 1
0 0.5 1 15 2 25 3 35 4
Time x10°
FIG. 7. Energy as a Function of Time for the Case a, = 0, ay = —a#. Taylor Series
(Curve) Versus our New Scheme (Line).
Conclusion

Here we developed a new scheme to integrate the equations of motion of a ce-
lestial body. The scheme conserves energy in the case of perturbation free-flight as
was demonstrated in the first example. The Runge-Kutta-Fehlberg as implemented
in Matlab is unable to conserve the energy and angular momentum. In the noncon-
servative cases, we have shown the benefit of our scheme as compared to Taylor se-
ries second-order scheme and Runge-Kutta-Fehlberg fourth-order method. One can
use a different numerical scheme to approximate the differential equations. The
idea here is to use the energy conservation (or the rate of change of energy in non-
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conservative cases) to replace one of the differential equations in the system. In fu-
ture research we show how to apply our idea with implicit approximation for real
world problems.
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