
(W7-4Y431XS $7.00 + ML
B, IYXS Pcrgamon Prew Lid

LU FACTORIZATION ON PARALLEL COMPUTERS

BENY NETA
Texas Tech University, Department of Mathematics, Lubbock, TX 79409, U.S.A.

and

HENG-MING TAI
Texas Tech University, Department of Electrical Engineering, Lubbock, TX 79409, U.S.A

(Received December 1983)

Communicated by Ervin Y. Rodin

Abstract-A new parallel algorithm for the LU factorization of a given dense matrix A is described.
The case of banded matrices is also considered. This algorithm can be combined with Sameh and Brent’s
[SIAM J. Numer. Anal. 14, 1101-I 113. (1977)] to obtain the solution of a linear system of algebraic
equations. The arithmetic complexity for the dense case is in’ ($bn in the banded case), using 3(n - 1)
processors and no square roots.

I INTRODUCTION

The parallel computers to be considered belong to a class of computers called the single
instruction stream-multiple data stream (SIMD) machines. The more general multiple instruction

stream-multiple data stream (MIMD) machines capable of executing different instructions si-
multaneously are not considered here. Wing and Huang[151, Wallach and Konrad[131, Jess and
Kees[S], and Huang and Wing[3] discuss the solution of linear systems and LU factorization
on MIMD machines. SIMD machines are best suited for algorithms requiring the same operations

on large arrays of independent data.
The solution of a linear system of equations lies at the heart of many programs for scientific

computation. With the recent development and availability of various parallel computers, new
algorithms have appeared for solving tridiagonal systems of equations suitable for these ma-
chines. Notable among these methods are the recursive doubling method (Stone[12]), the cyclic

reduction method (Lambiotte and Voigt[7]), and the partition method (Sameh and Kuck[1 I],
Wang[l4]). The solution of triangular systems was considered by Chen, Kuck and Sameh[l],
Orcutt[g], Sameh and Brent[9] and Chen and Sameh[2]. See also [6, lo], and references there.
Here we are interested in developing an algorithm for LU factorization of a matrix. This

algorithm, combined, for example, with the one due to Sameh and Brent[9], yields the solution
of linear systems on a parallel computer.

The arithmetic complexity for the dense (banded) case is in2 ()bn), using 3(n - 1) proc-

essors and no square roots.
In the next section the algorithm is developed. The main theorem will be proved in Section

3. Section 4 will be devoted to namerical experiments with the algorithm.

2. DEVELOPMENT OF THE ALGORITHM

Let A be an II x n matrix possessing an LU factorization (with iii = 1, i = 1, 2, . . . , n).
Then

,--I
u,, = (1)

1, =

a, - $, ~,A,
, i>j.

MJJ
(2)

573

514 B. NETA and H.-M. TAI

Note that (1) expresses the entries nf the ith row of I! in terms of the first i - I rows of U
and the first i - 1 columns of L. Again, (2) expresses the entries of the jth column of L in
terms of the first j - 1 rows of U, the first j - 1 columns off., and the jth diagonal entry of
U. In this way we can build up U row by row and L column by column (alternately).

It is clear that in order to obtain the entries of L and U via (l)-(2), one cannot utilize the
parallelism of the computer. Let us construct the following n matrices

T(m) = (tll”‘), m = 0, 1, . . . , n - 1.

The entries of the matrices are defined as follows:

(3.0)

(3.1)

(3.2)

(3.m)

Remarks
1. The entries of Tcm) can be computed simultaneously. The waiting time can be minimized

if one works on more than one column at a time. For example, suppose n = 10, p = 3 x 9;
then T(l) is of order 9, and one can construct one column at a time. Tf2) is of order 8, and one
constructs one column and an entry from the next column. Therefore one needs seven steps to
obtain all entries of T@) except the last one. At this point one can start constructing Tc3’. The
first time we have idle processors will be when T@’ is constructed, since we cannot construct

all P@ with the only entry of 7’“.

2. All T(‘“) can be saved on A if they are computed by columns. Let ai, ti”” be the ith
columns of A, Fm) respectively. Then Eqs. (3) can be written as follows:

tj” = ai, (3.0)’

t(l) = t(,$tio) _ tiP)t(,OJ , t (3.1)’

t!Zl = t$l)t”l) _ $llt\ll , _Z , r? _ 7 (3.2)’

The diagonal entries r:f) are given as before.
3. If A is a banded matrix with bandwidth b and the number of processors p = 3Mb, then

one can construct M columns of T’“’ at a time. This is possible because in this case both L and
iJ have a smaller bandwidth ((b + 1)/2).

4. It turned out that for moderate n, formulae (3) give rise to overflow. In order to avoid
this problem one normalizes these formulae as follows:

Once all the T’“’ are ready, one can construct L and U in parallel, using

l(’ - I)

uii = ‘I
r!‘Il)_ ’ 1 Si%j%n (r$- 1)
I I, I

(4)

LU factorization on parallel computers

and

In terms of rr’ formulae (4)-(5) are

h4+11 = aN+IJ - 5 IN+, kuk,.

k=I

575

(5)

(4)’

(5)’

Note that the entries of U are the normalized entries of TI’“‘.
In the next section we prove that (4)-(5) are equivalent (l)-(2).

3. MAIN RESULT

THEOREM

Let A be a n X n matrix possessing an LU factorization with & = 1, i = 1, 2, . . . , n.
Then eqns (4)-(5) are equivalent to (l)-(2).

Proof. By induction. Using (1) for i = 1, (3.0), and the fact that t$’ = 1, one can im-
mediately see that

$9’

U'J = (Ili =
AL
r$J ’ 1 ljln.

From (2) for j = 1 and (3.0), it is clear that

Suppose that (4) is true for 1 I i I j I N and that (5) is true for 1 I j zs i I N. Then one
needs to show that

t’N’

uN+lj
=N+11 jrN+l,

t$!.!.
,

and

t!N’
IN+1

l;N+l = - (N) ’
tN+IN+I

irN+ 1.

To show (6) we start with (1) for i = N + 1:

Using the induction hypothesis and (3.0), we get

(0)

uN+l~ = t$!+ , , -
@:, It', (N-I) (N-I)

tN+ I NtNj

t:yrgy tg t(,‘,’ trN- ‘)tjvN_-,‘ly_ ;

The least common denominator for the first two terms, together with (3.1), yields

(7)

+I’
N+ I ?tb;’ (N-l) (N-l)

u N+lj
- - . . . _ tN+ I .dNJ

I\‘, tg’f I’,’ tpN- “tjy,‘b_ ;

516 B. NETA and H.-M. TAI

Again we take a common denominator for the first two terms and use (3.2) to get

Continuing this process, combining two terms at a time, one has

(N-I) IN-11 (N-l)

uN+I, =
tN+l, b + I N IN, -

tjy-_,‘k _ , tfN- “$_-,‘,l_ , ti$

In a similar fashion one proves (7).
The arithmetic complexity of the algorithm in the dense case is $z’, using 3(n - 1)

processors. In the banded case the complexity is &n, using 3(n - 1) processors. In both cases
square roots are not needed. Increasing the number of processors will reduce the complexity.
For the dense case the complexity is reduced to in by using 3(n - 1)’ processors.

Remark concerning error analysis

Let * denote any of the four arithmetic operations. Then a floating-point operation (on a
computer having a double-precision accumulator) satisifes

fl(x*y) = x*y(l + 6)

and 161 I E, where E is a unit roundoff (see[111). It can be shown (see[111) that

f&t’,“) = t;;‘(l + d,& + U,&),

and, by induction,

fl(t’jy = tpy 1 + 6,“& + U,,&), (8)

where 0,. = 2” - 1 and 6, = 6,,_, + O,,_, + 2. Thus 6,, = 2” + m - 1. Using (4)-(5)

one obtains

miJ = 4,(1 + d,+,E), (9)

f&&J = &Cl + d,+,eL (10)

4. NUMERICAL EXPERIMENTS

In order to gain more insight into the performance of the algorithm presented, several
examples have been selected for illustration. Since we do not have a parallel processor, we
simulated it on a serial computer (VAX I l/780). In this simulation each processor is brought
into the VAX 1 l/780 one at a time, and its program is executed. When this is completed, it is
then rolled out, and the processor that is furthest back in its execution time is brought in next.
The time spent by a processor consists of the program execution time and the data communication
time. Here the synchronization time was negligible.

The solution times of various examples were obtained by using a time scale based on the
VAX 11/780 computer. To investigate the behavior and advantages for the concurrent execution
of the system simulation problems, the performance evaluation parameters chosen are (1) speed-
up ratio, (2) waiting time, and (3) efficiency. The speed-up ratio is defined as the ratio of the
serial solution time (TS) to the parallel solution time (TP). In any algorithm for parallel proc-
essing, the speed-up ratio should ideally be proportional to the number of processors used (p).

In practice it is difficult to keep all processors busy all the time. Thus, when a processor has
executed all the ready tasks, it must wait for new data from other processors for further execution.
Hence, the waiting time (TW) occurs. The efficiency (EFF) represents the ratio of the difference

LU factorization on parallel computers 577

between the total parallel solution time and the waiting time to the total parallel solution time;

i.e.

EFF = P . TP - TW
p.TP ’

In our first experiment we have taken a 5 X 5 matrix using a various number of processors.

The parallel solution time TP, the waiting time TW, the efficiency EFF, and the speed-up ratio
are given in Tables 1, 2, 3 for dense, tridiagonal, and pentadiagonal matrices, respectively.
Note that time is measured in ,usec.

Table I. Dense 5 x 5 matrix; TS = 34.6

P TP TW EFF (o/o)
Speed-up

ratio

3 15.2 3 93.4 2.21
5 8.4 7.4 82.4 4.12
8 6.4 16.6 61.6 5.41

Table 2. Tridiagonal 5 x 5 matrix; TS = 10.4

Speed-up
TP TW EFF (%) ratio

4.0 1.6 86.7 2.60
2.8 3.6 74.3 3.71
2.4 8.8 54.2 4.33

Table 3. Pentadiagonal 5 x 5 matrix; TS = 14.0

P TP TW EFF (%)
Speed-up

ratio

3 5.2 1.6 89.7 2.69
5 3.6 3.6 80.0 3.83
8 2.4 5.2 72.9 5.83

In the second experiment we have taken a 10 x 10 matrix. The results are summarized

in the following tables.

Table 4. Dense 10 x 10 matrix: TS = 303

P TP TW EFF (%)
Speed-up

ratio

3 102 3 99.0 2.97
5 61.6 5 98.4 4.92
8 38.4 12.2 96.0 7.89

Table 5. Tridiaeonal 10 X 10 matrix: TS = 50.4

P TP TW EFF (%)
Speed-up

ratio

3 17.2 1.2 97.7 2.93
5 10.8 3.6 93.3 4.67
8 6.8 7.2 86.8 7.41

578 B. NETA and H.-M. TAI

Table 6. Pentadiagonal IO x 10 matrix; TS = 76

Speed-up
TP TW EFF (9) rat10

26.0 2.0 97.4 2.92
15.6 3.6 95.3 4.87
10.0 7.2 91.0 7.60

In the last experiment we have taken a 20 X 20 matrix. The results are given in the
following tables.

Table 7. Dense 20 X 20 matrix; T, = 1064

P TP TW EFF (%‘c)
Speed-up

ratio

3 355.2 1.6 99.8 2.99
5 213.2 2.0 99.8 4.99

8 133.6 8.0 99.2 7.96

Table 8. Tridiagonal 20 x 20 matrix; T, = 220.4

P TP TW EFF (9)
Speed-up

ratio

3 74.0 1.6 99.3 2.98
5 44.8 3.6 98.4 4.92

8 28.4 6.8 97.0 7.76

Table 9. Pentadiagonal 20 x 20 matrix: T, = 350.0

P TP TW EFF (W)

3 117.2 1.6 99.5
5 70.8 3.6 99.0
8 44.8 9.2 97.4

Speed-up
ratio

2.99
4.94
7.81

Remarks

1. The efficiency goes down when the number of processors increases. The efficiency is
the highest when the matrix is dense.

2. The speed-up ratio is an increasing function of the number of processors and the

bandwidth.
3. The efficiency increases with the order: thus, this algorithm is good for large matrices.

Acknowledgemenrs-The authors would like to thank the referee for his suggestions. which greatly improved the paper.

I.

2.

3.

4.
5.

REFERENCES

S. C. Chen, D. J. Kuck and A. H. Sameh, Practical parallel band triangular system solvers. ACM Trans. Math.
Software 4, 270-277 (1980).
S. C. Chen and A. H. Sameh, On parallel triangular system solvers. Proc. 1975 Sagamore Computer Conf. on
Parallel Processing, pp. 237-238, August (1975).
J. W. Huang and 0. Wing, Optimal parallel triangulation of a sparse matrix. /EEE Trans. Circuirs Sysf. CAS-
26, 726-732 (1979).
E. Isaacson and H. B. Keller, Analwis of Numerical Mrrhods. John Wiley, New York (1966).
J. A. G. Jess and H. G. M. Kees, A data structure for parallel L/U decomposition. fEEE Trans. Comput. C-31,
23 l-239 (1982).

/_.U factorization on parallel computers 579

6. R. M. Kant and T. Kimura, Decentralized parallel algorithms for matrix computation. Proc. Fifrh Annual Symp.
Computer Architecture, pp. 96-100, Palo Alto (1978).

7. J. J. Lambiotte and R. G. Voigt, The solution of tridiagonal linear systems of the CDC STAR-100 computer.
ACM Trans. Math. Sofiware 1, 308-329 (1975).

8. S. E. Orcutt, Parallel Solution Methods for Triangwlar Linear System of Equations, Technical Report No. 77.
Digital Syst. Lab., Stanford Electronics Labs., Stanford. CA (1974).

9. A. H. Sameh and R. P. Brent, Solving triangular linear systems on a parallel computer. SIAM J. Numer. Anal.
14, 1101-1113 (1977).

10. A. H. Sameh and D. J. Kuck, A parallel QR algorithm for symmetric tridiagonal matrices. IEEE Trans. Compur.
c-26, 147-153 (1977).

11. A. H. Sameh and D. J. Kuck, On stable parallel linear system solvers. J. Assoc. Comput. Mach. 25, 81-91
(1978).

12. H. S. Stone, Parallel tridiagonal equation solvers. ACM Trans. Math. Sqftware 1, 289-307 (1975).
13. Y. Wallach and V. Konrad, On block-parallel methods for solving linear equations. /EEE Trans. Comput. C-29,

354-359 (1980).
14. H. H. Wang, A parallel method for tridiagonal equations. ACM Trans. Math. Software 7, 170-183 (1981).
15. 0. Wing and J. W. Huang, A computation model of parallel solution of linear equations. IEEE Trans. Comput.

C-29, 632-638 (1980).

