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Abstract-A new parallel algorithm for the LU factorization of a given dense matrix A is described. 
The case of banded matrices is also considered. This algorithm can be combined with Sameh and Brent’s 
[SIAM J. Numer. Anal. 14, 1101-I 113. (1977)] to obtain the solution of a linear system of algebraic 
equations. The arithmetic complexity for the dense case is in’ ($bn in the banded case), using 3(n - 1) 
processors and no square roots. 

I INTRODUCTION 

The parallel computers to be considered belong to a class of computers called the single 
instruction stream-multiple data stream (SIMD) machines. The more general multiple instruction 

stream-multiple data stream (MIMD) machines capable of executing different instructions si- 
multaneously are not considered here. Wing and Huang[ 151, Wallach and Konrad[ 131, Jess and 
Kees[S], and Huang and Wing[3] discuss the solution of linear systems and LU factorization 
on MIMD machines. SIMD machines are best suited for algorithms requiring the same operations 

on large arrays of independent data. 
The solution of a linear system of equations lies at the heart of many programs for scientific 

computation. With the recent development and availability of various parallel computers, new 
algorithms have appeared for solving tridiagonal systems of equations suitable for these ma- 
chines. Notable among these methods are the recursive doubling method (Stone[ 12]), the cyclic 

reduction method (Lambiotte and Voigt[7]), and the partition method (Sameh and Kuck[ 1 I], 
Wang[l4]). The solution of triangular systems was considered by Chen, Kuck and Sameh[l], 
Orcutt[g], Sameh and Brent[9] and Chen and Sameh[2]. See also [6, lo], and references there. 
Here we are interested in developing an algorithm for LU factorization of a matrix. This 

algorithm, combined, for example, with the one due to Sameh and Brent[9], yields the solution 
of linear systems on a parallel computer. 

The arithmetic complexity for the dense (banded) case is in2 ()bn), using 3(n - 1) proc- 

essors and no square roots. 
In the next section the algorithm is developed. The main theorem will be proved in Section 

3. Section 4 will be devoted to namerical experiments with the algorithm. 

2. DEVELOPMENT OF THE ALGORITHM 

Let A be an II x n matrix possessing an LU factorization (with iii = 1, i = 1, 2, . . . , n). 
Then 
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u,, = (1) 
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a, - $, ~,A, 
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Note that (1) expresses the entries nf the ith row of I! in terms of the first i - I rows of U 
and the first i - 1 columns of L. Again, (2) expresses the entries of the jth column of L in 
terms of the first j - 1 rows of U, the first j - 1 columns off., and the jth diagonal entry of 
U. In this way we can build up U row by row and L column by column (alternately). 

It is clear that in order to obtain the entries of L and U via (l)-(2), one cannot utilize the 
parallelism of the computer. Let us construct the following n matrices 

T(m) = (tll”‘), m = 0, 1, . . . , n - 1. 

The entries of the matrices are defined as follows: 

(3.0) 

(3.1) 

(3.2) 

(3.m) 

Remarks 
1. The entries of Tcm) can be computed simultaneously. The waiting time can be minimized 

if one works on more than one column at a time. For example, suppose n = 10, p = 3 x 9; 
then T(l) is of order 9, and one can construct one column at a time. Tf2) is of order 8, and one 
constructs one column and an entry from the next column. Therefore one needs seven steps to 
obtain all entries of T@) except the last one. At this point one can start constructing Tc3’. The 
first time we have idle processors will be when T@’ is constructed, since we cannot construct 

all P@ with the only entry of 7’“. 

2. All T(‘“) can be saved on A if they are computed by columns. Let ai, ti”” be the ith 
columns of A, Fm) respectively. Then Eqs. (3) can be written as follows: 

tj” = ai, (3.0)’ 

t(l) = t(,$tio) _ tiP)t(,OJ , t (3.1)’ 

t!Zl = t$l)t”l) _ $llt\ll , _Z , r? _ 7 (3.2)’ 

The diagonal entries r:f) are given as before. 
3. If A is a banded matrix with bandwidth b and the number of processors p = 3Mb, then 

one can construct M columns of T’“’ at a time. This is possible because in this case both L and 
iJ have a smaller bandwidth ((b + 1)/2). 

4. It turned out that for moderate n, formulae (3) give rise to overflow. In order to avoid 
this problem one normalizes these formulae as follows: 

Once all the T’“’ are ready, one can construct L and U in parallel, using 

l(’ - I ) 

uii = ‘I 
r!‘Il)_ ’ 1 Si%j%n (r$- 1) 
I I, I 

(4) 
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and 

In terms of rr’ formulae (4)-(5) are 

h4+11 = aN+IJ - 5 IN+, kuk,. 

k=I 

575 

(5) 

(4)’ 

(5)’ 

Note that the entries of U are the normalized entries of TI’“‘. 
In the next section we prove that (4)-(5) are equivalent (l)-(2). 

3. MAIN RESULT 

THEOREM 

Let A be a n X n matrix possessing an LU factorization with & = 1, i = 1, 2, . . . , n. 
Then eqns (4)-(5) are equivalent to (l)-(2). 

Proof. By induction. Using (1) for i = 1, (3.0), and the fact that t$’ = 1, one can im- 
mediately see that 

$9’ 

U'J = (Ili = 
AL 
r$J ’ 1 ljln. 

From (2) for j = 1 and (3.0), it is clear that 

Suppose that (4) is true for 1 I i I j I N and that (5) is true for 1 I j zs i I N. Then one 
needs to show that 

t’N’ 

uN+lj 
=N+11 jrN+l, 

t$!.!. 
, 

and 

t!N’ 
IN+1 

l;N+l = - (N) ’ 
tN+IN+I 

irN+ 1. 

To show (6) we start with (1) for i = N + 1: 

Using the induction hypothesis and (3.0), we get 

(0) 

uN+l~ = t$!+ , , - 
@:, It', (N-I) (N-I) 

tN+ I NtNj 

t:yrgy tg t(,‘,’ trN- ‘)tjvN_-,‘ly_ ; 

The least common denominator for the first two terms, together with (3.1), yields 

(7) 

+I’ 
N+ I ?tb;’ (N-l) (N-l) 

u N+lj 
- - . . . _ tN+ I .dNJ 

I\‘, tg’f I’,’ tpN- “tjy,‘b_ ; 
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Again we take a common denominator for the first two terms and use (3.2) to get 

Continuing this process, combining two terms at a time, one has 

(N-I) IN-11 (N-l) 

uN+I, = 
tN+l, b + I N IN, - 

tjy-_,‘k _ , tfN- “$_-,‘,l_ , ti$ 

In a similar fashion one proves (7). 
The arithmetic complexity of the algorithm in the dense case is $z’, using 3(n - 1) 

processors. In the banded case the complexity is &n, using 3(n - 1) processors. In both cases 
square roots are not needed. Increasing the number of processors will reduce the complexity. 
For the dense case the complexity is reduced to in by using 3(n - 1)’ processors. 

Remark concerning error analysis 

Let * denote any of the four arithmetic operations. Then a floating-point operation (on a 
computer having a double-precision accumulator) satisifes 

fl(x*y) = x*y(l + 6) 

and 161 I E, where E is a unit roundoff (see[ 111). It can be shown (see[ 111) that 

f&t’,“) = t;;‘(l + d,& + U,&), 

and, by induction, 

fl(t’jy = tpy 1 + 6,“& + U,,&), (8) 

where 0,. = 2” - 1 and 6, = 6,,_, + O,,_, + 2. Thus 6,, = 2” + m - 1. Using (4)-(5) 

one obtains 

miJ = 4,(1 + d,+,E), (9) 

f&&J = &Cl + d,+,eL (10) 

4. NUMERICAL EXPERIMENTS 

In order to gain more insight into the performance of the algorithm presented, several 
examples have been selected for illustration. Since we do not have a parallel processor, we 
simulated it on a serial computer (VAX I l/780). In this simulation each processor is brought 
into the VAX 1 l/780 one at a time, and its program is executed. When this is completed, it is 
then rolled out, and the processor that is furthest back in its execution time is brought in next. 
The time spent by a processor consists of the program execution time and the data communication 
time. Here the synchronization time was negligible. 

The solution times of various examples were obtained by using a time scale based on the 
VAX 11/780 computer. To investigate the behavior and advantages for the concurrent execution 
of the system simulation problems, the performance evaluation parameters chosen are ( 1) speed- 
up ratio, (2) waiting time, and (3) efficiency. The speed-up ratio is defined as the ratio of the 
serial solution time (TS) to the parallel solution time (TP). In any algorithm for parallel proc- 
essing, the speed-up ratio should ideally be proportional to the number of processors used (p). 

In practice it is difficult to keep all processors busy all the time. Thus, when a processor has 
executed all the ready tasks, it must wait for new data from other processors for further execution. 
Hence, the waiting time (TW) occurs. The efficiency (EFF) represents the ratio of the difference 



LU factorization on parallel computers 577 

between the total parallel solution time and the waiting time to the total parallel solution time; 

i.e. 

EFF = P . TP - TW 
p.TP ’ 

In our first experiment we have taken a 5 X 5 matrix using a various number of processors. 

The parallel solution time TP, the waiting time TW, the efficiency EFF, and the speed-up ratio 
are given in Tables 1, 2, 3 for dense, tridiagonal, and pentadiagonal matrices, respectively. 
Note that time is measured in ,usec. 

Table I. Dense 5 x 5 matrix; TS = 34.6 

P TP TW EFF (o/o) 
Speed-up 

ratio 

3 15.2 3 93.4 2.21 
5 8.4 7.4 82.4 4.12 
8 6.4 16.6 61.6 5.41 

Table 2. Tridiagonal 5 x 5 matrix; TS = 10.4 

Speed-up 
TP TW EFF (%) ratio 

4.0 1.6 86.7 2.60 
2.8 3.6 74.3 3.71 
2.4 8.8 54.2 4.33 

Table 3. Pentadiagonal 5 x 5 matrix; TS = 14.0 

P TP TW EFF (%) 
Speed-up 

ratio 

3 5.2 1.6 89.7 2.69 
5 3.6 3.6 80.0 3.83 
8 2.4 5.2 72.9 5.83 

In the second experiment we have taken a 10 x 10 matrix. The results are summarized 

in the following tables. 

Table 4. Dense 10 x 10 matrix: TS = 303 

P TP TW EFF (%) 
Speed-up 

ratio 

3 102 3 99.0 2.97 
5 61.6 5 98.4 4.92 
8 38.4 12.2 96.0 7.89 

Table 5. Tridiaeonal 10 X 10 matrix: TS = 50.4 

P TP TW EFF (%) 
Speed-up 

ratio 

3 17.2 1.2 97.7 2.93 
5 10.8 3.6 93.3 4.67 
8 6.8 7.2 86.8 7.41 
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Table 6. Pentadiagonal IO x 10 matrix; TS = 76 

Speed-up 
TP TW EFF (9) rat10 

26.0 2.0 97.4 2.92 
15.6 3.6 95.3 4.87 
10.0 7.2 91.0 7.60 

In the last experiment we have taken a 20 X 20 matrix. The results are given in the 
following tables. 

Table 7. Dense 20 X 20 matrix; T, = 1064 

P TP TW EFF (%‘c) 
Speed-up 

ratio 

3 355.2 1.6 99.8 2.99 
5 213.2 2.0 99.8 4.99 

8 133.6 8.0 99.2 7.96 

Table 8. Tridiagonal 20 x 20 matrix; T, = 220.4 

P TP TW EFF (9) 
Speed-up 

ratio 

3 74.0 1.6 99.3 2.98 
5 44.8 3.6 98.4 4.92 

8 28.4 6.8 97.0 7.76 

Table 9. Pentadiagonal 20 x 20 matrix: T, = 350.0 

P TP TW EFF (W) 

3 117.2 1.6 99.5 
5 70.8 3.6 99.0 
8 44.8 9.2 97.4 

Speed-up 
ratio 

2.99 
4.94 
7.81 

Remarks 

1. The efficiency goes down when the number of processors increases. The efficiency is 
the highest when the matrix is dense. 

2. The speed-up ratio is an increasing function of the number of processors and the 

bandwidth. 
3. The efficiency increases with the order: thus, this algorithm is good for large matrices. 
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