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Abstract The convergence of a finite element scheme approximating a nonlinear
system of integro-differential equations is proven. This system arises in mathematical
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difference results.
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1 Introduction

Integro-differential models arise in many scientific and engineering disciplines. Such
a model arises, for instance, in mathematical modeling of the process of a magnetic
field penetrating into a substance. If the coefficient of thermal heat capacity and
electroconductivity of the substance is highly dependent on the temperature, then the
corresponding Maxwell system [1] can be rewritten in the following form [2]:

∂W

∂t
= −∇ ×

[
a

(∫ t

0
|∇ × W |2 dτ

)
∇ × W

]
,

where W = (W1, W2, W3) is the vector of the magnetic field and the function a =
a(σ ) is defined for σ ∈ [0, ∞).

If the magnetic field has the form W = (0, u1, u2) and ui = ui(x, t), i = 1, 2,
then we have

∇ × (a(σ )∇ × W) =
(

0, − ∂

∂x

(
a(σ )

∂u1

∂x

)
, − ∂

∂x

(
a(σ )

∂u2

∂x

))
.

Therefore, we obtain the following system of nonlinear integro-differential
equations:

∂ui

∂t
= ∂

∂x

[
a

(∫ t

0

[(
∂u1

∂x

)2

+
(

∂u2

∂x

)2
]

dτ

)
∂ui

∂x

]
, i = 1, 2. (1.1)

Note that the (1.1)-type model is complex, but special cases of it were investigated;
see [2–8]. The existence of global solutions to initial-boundary value problems for
such models has been proven in [2–5, 8] by using some modifications of the Galerkin
method and compactness arguments [9, 10]. For solvability and uniqueness properties
of initial-boundary value problems for (1.1)-type models, see also [6, 7] as well as
many other scientific works.

Assume the temperature of the considered body is constant throughout the mate-
rial, i.e., dependent on time, but independent of the space coordinates. If the magnetic
field again has the form W = (0, u1, u2) and ui = ui(x, t), i = 1, 2, then the
same process of the magnetic field penetrating into the material is modeled by the
following system of integro-differential equations:

∂ui

∂t
= a

(∫ t

0

∫ 1

0

[(
∂u1

∂x

)2

+
(

∂u2

∂x

)2
]

dxdτ

)
∂2ui

∂x2
, i = 1, 2. (1.2)

The existence and uniqueness of the solutions to (1.2)-type scalar models were
studied in [8].

The asymptotic behavior of the solutions to the initial-boundary value problem for
the (1.1) and (1.2)-type models have also been the subject of intensive research; see
[8, 11–16]. For system (1.2) this issue is studied in [15].

Note that in [12, 16–19] and in a number of other works difference schemes
for (1.1) and (1.2)-type models were investigated. Difference schemes and finite
element approximations for a nonlinear parabolic integro-differential scalar model
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similar to (1.1) were studied in [20] and [21]. Finite difference schemes and finite
element approximations for the scalar equation of (1.2)-type with a(σ ) = 1 + σ

were studied in [16] and [22], respectively. The convergence of the finite difference
approximations of system (1.2) for the case a(σ ) = 1 + σ was studied in [19].

Our main goals in the present paper are to study the finite element approximations
of system (1.2), as well as to discuss the existence, uniqueness and asymptotic behav-
ior of its solutions, to observe the asymptotic behavior obtained by our numerical
experiments, and to carry out a comparative analysis of the finite element and finite
difference methods. The rest of the paper is organized as follows. In the next section
we briefly discuss the existence, uniqueness and asymptotic behavior of solutions
to the initial boundary value problem. In Section 3 a variational formulation of the
problem is presented. In Section 4 a finite element scheme for (1.2) is investigated.
We close with a section on numerical implementation, where we present numerical
results and compare the decay rate to the theoretical results and to the outcome of the
finite difference scheme.

2 Statement of problem. Existence, uniqueness and asymptotic
behavior of solutions

Consider the following initial-boundary value problem:

∂ui

∂t
= (1 + σ)

∂2ui

∂x2
, (x, t) ∈ (0, 1) × (0, ∞), (2.1)

ui(0, t) = ui(1, t) = 0, t ≥ 0, (2.2)

ui(x, 0) = ui0(x), x ∈ [0, 1], (2.3)

i = 1, 2,

where

σ(t) =
∫ t

0

∫ 1

0

[(
∂u1

∂x

)2

+
(

∂u2

∂x

)2
]

dxdτ

and ui0 = ui0(x), i = 1, 2 are given functions.
We use the usual spaces Ck , Lp, Hk and Hk

0 .
Let us assume that ui = ui(x, t), i = 1, 2 is a solution of problem (2.1)–(2.3)

such that ui(·, t), ∂ui (·,t)
∂x

, ∂ui (·,t)
∂t

, ∂2ui(·,t)
∂t ∂x

, i = 1, 2 are all in C0([0, ∞); L2(0, 1)),

while ∂2ui(·,t)
∂t2 , i = 1, 2 are in L2((0, ∞); L2(0, 1)).

It is easy to obtain the continuous dependence of solutions on initial data. Indeed,
by multiplying equation (2.1) by ui , i = 1, 2, after simple transformations, we get
the following estimate

‖u1‖ + ‖u2‖ ≤ ‖u10‖ + ‖u20‖.
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Below we will show that stronger estimates guaranteeing the continuous depen-
dence of solution on initial data are valid (see Theorems 2.1 and 2.2 below).

The following theorem holds [15].

Theorem 2.1 If ui0 ∈ H 1
0 (0, 1), i = 1, 2, then for the solution to problem (2.1)–(2.3)

the following estimate is true

‖u1‖ +
∥∥∥∥∂u1

∂x

∥∥∥∥+ ‖u2‖ +
∥∥∥∥∂u2

∂x

∥∥∥∥ ≤ C exp

(
− t

2

)
.

Remark 1 Here and below in this section, C stands for positive constants which
depend on ui0, i = 1, 2 but are independent of t .

Note that Theorem 2.1 gives exponential stabilization of the solution to problem
(2.1)–(2.3) in the norm of the space H 1(0, 1). The stabilization is also achieved in the
norm of the space C1(0, 1). In particular, we now show that the following theorem
holds [15].

Theorem 2.2 If ui0 ∈ H 4(0, 1)∩H 1
0 (0, 1), i = 1, 2, then for the solution to problem

(2.1)–(2.3) the following relations hold:∣∣∣∣∂ui(x, t)

∂x

∣∣∣∣ ≤ C exp

(
− t

2

)
,

∣∣∣∣∂ui(x, t)

∂t

∣∣∣∣ ≤ C exp

(
− t

2

)
, i = 1, 2.

Here we will give a schematic proof of Theorem 2.2, but first we state and prove
an auxiliary lemma [15].

Lemma 2.1 For the solution of problem (2.1)–(2.3) the following estimate holds:∥∥∥∥∂u1(x, t)

∂t

∥∥∥∥+
∥∥∥∥∂u2(x, t)

∂t

∥∥∥∥ ≤ C exp

(
− t

2

)
.

Proof Differentiating equation (2.1) with respect to t for i = 1 and multiplying by
∂u1/∂t , we deduce after some transformations that

d

dt

∫ 1

0

(
∂u1

∂t

)2

dx + (1 + σ)

∫ 1

0

(
∂2u1

∂x∂t

)2

dx

≤ (1 + σ)−1

{∫ 1

0

[(
∂u1

∂x

)2

+
(

∂u2

∂x

)2
]

dx

}2 ∫ 1

0

(
∂u1

∂x

)2

dx. (2.4)

Using Poincaré’s inequality, Theorem 2.1, the nonnegativity of σ(t) and relation
(2.4), we arrive at ∥∥∥∥∂u1

∂t

∥∥∥∥ ≤ C exp

(
− t

2

)
.

Analogously, ∥∥∥∥∂u2

∂t

∥∥∥∥ ≤ C exp

(
− t

2

)
.

Now we turn to the proof of Theorem 2.2.

Author's personal copy



Numer Algor (2013) 64:127–155 131

Proof First we estimate ∂2u1/∂x2 in the norm of the space L1(0, 1). From (2.1) for
i = 1 we have

∂2u1

∂x2
= (1 + σ)−1 ∂u1

∂t
. (2.5)

Integrating (2.5) on (0, 1), using the Cauchy–Schwarz inequality, applying
Lemma 2.1 and taking into account the nonnegativity of σ(t), we derive

∫ 1

0

∣∣∣∣∂
2u1

∂x2

∣∣∣∣ dx ≤ C exp

(
− t

2

)
.

From this, taking into account the relation

∂u1(x, t)

∂x
=
∫ 1

0

∂u1(y, t)

∂y
dy +

∫ 1

0

∫ x

y

∂2u1(ξ, t)

∂ξ2
dξdy

and the boundary conditions (2.2), it follows that

∣∣∣∣∂u1(x, t)

∂x

∣∣∣∣ ≤
∫ 1

0

∣∣∣∣∂
2u1(y, t)

∂y2

∣∣∣∣ dy ≤ C exp

(
− t

2

)
.

Analogously, ∣∣∣∣∂u2(x, t)

∂x

∣∣∣∣ ≤ C exp

(
− t

2

)
.

Next, we estimate ∂u1/∂t in the norm of the space C1(0, 1). First we multiply
(2.1) for i = 1 by ∂3u1/∂x2∂t .

Using Theorem 2.1, relation (2.5) and Lemma 2.1, after some transformations we
arrive at

‖u1‖2 +
∥∥∥∥∂u1

∂x

∥∥∥∥
2

+
∥∥∥∥∂2u1

∂x2

∥∥∥∥
2

+
∥∥∥∥ ∂2u1

∂x∂t

∥∥∥∥
2

≤ C exp(−t).

From this, taking into account Lemma 2.1 once again, it follows that

∣∣∣∣∂u1(x, t)

∂t

∣∣∣∣ =
∣∣∣∣∣
∫ 1

0

∂u1(y, t)

∂t
dy +

∫ 1

0

∫ x

y

∂2u1(ξ, t)

∂ξ∂t
dξdy

∣∣∣∣∣
≤
[∫ 1

0

(
∂u1(x, t)

∂t

)2

dx

]1/2

+
∫ 1

0

∣∣∣∣∂
2u1(y, t)

∂y∂t

∣∣∣∣ dy ≤ C exp

(
− t

2

)
.

Analogously, ∣∣∣∣∂u2(x, t)

∂t

∣∣∣∣ ≤ C exp

(
− t

2

)
.

This completes the proof of Theorem 2.2.
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Remark 2 The existence of globally defined solutions of problems (2.1)–(2.3) can be
obtained by a routine procedure. One first establishes the existence of local solutions
on a maximal time interval and then uses the derived a priori estimates to show that
the solutions cannot escape in finite time. This approach is used very often; see, for
example, [9] and [10].

The uniqueness of solutions of problem (2.1)–(2.3) can be proven as well. Indeed,
let ui , ūi , i = 1, 2, be two solutions of problem (2.1)–(2.3) and zi(x, t) = ui(x, t) −
ūi (x, t). We have

∂zi

∂t
= [1 + σ(t)]

∂2ui

∂x2
− [1 + σ̄ (t)]

∂2ūi

∂x2
, (2.6)

where

σ̄ (t) =
∫ t

0

∫ 1

0

[(
∂ū1

∂x

)2

+
(

∂ū2

∂x

)2
]

dxdτ.

Multiplying (2.6) by zi and integrating, we get

∫ 1

0
zi

∂zi

∂t
dx +

∫ 1

0

(
∂ui

∂x
− ∂ūi

∂x

)(
∂ui

∂x
− ∂ūi

∂x

)
dx

+
∫ 1

0

[
σ(t)

∂ui

∂x
− σ̄ (t)

∂ūi

∂x

](
∂ui

∂x
− ∂ūi

∂x

)
dx

= 1

2

d

dt

∫ 1

0
z2
idx +

∫ 1

0

(
∂zi

∂x

)2

dx + 1

2

∫ 1

0
[σ(t) + σ̄ (t)]

(
∂ui

∂x
− ∂ūi

∂x

)2

dx

+ 1

2

∫ 1

0
[σ(t) − σ̄ (t)]

[(
∂ui

∂x

)2

−
(

∂ūi

∂x

)2
]

dx.

Integrating with respect to t , we get the inequality

∫ 1

0
z2
i dx +

∫ t

0
[σ(τ) − σ̄ (τ )]

∫ 1

0

[(
∂ui

∂x

)2

−
(

∂ūi

∂x

)2
]

dxdτ ≤ 0, i = 1, 2.

Summing these inequalities, we obtain

∫ 1

0

(
z2

1 + z2
2

)
dx +

∫ t

0
[σ(τ) − σ̄ (τ )]

d

dτ
[σ(τ) − σ̄ (τ )] dτ ≤ 0,

or ∫ 1

0

(
z2

1 + z2
2

)
dx + 1

2
[σ(t) − σ̄ (t)]2 ≤ 0.

From this we immediately get zi(x, t) ≡ 0, i = 1, 2, which proves the uniqueness of
the solution.
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3 Variational formulation

Consider the following initial-boundary value problem:

∂ui

∂t
= (1 + σ(t))

∂2ui

∂x2
+ fi(x, t), (x, t) ∈ (0, 1) × (0, T ),

ui(0, t) = ui(1, t) = 0, 0 ≤ t ≤ T ,

ui(x, 0) = ui0(x), x ∈ [0, 1],
i = 1, 2, (3.1)

where

σ(t) =
∫ t

0

∫ 1

0

[(
∂u1

∂x

)2

+
(

∂u2

∂x

)2
]

dxdτ ,

T = Const. > 0 and ui0 = ui0(x), i = 1, 2 are given functions.
One of the ingredients of the finite element method is a variational formulation of

the problem. To provide this variational formulation, let us denote by H the linear
space of functions ui satisfying the boundary conditions in (3.1) and

||ui(·, t)||1 < ∞,

where

||ui(·, t)||r =
⎧⎨
⎩
∫ 1

0

⎡
⎣|ui(x, t)|2 +

r∑
j=1

∣∣∣∣∂
jui(x, t)

∂xj

∣∣∣∣
2
⎤
⎦ dx

⎫⎬
⎭

1/2

, i = 1, 2.

The variational formulation of the problem can now be stated as follows: Find a
pair of functions ui(x, t) ∈ H for which

〈
vi,

∂ui

∂t

〉
+
〈
(1 + σ(t))

∂ui

∂x
,
∂vi

∂x

〉
= < fi, vi >, ∀vi ∈ H, (3.2)

and

< vi, ui(x, 0) > = < vi, ui0(x) >, ∀vi ∈ H, i = 1, 2, (3.3)

where

< p(x), q(x) > =
∫ 1

0
p(x)q(x)dx.

To approximate the solution of (3.2) and (3.3) we require that ui and vi lie in a
finite-dimensional subspace Sh of H for each t and i = 1, 2. The following property
concerning approximability in Sh can be readily verified for finite element spaces;
see [23].
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Approximation property There is an integer r ≥ 2 and positive numbers C0, C1
independent of h such that for any v ∈ H , there exists a point vh ∈ Sh satisfying

||v − vh||� ≤ C�h
j−�||v||j for 0 ≤ � ≤ 1, � < j ≤ r. (3.4)

The approximation uh
i ∈ Sh to ui is defined by the following variational analog of

(3.2), (3.3): Find a pair uh
i ∈ Sh such that

〈
vh
i ,

∂uh
i

∂t

〉
+
〈
(1 + σh(t))

∂uh
i

∂x
,
∂vh

i

∂x

〉
= < fi, v

h
i >, ∀vh

i ∈ Sh, (3.5)

and

< vh
i , uh

i (x, 0) >=< vh
i , ui0(x) >, ∀vh

i ∈ Sh, i = 1, 2, (3.6)

where

σh(t) =
∫ t

0

∫ 1

0

⎡
⎣
(

∂uh
1

∂x

)2

+
(

∂uh
2

∂x

)2
⎤
⎦ dxdτ.

Once a basis has been selected for Sh, (3.5) and (3.6) are equivalent to a set of N

integro-differential equations, where N is the dimension of Sh. The solution of such
a system will be discussed in Section 5.

4 Error estimates

In this section we shall estimate the error in the finite element approximation using
the norm

|||E|||r =
⎡
⎣∫ T

0

∫ 1

0

⎛
⎝ r∑

j=0

∣∣∣∣∂
jE(x, t)

∂xj

∣∣∣∣
2
⎞
⎠ dxdt

⎤
⎦

1/2

.

Whenever r = 0 we will omit the subscript for this norm as well.

Theorem 4.1 The error in the f inite element approximation uh
i generated by (3.5),

(3.6) satisf ies the inequality

|||ui − uh
i |||1 ≤ hj−1

{
c1h

2 ||ui0||2 + c2h
2
∣∣∣∣
∣∣∣∣
∣∣∣∣∂ui

∂t

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

+ c3|||ui |||2 + c4h
2(j−1)

2∑
m=1

|||um|||2

+ c5

[
2∑

m=1

(
c6h

j−1 |||um|||2 + c7[]um[]
)]2
⎫⎬
⎭

1/2

, j > 1,
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where

[]u[] =
∫ T

0

∫ 1

0
|u| dxdτ

and ci , i = 1, 2, ..., 7, denote various positive constants.

Proof Subtracting (3.5) from (3.2) with vh
i instead of vi , we obtain

〈
vh
i ,

∂uh
i

∂t

〉
+
〈
(1 + σh(t))

∂uh
i

∂x
,
∂vh

i

∂x

〉
=
〈
vh
i ,

∂ui

∂t

〉
+
〈
(1 + σ(t))

∂ui

∂x
,
∂vh

i

∂x

〉
,

∀vh
i ∈ Sh, i = 1, 2.

Let ũh
i be any function in Sh. Then

〈
vh
i ,

∂
(
uh

i − ũh
i

)
∂t

〉
+
〈[

(1 + σh(t))
∂uh

i

∂x
− (1 + σ̃h(t))

∂ũh
i

∂x

]
,
∂vh

i

∂x

〉

=
〈
vh
i ,

∂
(
ui − ũh

i

)
∂t

〉
+
〈[

(1 + σ(t))
∂ui

∂x
− (1 + σ̃h(t))

∂ũh
i

∂x

]
,
∂vh

i

∂x

〉
,

∀vh
i ∈ Sh, i = 1, 2, (4.1)

where

σ̃h(t) =
∫ t

0

∫ 1

0

⎡
⎣
(

∂ũh
1

∂x

)2

+
(

∂ũh
2

∂x

)2
⎤
⎦ dxdτ.

Define the errors as follows:

ei(x, t) = uh
i (x, t) − ũh

i (x, t),

Ei(x, t) = ui(x, t) − ũh
i (x, t), i = 1, 2. (4.2)

Since ei ∈ Sh, we can let vh
i = ei and (4.1) becomes

〈
ei,

∂ei

∂t

〉
+
〈
∂ei

∂x
,
∂ei

∂x

〉
+
〈[

σh(t)
∂uh

i

∂x
− σ̃h(t)

∂ũh
i

∂x

]
,
∂ei

∂x

〉

=
〈
ei,

∂Ei

∂t

〉
+
〈
∂Ei

∂x
,
∂ei

∂x

〉
+
〈[

σ(t)
∂ui

∂x
− σ̃h(t)

∂ũh
i

∂x

]
,
∂ei

∂x

〉
, i = 1, 2.

(4.3)
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Considering the last term on the left-hand side of (4.3) and denoting,

ωi = ∂uh
i

∂x
, ηi = ∂ũh

i

∂x
,

we have

〈[
σh(t)

∂uh
i

∂x
− σ̃h(t)

∂ũh
i

∂x

]
,
∂ei

∂x

〉

= 1

2

〈∫ t

0

∫ 1

0

[
ω2

1 + ω2
2

]
dξdτ +

∫ t

0

∫ 1

0

[
η2

1 + η2
2

]
dξdτ, (ωi − ηi)

2

〉

+ 1

2

〈∫ t

0

∫ 1

0

[
ω2

1 + ω2
2

]
dξdτ −

∫ t

0

∫ 1

0

[
η2

1 + η2
2

]
dξdτ, ω2

i − η2
i

〉

≥ 1

2

∫ 1

0

{∫ t

0

∫ 1

0

(
ω2

1 + ω2
2 − η2

1 − η2
2

)
dξdτ

}(
ω2

i − η2
i

)
dx.

Now ω2
1 − η2

1 + ω2
2 − η2

2 ≥ 2 min
j=1,2

(ω2
j − η2

j ) ≡ 2(ω2
k − η2

k). Also ω2
i − η2

i ≥
min

j=1, 2
(ω2

j − η2
j ). So,

〈[
σh(t)

∂uh
i

∂x
− σ̃h(t)

∂ũh
i

∂x

]
,
∂ei

∂x

〉

≥
∫ t

0

∫ 1

0

(
ω2

k − η2
k

)
dξdτ

∫ 1

0

(
ω2

k − η2
k

)
dx = 1

2

dφ2
k

dt
,

where

φk(t) ≡
∫ t

0

∫ 1

0

(
ω2

k − η2
k

)
dξdτ.

Therefore the left-hand side of (4.3) can be rewritten as follows:

〈
ei,

∂ei

∂t

〉
+
〈
∂ei

∂x
,
∂ei

∂x

〉
+
〈[

σh(t)
∂uh

i

∂x
− σ̃h(t)

∂ũh
i

∂x

]
,
∂ei

∂x

〉

≥ 1

2

d

dt
||ei ||2 +

∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
2

+ 1

2

dφ2
k

dt
, i = 1, 2.
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Now consider the last term on the right-hand side of (4.3). Substituting for ∂ui

∂x
from

(4.2), we have

σ(t)
∂ui

∂x
− σ̃h(t)

∂ũh
i

∂x

= ∂Ei

∂x

∫ t

0

∫ 1

0

⎡
⎣
(

∂E1

∂x
+ ∂ũh

1

∂x

)2

+
(

∂E2

∂x
+ ∂ũh

2

∂x

)2
⎤
⎦ dxdτ

+ ∂ũh
i

∂x

∫ t

0

∫ 1

0

[(
∂E1

∂x

)2

+
(

∂E2

∂x

)2

+2
∂E1

∂x

∂ũh
1

∂x
+2

∂E2

∂x

∂ũh
2

∂x

]
dxdτ, i =1, 2.

Taking this into account in the right-hand side of (4.3), we get

〈
ei,

∂Ei

∂t

〉
+
〈
∂Ei

∂x
,
∂ei

∂x

〉
+
〈
∂Ei

∂x
,
∂ei

∂x

〉 ∫ t

0

∫ 1

0

⎡
⎣
(

∂ũh
1

∂x

)2

+
(

∂ũh
2

∂x

)2
⎤
⎦ dxdτ

+
〈
∂Ei

∂x
,
∂ei

∂x

〉 ∫ t

0

∫ 1

0

[(
∂E1

∂x

)2

+
(

∂E2

∂x

)2
]

dxdτ

+
〈

∂ũh
i

∂x
,
∂ei

∂x

〉 ∫ t

0

∫ 1

0

[(
∂E1

∂x

)2

+
(

∂E2

∂x

)2
]

dxdτ

+
〈

∂Ei

∂x
+ ∂ũh

i

∂x
,
∂ei

∂x

〉 ∫ t

0

∫ 1

0
2

(
∂E1

∂x

∂ũh
1

∂x
+ ∂E2

∂x

∂ũh
2

∂x

)
dxdτ ≤

〈
ei,

∂Ei

∂t

〉

+
〈∣∣∣∣∂Ei

∂x

∣∣∣∣ ,
∣∣∣∣∂ei

∂x

∣∣∣∣
〉⎧⎨
⎩1+

∫ t

0

∫ 1

0

⎡
⎣(1+ 1

ε1

)(
∂ũh

1

∂x

)2

+
(

1+ 1

ε2

)(
∂ũh

2

∂x

)2
⎤
⎦ dxdτ

+
∫ t

0

∫ 1

0

[
(1 + ε1)

(
∂E1

∂x

)2

+ (1 + ε2)

(
∂E2

∂x

)2
]

dxdτ

}

+
〈∣∣∣∣∣

∂ũh
i

∂x

∣∣∣∣∣ ,
∣∣∣∣∂ei

∂x

∣∣∣∣
〉{∫ t

0

∫ 1

0

[(
∂E1

∂x

)2

+
(

∂E2

∂x

)2
]

dxdτ

+ 2

∣∣∣∣∣sup
x,t

(
∂ũh

1

∂x

)∣∣∣∣∣
∫ t

0

∫ 1

0

∣∣∣∣∂E1

∂x

∣∣∣∣ dxdτ

+ 2

∣∣∣∣∣sup
x,t

(
∂ũh

2

∂x

)∣∣∣∣∣
∫ t

0

∫ 1

0

∣∣∣∣∂E2

∂x

∣∣∣∣ dxdτ

}
,

where ε1 and ε2 come from the Cauchy–Schwarz inequality.
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Now incorporate these estimates into (4.3) to obtain

1

2

d

dt
||ei(·, t)||2 +

∣∣∣∣
∣∣∣∣∂ei(·, t)

∂x

∣∣∣∣
∣∣∣∣
2

+ 1

2

dφ2
k

dt

≤
〈
ei(·, t), ∂Ei(·, t)

∂t

〉
+
〈∣∣∣∣∂Ei(·, t)

∂x

∣∣∣∣ ,
∣∣∣∣∂ei(·, t)

∂x

∣∣∣∣
〉

×
⎧⎨
⎩1 +

∫ t

0

∫ 1

0

⎡
⎣(1 + 1

ε1

)(
∂ũh

1

∂x

)2

+
(

1 + 1

ε2

)(
∂ũh

2

∂x

)2
⎤
⎦ dxdτ

+
∫ t

0

∫ 1

0

[
(1 + ε1)

(
∂E1

∂x

)2

+ (1 + ε2)

(
∂E2

∂x

)2
]

dxdτ

}

+
〈∣∣∣∣∣

∂ũh
i

∂x

∣∣∣∣∣ ,
∣∣∣∣∂ei

∂x

∣∣∣∣
〉{∫ t

0

∫ 1

0

[(
∂E1

∂x

)2

+
(

∂E2

∂x

)2
]

dxdτ

+ 2

∣∣∣∣∣sup
x,t

(
∂ũh

1

∂x

)∣∣∣∣∣
∫ t

0

∫ 1

0

∣∣∣∣∂E1

∂x

∣∣∣∣ dxdτ

+ 2

∣∣∣∣∣sup
x,t

(
∂ũh

2

∂x

)∣∣∣∣∣
∫ t

0

∫ 1

0

∣∣∣∣∂E2

∂x

∣∣∣∣ dxdτ

}
. (4.4)

Integrating (4.4) with respect to t , we have

1

2
||ei(·, T )||2 +

∫ T

0

∣∣∣∣
∣∣∣∣∂ei(·, t)

∂x

∣∣∣∣
∣∣∣∣
2

dt + 1

2
φ2

k (T )

≤ 1

2
||ei(·, 0)||2 +

∫ T

0

∫ 1

0
ei

∂Ei

∂t
dxdt +

∫ T

0

∫ 1

0

∣∣∣∣∂Ei

∂x

∂ei

∂x

∣∣∣∣ dx

×
⎧⎨
⎩1 +

∫ t

0

∫ 1

0

⎡
⎣(1 + 1

ε1

)(
∂ũh

1

∂x

)2

+
(

1 + 1

ε2

)(
∂ũh

2

∂x

)2
⎤
⎦ dxdτ

+
∫ t

0

∫ 1

0

[
(1 + ε1)

(
∂E1

∂x

)2

+ (1 + ε2)

(
∂E2

∂x

)2
]

dxdτ

}
dt

+
∫ T

0

∫ 1

0

∣∣∣∣∣
∂ũh

i

∂x

∂ei

∂x

∣∣∣∣∣ dx

{∫ t

0

∫ 1

0

[(
∂E1

∂x

)2

+
(

∂E2

∂x

)2
]

dxdτ

+ 2

∣∣∣∣∣sup
x,t

(
∂ũh

1

∂x

)∣∣∣∣∣
∫ t

0

∫ 1

0

∣∣∣∣∂E1

∂x

∣∣∣∣ dxdτ

+ 2

∣∣∣∣∣sup
x,t

(
∂ũh

2

∂x

)∣∣∣∣∣
∫ t

0

∫ 1

0

∣∣∣∣∂E2

∂x

∣∣∣∣ dxdτ

}
dt. (4.5)
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We can estimate the following factor in the last integral:

∫ t

0

∫ 1

0

[(
∂E1

∂x

)2

+
(

∂E2

∂x

)2
]

dxdτ + 2

∣∣∣∣∣sup
x,t

(
∂ũh

1

∂x

)∣∣∣∣∣
∫ t

0

∫ 1

0

∣∣∣∣∂E1

∂x

∣∣∣∣ dxdτ

+ 2

∣∣∣∣∣sup
x,t

(
∂ũh

2

∂x

)∣∣∣∣∣
∫ t

0

∫ 1

0

∣∣∣∣∂E2

∂x

∣∣∣∣ dxdτ ≤
∣∣∣∣
∣∣∣∣
∣∣∣∣∂E1

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

+
∣∣∣∣
∣∣∣∣
∣∣∣∣∂E2

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

+ 2

∣∣∣∣∣sup
x,t

(
∂ũh

1

∂x

)∣∣∣∣∣
[]

∂E1

∂x

[]
+ 2

∣∣∣∣∣sup
x,t

(
∂ũh

2

∂x

)∣∣∣∣∣
[]

∂E2

∂x

[]
.

Denoting the right-hand side of this inequality by I, the last term of (3.5) becomes

I

∫ T

0

∣∣∣∣∣sup
x

∂ũh
i

∂x

∣∣∣∣∣
∫ 1

0

∣∣∣∣∂ei

∂x

∣∣∣∣ dxdt ≤ I

√√√√∫ T

0

∣∣∣∣∣sup
x

∂ũh
i

∂x

∣∣∣∣∣
2

dt

√√√√∫ T

0

(∫ 1

0

∣∣∣∣∂ei

∂x

∣∣∣∣ dx

)2

dt

≤ I

√√√√∫ T

0

∣∣∣∣∣sup
x

∂ũh
i

∂x

∣∣∣∣∣
2

dt

∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣

≤ ε3

2
I 2
∫ T

0

∣∣∣∣∣sup
x

∂ũh
i

∂x

∣∣∣∣∣
2

dt + 1

2ε3

∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

.

Thus, (4.5) yields

∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ 1

2
||ei(·, 0)||2 + 1

2

(
ε4 |||ei |||2 + 1

ε4

∣∣∣∣
∣∣∣∣
∣∣∣∣∂Ei

∂t

∣∣∣∣
∣∣∣∣
∣∣∣∣
2
)

+ 1

2

(
L +

2∑
m=1

(1 + εm)

∣∣∣∣
∣∣∣∣
∣∣∣∣∂Em

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2
)(

ε5

∣∣∣∣
∣∣∣∣
∣∣∣∣∂Ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

+ 1

ε5

∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2
)

+ ε3

2

[
2∑

m=1

(∣∣∣∣
∣∣∣∣
∣∣∣∣∂Em

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

+ 2

∣∣∣∣sup
x,t

(
∂ũh

m

∂x

)∣∣∣∣
[]

∂Em

∂x

[])]2

×
∫ T

0

∣∣∣∣∣sup
x

∂ũh
i

∂x

∣∣∣∣∣
2

dt + 1

2ε3

∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

,

where

L = 1 +
∫ t

0

∫ 1

0

⎡
⎣(1 + 1

ε1

)(
∂ũh

1

∂x

)2

+
(

1 + 1

ε2

)(
∂ũh

2

∂x

)2
⎤
⎦ dxdτ.
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Since Ei is the interpolation error, we have from (3.4),

|||Ei ||| ≤ C0h
j |||ui ||| ,∣∣∣∣

∣∣∣∣
∣∣∣∣∂Ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣ ≤ C1h

j−1|||ui ||| ,
∣∣∣∣
∣∣∣∣
∣∣∣∣∂Ei

∂t

∣∣∣∣
∣∣∣∣
∣∣∣∣ ≤ C2h

j

∣∣∣∣
∣∣∣∣
∣∣∣∣∂ui

∂t

∣∣∣∣
∣∣∣∣
∣∣∣∣ ,

[]
∂Ei

∂x

[]
≤ C3h

j−1[]ui[], i = 1, 2.

Therefore,

∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ 1

2
||ei(·, 0)||2 + ε4

2
|||ei |||2 + 1

2ε4
C2

2h2j

∣∣∣∣
∣∣∣∣
∣∣∣∣∂ui

∂t

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

+1

2

(
L +

2∑
m=1

(1 + εm)C2
1h2(j−1)|||um|||2

)

×
(

ε5C
2
1h2(j−1)|||ui |||2 + 1

ε5

∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2
)

+ε3

2

[
2∑

m=1

(
C2

1h2j−2 |||um|||2 + 2

∣∣∣∣sup
x,t

(
∂ũh

m

∂x

)∣∣∣∣C3h
j−1 [] um []

)]2

×
∫ T

0

∣∣∣∣∣sup
x

∂ũh
i

∂x

∣∣∣∣∣
2

dt + 1

2ε3

∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

.

Now we collect terms with norms of the error ei to obtain

∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

− ε4

2
|||ei |||2 − 1

2

(
L +

2∑
m=1

(1 + εm)C2
1h2(j−1)|||um|||2

)
1

ε5

∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

− 1

2ε3

∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ 1

2
||ei(·, 0)||2 + 1

2ε4
C2

2h2j

∣∣∣∣
∣∣∣∣
∣∣∣∣∂ui

∂t

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

+ 1

2

(
L +

2∑
m=1

(1 + εm)C2
1h2(j−1)|||um|||2

)
ε5C

2
1h2(j−1)|||ui |||2

+ ε3

2

[
2∑

m=1

(
C2

1h2j−2 |||um|||2 + 2

∣∣∣∣sup
x,t

(
∂ũh

m

∂x

)∣∣∣∣C3h
j−1 [] um []

)]2

×
∫ T

0

∣∣∣∣∣sup
x

∂ũh
i

∂x

∣∣∣∣∣
2

dt.
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Next we use the Poincaré inequality∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣ ≥ Cp ||ei ||

to show that ∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣ ≥ Cp |||ei ||| .

So, the last relation becomes(
1 − ε4

2C2
p

− L

2ε5
− 1

2ε5

2∑
m=1

(1 + εm)C2
1h2(j−1)|||um|||2 − 1

2ε3

) ∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ 1

2
||ei(·, 0)||2 + 1

2ε4
C2

2h2j

∣∣∣∣
∣∣∣∣
∣∣∣∣∂ui

∂t

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

+ 1

2
ε5C

2
1h2(j−1)|||ui |||2

(
L +

2∑
m=1

(1 + εm)C2
1h2(j−1)|||um|||2

)

+ ε3

2

[
2∑

m=1

(
C2

1h2j−2 |||um|||2 + 2

∣∣∣∣sup
x,t

(
∂ũh

m

∂x

)∣∣∣∣C3h
j−1 [] um []

)]2

×
∫ T

0

∣∣∣∣∣sup
x

∂ũh
i

∂x

∣∣∣∣∣
2

dt.

Now choose ε3, ε4 and ε5 so that the coefficient of
∣∣∣∣∣∣∣∣∣ ∂ei

∂x

∣∣∣∣∣∣∣∣∣2 is positive, say C4. The

right-hand side depends on the grid size h and the known error at time t = 0, i.e.,

||ei(·, 0)|| ≤ C5h
j ||ui0|| .

Thus,∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ h2j−2

{
C2

5

2C4
h2 ||ui0||2+ C2

2

2C4ε4
h2
∣∣∣∣
∣∣∣∣
∣∣∣∣∂ui

∂t

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

+ ε5C
2
1

2C4
|||ui |||2

(
L+

2∑
m=1

(1 + εm)C2
1h2(j−1)|||um|||2

)

+ ε3

2C4

[
2∑

m=1

(
C2

1hj−1 |||um|||2+2

∣∣∣∣sup
x,t

(
∂ũh

m

∂x

)∣∣∣∣C3[]um[]
)]2

×
∫ T

0

∣∣∣∣∣sup
x

∂ũh
i

∂x

∣∣∣∣∣
2

dt

⎫⎬
⎭ .

Recall that

|||ei |||21 = |||ei |||2 +
∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤
(

1 + 1

C2
p

) ∣∣∣∣
∣∣∣∣
∣∣∣∣∂ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

,
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so taking into account the last estimate we obtain

|||ei |||21 ≤ h2j−2C6

{
C2

5

2C4
h2 ||ui0||2+ C2

2

2C4ε4
h2
∣∣∣∣
∣∣∣∣
∣∣∣∣∂ui

∂t

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

+ ε5C
2
1

2C4
|||ui |||2

(
L+

2∑
m=1

(1+εm)C2
1h2(j−1)|||um|||2

)

+ ε3

2C4

[
2∑

m=1

(
C2

1hj−1 |||um|||2+2

∣∣∣∣sup
x,t

(
∂ũh

m

∂x

)∣∣∣∣C3[]um[]
)]2

×
∫ T

0

∣∣∣∣∣sup
x

∂ũh
i

∂x

∣∣∣∣∣
2

dt

⎫⎬
⎭ ,

where C6 = (1 + 1
C2

p

)
.

From this, using the triangle inequality

|||ui − uh
i |||21 = |||ui − ūh

i + ūh
i − uh

i |||21 ≤ 2|||Ei |||21 + 2|||ei |||21
and estimating

|||Ei |||21 = |||Ei |||2 +
∣∣∣∣
∣∣∣∣
∣∣∣∣∂Ei

∂x

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ C2
0h2j |||ui |||2 + C2

1h2j−2|||ui |||2

=
(
C2

0h2 + C2
1

)
h2j−2|||ui |||2 ,

we finally get

|||ui − uh
i |||1 ≤ hj−1

{
c1h

2 ||ui0||2 + c2h
2
∣∣∣∣
∣∣∣∣
∣∣∣∣∂ui

∂t

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

+ c3|||ui |||2 + c4h
2(j−1)

2∑
m=1

|||um|||2

+c5

[
2∑

m=1

(
c6h

j−1 |||um|||2 + c7[]um[]
)]2
⎫⎬
⎭

1/2

,

where

c1 = C2
5C6

C4
, c2 = C2

2C6

C4ε4
, c3 = ε5C

2
1C6

C4
L + 2C2

0h2 + 2C2
1 ,

c4 = (1 + max{ε1, ε2}) ε5C
4
1C6

C4
, c5 = ε3C6

C4

∫ T

0

∣∣∣∣∣sup
x

∂ũh
i

∂x

∣∣∣∣∣
2

dt,

c6 = C2
1 , c7 = 2

∣∣∣∣sup
x,t

(
∂ũh

m

∂x

)∣∣∣∣C3.

This completes the proof of Theorem 4.1.
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5 Numerical solution

For the numerical solution of (3.5) and (3.6), we let φ1(x), . . . , φN(x) be a basis for
Sh (where N is the dimension of Sh). Thus any uh

i ∈ Sh can be represented as follows:

uh
i (x, t) =

N∑
j=1

uij (t)φj (x). (5.1)

Since (3.5) and (3.6) are valid for all vh
i ∈ Sh, one can let vh

i = φk . Using
(5.1), we are led to the following system for the vectors of weights ui(t) =
(ui1(t), ui2(t), . . . , uiN (t)):

Mu̇i + K(u1, u2)ui = Fi , i = 1, 2, (5.2)

Mui (0) = Wi , i = 1, 2, (5.3)

where

Mjk =< φk, φj >, (5.4)

K(u1, u2)jk =< (1 + σh(t))φ
′
k, φ

′
j >, (5.5)

Fik =< φk, fi >, Wik =< φk, ui0 > . (5.6)

Now we can evaluate σh(t) as follows:

σh(t) =
∫ t

0

∫ 1

0

⎡
⎣
(

N∑
�=1

u1�φ
′
�

)2

+
(

N∑
�=1

u2�φ
′
�

)2⎤
⎦ dxdτ

=
∫ t

0

∫ 1

0

[
N∑

�=1

N∑
m=1

u1�u1mφ′
� φ′

m +
N∑

�=1

N∑
m=1

u2�u2mφ′
�φ

′
m

]
dxdτ

=
N∑

�=1

N∑
m=1

∫ t

0
(u1�u1m + u2�u2m)

[∫ 1

0
φ′

�φ
′
mdx

]

︸ ︷︷ ︸
=K̃�m

dτ

=
N∑

�=1

N∑
m=1

K̃�m

∫ t

0
(u1�u1m + u2�u2m) dτ. (5.7)

The time integral can be approximated by the trapezoidal rule using the equally
spaced point tp, where t0 = 0, tn = t and �t = ti − ti−1, i = 1, . . . , n:

∫ t

0
(u1�u1m + u2�u2m) dτ

=
n∑

p=0

�tζp

(
u1�(tp)u1m(tp) + u2�(tp)u2m(tp)

)+ O
(
(�t)2

)
, (5.8)
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where ζp = 1/2 for p = 0, n and ζp = 1 for p = 1, . . . , n − 1. Combining (5.8)
and (5.7) with (5.5), we get

K(u1, u2)jk

=
〈⎛
⎝1 +

N∑
�=1

N∑
m=1

K̃�m

n∑
p=0

�tζp

(
u1�(tp)u1m(tp) + u2�(tp)u2m(tp)

)⎞⎠φ′
k, φ

′
j

〉

=
⎛
⎝1 +

N∑
�=1

N∑
m=1

K̃�m

n∑
p=0

�tζp

(
u1�(tp)u1m(tp) + u2�(tp)u2m(tp)

)⎞⎠ K̃jk

=
⎛
⎝1 +

n∑
p=0

�tζpv(tp)

⎞
⎠ K̃jk, (5.9)

where v(t) = uT
1 (t)K̃u1(t) + uT

2 (t)K̃u2(t). To solve the system (5.2) and (5.3), we
use Taylor’s series. Let

ui (t + �t) = ui (t) + �t u̇i (t) + 1

2
(�t)2üi (t) + O

(
(�t)3

)
. (5.10)

Differentiating (5.2) with respect to t , we obtain

M üi + K(u1, u2)u̇i + K̇ui = Ḟi , i = 1, 2, (5.11)

where the matrices M and F are defined by (5.4), (5.6) and

K̇kj =
〈
σ̇hφ

′
j , φ

′
k

〉

=
〈⎡
⎣∫ 1

0

(
N∑

�=1

u1�(t)φ
′
�

)2

+
(

N∑
�=1

u2�(t)φ
′
�

)2⎤
⎦φ′

j , φ
′
k

〉

=
[

N∑
�=1

N∑
m=1

(u1�(t)u1m(t) + u2�(t)u2m(t))

∫ 1

0
φ′

�φ
′
m

]
K̃kj

=
[

N∑
�=1

N∑
m=1

(u1�(t)u1m(t) + u2�(t)u2m(t)) K̃m�

]
K̃kj

=
(

uT
1 (t)K̃u1(t) + uT

2 (t)K̃u2(t)
)

K̃kj = v(t)K̃kj . (5.12)
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Now multiplying (5.10) by M and using (5.2), (5.11) and (5.12), and after dropping
terms of order higher than the second, we obtain

M
(

ui (t + �t)−ui (t)

�t

)
= Mu̇i (t)+ 1

2
�tMüi (t)

= [Fi −K(u1, u2)ui] + 1

2
�t
[
Ḟi −K(u1, u2)u̇i −K̇ui

]
= [Fi −K(u1, u2)ui]

+ 1

2
�t
[
Ḟi −K(u1, u2)M−1 (Fi −K(u1, u2)ui )−K̇ui

]

=
[

Fi + 1

2
�tḞi − 1

2
�tK(u1, u2)M−1Fi

]

− K(u1, u2)

[
ui − 1

2
�tM−1K(u1, u2)ui

]
− 1

2
�tK̇ui .

(5.13)

Substituting for K and K̇ from (5.9) and (5.12), we get from (5.13),

M
(

ui (t+�t)−ui (t)

�t

)

=
⎡
⎣Fi + 1

2
�tḞi − 1

2
�t

⎛
⎝1+

n∑
p=0

�tζpv(tp)

⎞
⎠ K̃M−1Fi

⎤
⎦

−�t

⎛
⎝1 +

n∑
p=0

�tζpv(tp)

⎞
⎠

× K̃

⎡
⎣ui − 1

2
�t M−1

⎛
⎝1+

n∑
p=0

�tζpv(tp)

⎞
⎠ K̃ui

⎤
⎦− 1

2
�t v(t)K̃ui . (5.14)

If we take t = tn as in (5.8) and denote un
i = ui (tn), then (5.14) can be written as

follows:

M

(
un+1

i −un
i

�t

)
=
⎡
⎣Fn

i + 1

2
�tḞn

i − 1

2
�t

⎛
⎝1+

n∑
p=0

�tζpvp

⎞
⎠ K̃M−1Fn

i

⎤
⎦

−
⎛
⎝1+

n∑
p=0

�tζpvp

⎞
⎠ K̃

×
⎡
⎣un

i − 1

2
�tM−1

⎛
⎝1+

n∑
p=0

�tζpvp

⎞
⎠ K̃un

i

⎤
⎦− 1

2
�t vnK̃un

i .

(5.15)
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Now let us denote

φn = 1 +
n∑

p=0

�tζpvp. (5.16)

Using notation (5.16) from (5.15), we have

M

(
un+1

i − un
i

�t

)
= −φnK̃

[
un

i − 1

2
�t M−1φnK̃un

i

]
− 1

2
�t vnK̃un

i

+
[

Fn
i + 1

2
(�t)Ḟn

i − 1

2
�t φnK̃M−1Fn

i

]
, i = 1, 2.

(5.17)

Note that in (5.17), φn and vn depend on both u1 and u2. We can update both φn and
vn after we solve the two systems or we can update them after solving each system.

In our first numerical experiment we have chosen the right-hand side so that the
exact solution is given by

u1(x, t) = x(1 − x) sin(x + t)

and

u2(x, t) = x(1 − x) cos(x + t) .

In this case the right-hand side is

f1(x, t) = x(1 − x) cos(x + t)−
(

1+ 11

30
t

)
(−2 sin(x + t) + 2(1 − x) cos(x + t)

− 2x cos(x + t) − x(1 − x) sin(x + t))

and

f2(x, t) = −x(1 − x) sin(x + t)−
(

1+ 11

30
t

)
(−2 cos(x + t) − 2(1 − x) sin(x + t)

+ 2x sin(x + t) − x(1 − x) cos(x + t)) .

The parameters used are N = 100 which dictates h = 0.01. In the next two figures
we plotted the numerical solution (marked with ∗) and the exact solution at t = 0.5
(Figs. 1 and 2) and t = 1.0 (Figs. 3 and 4). It is clear that the two solutions are almost
identical (Table 1).

Note that the energy norm of the error decreases linearly with h as expected by
Theorem 4.1.
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0.15

0.2

0.25
Time t =0.5

Fig. 1 The solution at t = 0.5. The exact solution u1 is a solid line and the numerical solution is
marked by ∗
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0.16
Time t =0.5

Fig. 2 The solution at t = 0.5. The exact solution u2 is a solid line and the numerical solution is
marked by ∗
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0.15

0.2

0.25
Time t =1

Fig. 3 The solution at t = 1.0. The exact solution u1 is a solid line and the numerical solution is
marked by ∗
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0.05

0.06
Time t =1

Fig. 4 The solution at t = 1.0. The exact solution u2 is a solid line and the numerical solution is
marked by ∗
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Table 1 The empirical rate of
convergence in the energy norm
when integrating up to t = .5
and t = 1

t = .5 t = 1

h Energy Rate h Energy Rate

norm norm

.2 .023124 .934145 .2 .030767 .941436

.04 .005142 .983124 .04 .006762 .988143

.02 .0026012 .992146 .02 .003409 .991434

.01 .0013077 .01 .001715

In our second experiment we have taken a zero right-hand side and initial data
given by

u10(x) = u1(x, 0) = x(1−x) sin(8πx), u20(x) = u2(x, 0) = x(1−x) cos(4πx) .

In this case, we know (Theorem 2.2) that the solution will decay in time. The
parameters N, h are as before. In Fig. 5 we plotted the initial data and in Fig. 6
we show the numerical solution at four different times. In both figures the top sub-
plot is for u1 and the bottom subplot is for u2. It is clear that the numerical solution
is approaching zero for all x. We have also plotted the maximum norm of the par-
tial derivatives ∂u1

∂x
and ∂u2

∂x
versus the exponential e−t/2. Figure 7 shows that the

maximum norm of ∂u1
∂x

(top) and ∂u2
∂x

(bottom) decays exponentially. Therefore the
numerical approximation of the x-derivative of the solutions obtained in our numer-
ical experiment fully agrees with the theoretical results given in Theorem 2.2. Note
that the line for the derivative is very close to the origin which means that the constant
in Theorem 2.2 is very small.

To test the numerical data for a longer time run, we have run the first example up
to t = 5. The exact solution is plotted with the numerical solution at t = 5 in Figs. 8
and 9. Note the agreement between the finite element and exact solution at the end
of the run.

We have experimented with several other initial solutions, and in all cases we
observed an agreement with the exact solution.

Remark At each time step one can advance u1 and then advance u2 using either the
previous u1 or the most current one. As a result, the matrices are smaller and banded.

5.1 Comparison with the finite difference method

The authors of [19] have developed a finite difference scheme to solve the system
(3.1). In the finite difference method, the system is nonlinear and Newton’s method
was used at each time step. This required computing and storing the Jacobian. There-
fore the system becomes dense. On the other hand, in the finite element method we
did not have to solve a nonlinear system. Therefore the system is banded and the
bandwidth is dictated by the degree of the elements used. This fact had already been
discussed by Neta and Igwe [21].
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Time t = 0
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0.25
Time t = 0

Fig. 5 The initial data u10(x) = x(1 − x) sin(8πx) (top) and u20(x) = x(1 − x) cos(4πx) (bottom) for
Example 2
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Fig. 6 The numerical solution at t = 0.1, 0.2, 0.3, 0.4 for u1 (top) and u2 (bottom)
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Fig. 7 The maximum norm of the numerical solution for ∂u1
∂x

(top) and ∂u2
∂x

(bottom) (Example 2) and

e−t/2. A solid line is used for ∂u1
∂x

and ∂u2
∂x

and a line marked with ∗ for the exponential
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Fig. 8 The solution at t = 5.0. The exact solution u1 is a solid line and the numerical solution is
marked by ∗
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Fig. 9 The solution at t = 5.0. The exact solution u2 is a solid line and the numerical solution is
marked by ∗
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We have recorded the CPU time it took our PC to solve the second example for
N = 25 and t = 1. The finite difference solution took more than twice the time it
took to solve the same problem using finite (linear) elements. The accuracy is the
same.

6 Conclusions

In this paper we have used the finite element method to solve a system of two nonlin-
ear integro-differential equations. We have shown that it gives the same accuracy as
the finite difference scheme without the need to compute the Jacobian at each time
step. We have also established the rate of convergence of the finite element method
in an appropriate energy norm.
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