15:18 24 June 2010

{3UNY)] At:

the State University of New York

[University at Buffalo,

Downloaded By:

Taylor & Francis
Taylor & Francis Group

International Journal of Computer Mathematics .
Vol. 87, No. 5, April 2010, 1023-1031 e

Extension of Murakami’s high-order non-lincar solver
to multiple roots

B. Neta*

Naval Postgraduate School, Department of Applied Mathematics,
Monterey, CA, US4

(Received 03 September 2007 vevised version received 20 March 2008, accepted 06 June 2008)

Several one-parameter families of fourth-order methods for finding nultiple zeros of non-linear functions
are developed. The methods are based on Murakami’s fifth-order method (for simple roots) and they require
one evaluation of the function and three evaluations of the derivative. The informational efficiency of the
methods is the same as the previously developed methods of lower order. For a double root, the method is
more efficient than all previously known schemes. All these methods require the knowledge of multiplicity.

Keywords: multiple roots; non-linear; high-order; efficiency

2000 AMS Subject Classification: 65D99: 41A25

1. Introduction

There is a vast literature on the solution of non-linear equations and non-linear systems, see e.g.
Ostrowski [12], Traub [18], Neta [10] and references therein. Recently several papers by Sharma
[15], Sharma and Goyal [16], Homeier [5] and Grau and Diaz Barrero [2] discuss methods for
finding simple roots. Here we develop a high-order fixed point type method to approximate a
multiple root. There are several methods for computing a zero £ of multiplicity m of a non-linear
equation f(x) = 0 (see Neta [10] and Neta and Johnson [11]. Newton’s method is only of first
order unless it is modified to gain the second order of convergence (see Rall [13] or Schréder
[17]). This modification requires a knowledge of the multiplicity. Traub [18] has suggested to use
any method for £ (x) or g(x) = f(x)/f'(x). Any such method will require higher derivatives
than the corresponding one for simple zeros. Morcover, the first one of those methods require
the knowledge of the multiplicity ». In such a case, there are several other methods developed
by Hansen and Patrick [4], Victory and Neta [19], Dong [1] and Neta and Johnson [11]. Since in
general one does not know the multiplicity, Traub [18] suggested a way to approximate it during
the iteration.

*Email: bnetai@nps.edu

[SSN 0020-7160 print/ISSN 1029-0265 online
© 2010 Taylor & Francis

DOI: 10.1080/00207160802272263
http://www.informaworld.com

{8UNY)] At: 15:18 24 June 2010

[University at Buffalo, the State University of New York

Downloaded By:

1024 B. Neta

For example, the quadratically convergent modified Newton’s method is
Xpr] = X, —— {1

and the cubically convergent Halley’s method [3] is

f
(On + 1)/2m) f — (L D/ E)

where £ is short for % (x,). Another third-order method was developed by Victory and Neta
[19] and based on King’s fifth-order method (for simple roots) [§]

2)

Xpt1 = Xn

.t
Wy = X, — ?,
o (3)
fQwn) fo+ Af(w,)
Xpil = Wy — .
fa Jo+ Bf(wy)
where
A= [,le _ M_m—Q—l
g _Wm = -1+ “)
B (m — 1)?
and
m
= - (5)
m—1

Yet two other third-order methods developed by Dong [1], both require the same information and
both are based on a family of fourth-order methods (for simple roots) due to Jarratt [6]:

fa

e T e — DY F G —) + (m —mE — 1 — DS ©)
s fr
- e - _ m+1
Xl = X = D = e~ m & D) — f @
where
fo
b= —. 8
T ®

Neta and Johnson [11] have developed a fourth-order method based on Jarrat’s method [7]. The
method in general is given by

Xptl = X — 7 ; ff? ; (9)
ar fp+axy f'(y,) +as f'(n.)
where u, is given by Equation (8) and
Vo = Xp — dUp,
S, (10)
Fyn)

Ny = Xp — bu,, — cu,,

where the parameters «a, b, ¢. a1, a; and @3 depend on the multiplicity m.

{8UNY)] At: 15:18 24 June 2010

[University at Buffalo, the State University of New York

Downloaded By:

International Journal of Computer Mathematics 1025

Our starting point here is Murakami’s two-parameter family of methods [9] given by the iteration
Xpgl = Xp — 1, — Gaw2(X,) — azwsz(x,) — ¥ (x,) (1)

where u,, is given by Equation (8) and

wrlx,) = f,ﬁn). Yy = X —
w3(x,) = f{in) In = Xp — buy — cwa(xy) (12)
Vi) = "

bifa+b2f (3a)

Murakami has shown that this family of methods (for simple roots) is of order 5 [9] if the parameters
are chosen appropriately. The method requires one function- and three derivative-evaluation per
step. Thus the informational efficiency (see [18]) is 1.25.

2. New higher-order scheme

We would like to find the cight parameters a, b, ¢, a1, a2, az, by and b, so as to maximize the
order of covergence to a root & of multiplicity m. Let ¢, é,, ¢, be the errors at the nth step, i.e.

én = ¥n — 57 (13)

If we expand f(x,), and f'(x,) in Taylor serics (truncated after the Nth power, N > m) we have

e _ CmE L N,
fl)=fl,—E+8)= fl§+e) = —ler + Z Ase, (14)
i i=m—+1
or
(#1)
fo =L (1+ Y el) (15)
i=m+1
where
.
AJ:M. i>m (16)
1 E)
Bi—m - Ai
(si) -
f«f(xn)_ f (é) zt 1 + Z { mer it . (17)
()! z_m—',-l
Toexpand f'(v,) and f'(z,) we use some symbolic manipulator, such as Maple [14]', and find that
(#i) k
Flim = L g 1(1+m+lslén+m+232e +.) (18)
(m — l)* m m

én = €, — AU, = jle, + —Ble +

[25 2—(—£(ml+ b 1} +oe, (19

{8UNY)] At: 15:18 24 June 2010

[University at Buffalo, the State University of New York

Downloaded By:

1026 B. Neta

where
m—d
= (20)
m
Thus
(#)
Fow =2 e (g cren + e + sl), @)
(m — D!
where
co = ﬂn171
o (m — ay(m+ 1) + am(m — 1)
= [3 By,
M
m—3 ﬂn173
o 5 [am((m —) +mla+ Y — 2(12n12(m + 7):| 32 [m+ 2)m —a)*
m
+ 2a(m — aym*(m — 1)]Bs, (22)
3 2 m—3
cz = u” (m +3)m — a) B3 — an [(m2 + 3m 4+ 2){a — m)3 — 2n12(n1 + 1y(a — m)2

3 mb
m—4

—2m* alm — y(m —2)1B1 B> + l;

a[3(2m +4dm + Lfa — m) +2(m + 3 a — m)

+a’m (3(1 +m— 18) 4+ am (—3m + 12m + 16) — n12(5n1 + 6)]3?.

The error in z, is given by

€, =€, —bu, —cws(x,) = 1—£—£ Lom
n — tn H 2("11)— m H €y

m
b c a(l —a) 2h o e
+ (—2+—2,£L |:,£L2——:|) Ble,%+ |:—2—(—lﬁcﬂ 1)82
m m m m m
o o b(m+1
_ (—27CI~L 1.,.(—3))312}334_...! (23)
2m m

where

oy = —a* {(m+2)+ 4(13m(m +2) — a*m? (3m + 14) + 2 (5a — m)
ty = 2a*m(m + 2) — d4a’mP(m + 4) — 12a°m + Gm + 19ma® + 224%m*
— 2(”?13(5171 + 7+ 2a* + 2m° + 2m*.

Now expand f'(z,) in terms of e,. To this end, we expand in terms of ¢, and substitute for ¢,
from Equation (23)

,) , m+ 1 w + 2
fzn) = S7E) em! (1 + Bie, + Bzé +-)

(m— 1" m m

f™E)

=t D!n(d+mQ+@e+@e+ -, (24)

15:18 24 June 2010

{3UNY)] At:

the State University of New York

[University at Buffalo,

Downloaded By:

International Journal of Computer Mathematics 1027

where
d() _)\‘mfl.
' o™ C2 _—2m bo—"
4y = 32 Bo + Prep™ + ﬁ;SM + Bibcp B,
)\‘mf3 (25)
b = goto T (D] + DIu™ + DI + DY) B
n (Dfl —m DO 1. . m 2 2m 3 3m
2 U+ Dy + D™ + D™ + Dyp™) By,
and
~ mim—b) —c(m —a)p™
- m? '
Bo = (m*b(b —m) +m' W™y m + 1),
(26)

b1 = mia®(m? — 1) + ma(3 —m) —m*(m + 3)),

Ba = (m—a)’(m+ 1),
B3 =2mm+ 1)(im — a).
The Df are complicated expressions and will be given in the Appendix. Now substitute Equa-

tions (15), (17), (21) and (24) into Equations (8), (12) and expand the quotients in Taylor series;
then substituting all these into Equation (11), we get

i1 = Clea + CaBrel + (C1BY + CIBy)e + (CIB + CIBI B+ CiB3)et +--- . (27)
where the coefficients C r‘.j depend on the parameters a, b, ¢. by, by, a;, ay and a3. Because of

the complexity, we have taken a = m/2, by = | — 27=1p, and either » = 0 or ¢ = 0. Thus, we
reduced the number of parameters to five and as a consequence we were unable to get fifth-order

methods. The results form = 2, m = 3 and m = 4 are given in Table 1.
To summarize, we managed to obtain a family of fourth-order methods requiring one function-
and three derivative-evaluation per step. The informational efficiency, £ = p/d, of these methods

Table 1. The parameters for various values of m.

n 2 2 3 3 4 4

| 1 3/2 32 2 2
b 0 Free 0 0.9415780151 0 119151259843
¢ Free 0 0.2353945038 0 1.9640446368 0
by 1 1 free free 0.05 ¢.0625
b -1 —1 1 —4b 1 — 4by 0.0268934369 03
a —6 —6 —2.5128989321 — 165y —10.571320917 — 16h; —7.49156894 56116821612
as 3 3 —1.8238807632 4 4b, 0.1907247330 + 4b4 —0.91067191 —1.2089575039
as 0 0 4.1469082443 4.1469082443 —0.92646960 —(L4647127230
C; 15732 15/32 —6.1027059066 —6.1836740792 —1.35078537 —1.0152077055

c; -2 -2
C} /8 1/8

9.4693139272
—3.4826758270

9.5300400567
—3.4826758270

2.141639816
—0.822966734

1.5300422793
—(.5494657588

15:18 24 June 2010

{3UNY)] At:

the State University of New York

[University at Buffalo,

Downloaded By:

1028 B. Neta

Table 2. Comparison of methods for multiple roots.

Method f 1! Fid P d E=pld {=pld
Schrader 1 1 0] 2 2 1 1.4142
Hansen and Patrick 1 1 1 3 3 1 1.442
Halley 1 l l 3 3 1 1.442
Victory and Neta 2 1 0] 3 3 1 1.442
Dong 1 2 0] 3 3 1 1.442
Neta and Johnson 1 3 0 4 4 1 1.4142
Neta and Johnson, m = 2 1 2 0 4 3 1.3333 1.5874
Neta 1 3 0] 4 4 1 1.4142
Neta, m =2 1 2 0] 4 3 1.3333 1.45874

is 1, as all the aforementioned methods for multiple roots. The efficiency index, I = p!/4 is 1.4142
which is lower than the index for those third-order methods. For m = 2, we found that a3 = 0
and thus we need one less derivative. This happened also for the methods developed by Neta and
Johnson [11]. In this case, the informational efficiency is 4/3 and the efficiency index is 1.5874.
Therefore, our method for double roots is more efficient than the Newton’s method as modified
by Schrider. If the cost of evaluating the first derivative 1s lower than that of evaluating the
function, then our method, for any multiplicity, will be more efficient than the Newton’s method
{Equation (1)). These results are given in Table 2. Clearly if the cost of evaluating the derivatives
is different than that of evaluating the function, one can make an argument to using the appropriate
method for the case at hand.

3. Numerical experiments

In all our numerical experiments, we have used the appropriate method with » = 0, except for
example 3 when we used both schemes. In our first example we took a quadratic polynomial
having double roots at § = 1

filx)y=x*—2x+ L. (28)

Here we started with xq = 0 and the root was found in one iteration. The modified Newton method
{Equation (1)) converged fast and Newton's method required 10 iterations to get as close as possible
to 10~". In the second example we took a polynomial having two double roots at £ = 1

Flx)y =xt—2x% 4+ 1. (29)

Starting at x5 = 0.8 or xy = 0.6 our method converged in two iterations. The results are given
in Table 3.

Similar results were obtained when starting at xp = —0.8 to converge to £ = —1. For compar-
ison, we have tried the modified Newton. Using xy = 0.6 we required four iterations to achieve
10~% accuracy.

Table 3. Results for Example 2. f(x) is given by Equation (29).

n x f X f

0 0.8 0.1296 0.6 0.4096
l 1.0¢100728 0.4062524998 (—5) 1.03262653 (.004398017
2 1.00000000 0 1.00000036 0.5060180 (—12)

15:18 24 June 2010

{3UNY)] At:

the State University of New York

[University at Buffalo,

Downloaded By:

International Journal of Computer Mathematics 1029

Table 4. Results for Example 3. The first three columns use the scheme with b = 0 and the last 3 use c = 0. f{x) is
given by Equation (3(0).

n X f R X f

0 0 —6 0 0 —6

1 0989582711 —(.22964188 (—3) 1 0.985370624 —(.64000004 (—5)
2 0.999999994 1(—18) 2 (.999999974 0

Table 5. Results for Example 4. f{x) is given by Equation (31).

n x f x f

0 0.1 011051709 (—1) 0.2 0.4885611033 (- 1)
1 0.2069496569 (—4) 0.428290468 (—9) 0.286951344 (—3) 0.8236470507 (—7)
2 0.43944(—19) 0.193107514 (—38) 0.162369865 (—14) 0.2636397306 (—29)

The next example is a polynomial with triple root at & = 1
Flx) =x° —8x* 4 24x% — 34x% +23x — 6. (30)

The iteration starts with x, = 0 and the results are summarized in Table 4. The first three columns
use the scheme with b = 0 and the last three columns use ¢ = 0.
Another example with double root at & = 0 is

Fix) = x%e". (31)

Starting at xy = 0.1 oreven x = 0.2 our method converged in two iterations. The results are given
in Table 5.
The next example having a double root at £ = 1 is

Fix)y = 3x* 4+ 8x% — 6x? — 24x + 19. (32)

Now we started with xy = 0.5 and the results are summarized in Table 6.
Thelast example having arootat€ = 1 with multiplicity m = 4 and asimplerootaté = —1,ie.
Ffxy=x" =3x"+23 + 262 =3 + 1. (33)

Now we started with xg = 0.01 and the results are summarized in Table 7. This is the only case
where we needed more than two iterations to converge.

Table 6. Results for Example 5. £{x) is given by Equation (32).

n X f

0 0.5 6.6875

1 100806166565 0.235014761 (—2)
2 100000000024 02(—17)

Table 7. Results for Example 6. f(x) is given by Equation (3).

) X f

0 0.01 0.9702019701

1 0.090514708167 0.905147081668 (—1)
2 0.562284899208 0.573490665693 (— 1)
3 0.9930319776872 047313908958 (—8)
4 0.999999999699 0

15:18 24 June 2010

{3UNY)] At:

the State University of New York

[University at Buffalo,

Downloaded By:

1030 B. Neta

4. Conclusions

We have extended Murakami’s method to obtain non-simple zeros. We have developed a one-
parameter family of fourth-order methods for various values of the multiplicity. The methods
listed are not the only solution to the system of equations and we only listed a representative
scheme. The numerical experiments demonstrate the rapid convergence of our method. Because
of the complexity of the symbolic manipulation, we had to assign certain values to some of the
parameters and were unable to achieve fifth order.

Note

1. “Maple is a system for mathematical computation symbolic, numerical and graphical® [14]. For example, the
command ‘rfp:=series(l/fpl,e,0);" expands the reciprocal of the function fpl into a power series in the vari-
able e keeping terms up to (). Maple can convert that expansion into a polynomial by using the command
‘rfp:=convert(rfp,polynom):*

References

[L] C. Dong, A family of multipoint iterative functions for finding multiple roots of equations, Int. J. Comput. Math. 21
(1987, pp. 363 367.
[2] M. Grau and J.L. Diaz-Barrero, An improvement to Ostrowski root-finding method, Appl. Math. Comput. 173 (2006),
pp. 450 456.
[3] E. Halley, 4 new, exact and easy method of finding the voots of equations generally and thar without any previous
redction, Philos. Trans. R. Soc. Lond. 18 (1694), pp. 136 148.
[4] E.Hansen and M. Patrick, A family of roof finding methods, Numer. Math. 27 (1977), pp. 257 269.
[5] H.H.H. Homeier, On Newton-type methods with cubic conmvergence, . Comput. Appl. Math. 176 (2005), pp. 425 432,
[6] . Jarratt, Some fourth order multipoint methods for solving equations, Math. Comput. 20 (1966), pp. 434 437
[7] , Multipoint iterative methods for solving certain equations, Comput. J. 8 (1966), pp. 398 400
[8] R.F.King, A family of fourth order methods for nonlinear equations, SIAM J. Numer. Amal. 10 (1973), pp. 876 879.
[9] T. Murakami, Some fifth order multipoint iterative formilae for solving equations, J. Inform. Process. 1 (1978),
pp. 138 139.
[L0] B. Neta, Numerical Methods for the Solition of Equations, Net-A-Sof, California, 1983,
[L1] B. Neta and A.N. Johnson, High crder nonlinear solver for multiple roots, Computers and Muathematics with
Applications, accepted for publication, doi:10.1316/].camwa.2007.09.001.
[12] AM. Ostrowski, Selutions of Equations and Svstem of Equations, Academic Press, New York, 1960
[13] L.B. Rall, Convergence of the Newton process fo mulfiple solutions, Numer. Math. 9 (1966), pp. 23 37.
[14] D. Redfern, The Maple Handbook, Springer-Verlag, New York, 1994.
[L5] T.R. Sharma, 4 composite third order Newton Steffensen method for solving nonlinear equations, Appl. Math.
Comput. 169 (20035), pp. 242 246.
[L6] T.R. Sharma and R.K. Goyal, Fourth-order derivative-free methods for solving non-linear equations, Int. I. Comput.
Math. 83 (2006), pp. 101 106.
[L7] E. Schrader, Uber unendiich viele Algorithmen zur Aufiosung der Gleichungen, Math. Ann. 2 (1870), pp. 317 365.
[L8] LF. Traub, lierative Methods for the Solution of Equations, Prentice Hall, New Jersey, 1964.
[19] H.D. Victory and B. Neta, 4 Aigher order method for muliiple zeros of nonlinear functions, Int. J. Comput. Math.
12 (1983), pp. 329 335.

Appendix
Here we list the coefficients Df in the expression for ¢, in Equation (25).

DY = —26c%a*m* + 32m*Pa’ + 267w’ — 18P a*m® — 28m°Pa? — 2mSe — 2mOia?
+6m A’ —2m’ A+ 238 m? + 12mPa — 12830 m? + 4P m® — 65a'm?

+ 123 am? + 20 m.

15:18 24 June 2010

{3UNY)] At:

[University at Buffalo, the State University of New York

Downloaded By:

International Journal of Computer Mathematics 1031

Dl1 = 37Tmbca — 2micta —m'cta — ambitath + Tmbcia® — mbcta® — mbciat

+ 72m cta’ — 8ctatmih + 26mObact — 38bctatm® — 4ctatmibh —m’ Fa®

+ Smcia’h + m*cta® — 6betmb + 22b i m’ — T Fat + 2m 1elq?

+ 26bctam® + mic? — 42bFatm’ — Fatm® — Tmitad + Tm' S = Fa’m®

+9m'ctat —amttath + 15Catm® 4+ 30b P mt + micta® — 56¢FaPmt — 6m’ b
012 = —10ca>m*b + 2eatmb — 2mbca’b® — smbea® — 8mPbea® — 2m’c + 2eatm’h
+ 6m’ ca® + 14m’be — 2m’ bea + 2mca’h? + Sm*bea® + 16h%cam” + 14m%ca
—2mPca +4m’ca —m cab — 2ca’m® — 2ca’m*b + 2mCca® — 66*mbe — 2mPe
— 8mbca® + 207 ca’m® — 22ca*m® + 6ca’m® — 2m’ca® + mPea® + 2mSea’h
— 44m8bea + 16h%ambe + 2m’be — 2ca*m? + deadm*p? + 12ca’m® — 12b%a*m*e
+ 3Tmbate — 2m cath — 14b2a*m e — 2m bea — 6m’ ch? + 4mOha*c + 2eatm’.
D% = 20am’ — Tm®h a + 203 am’ + Tm' b* + 2 ba — 2mh + mSh? — 2h3mS
—2m’b —2bm” —m’ b a + 2bam®.
Dgl = 20c*mta + 40ct P m? — 40 atm3 — 20mtcta? + 2t am + 4t a’ + 10mieta
—2mbc* — 10ctatm? — 2060 atm + 20ctadm’ — actm?’.
Dg = 64w — 6dciam® — 16bccm” + 962 am* — 8mbhcd + 8c3atm?® —32mbcia
—32mtad + 162 a*m? + 64bc> aPm? +48m Aa — 16batm — 96bc3 a*m’
+ 64bcam® + 32m b a — 8bAa'm?® + 32b3aPm? + Llemb® — 48P aPm’?
Dy = —48bc*a’m® — 14m®c?a® — 144bctam’® — 72m bac® + 120 a*m’c* — 36b%a*m’¢*
+ 24b*aPmict — 12bP P atm® = 24btd’mt — 20 a'm? + At m? + 1omt Pt
+ 68ctaimt + 96mOcta — 2micta’ + 12m cta + 24m’ b + 362 am’ c*
+ 72hccatm® — 12moptc? + 6m' cta’ + 144bciatm?®
— 120m° c2a? + 72h%ccam® — 8mPc? — 18m°cta® — 24b*m c? — 28m" 2 + 10m>cta®
+ 6mbcia® + 48hcimb — 20 a’ m’.
D% = —14m’ca® + 4mPca + 20m®c + 6m’ca*b — 80m’ba*c — 96b*cam® + 16b3am’c
— 8mbca’h — 8m’ca’h + 8m’ A + 2micab — 16ca’m® + 16ca’m*b — 8b*a*m’c
— 16’ m’°c — 16m®bc + 24b*a*m’c + 124mSbea — dea’m®b — 8m®h*c + 320 cam’
+ 48h%a*m*e + d4catm* + 24m’ch® — 16b°a*mc + 8mbea® — 2ca*m’ + 2mOba’c
+ 44mb ca® + 2eatm*h — 480 ambc + 20m” bea — 6mBca® + 4m’c — 56m be
—2mbca® 4+ 8m’ca® — 52m’ca + 48h*mCe.
D3 = —=20m’ba + 2b'am® — 4mPba + 4m°b — 4m® — 2m'° — 4w’ + 20m*b — 16b°am’
+ 8m bra — 8h amb + avtam* + 28mOh%a — 2mOp* — 8mp? + S’ b — 28m’ b*
+2m°a + 16b°mS + 4ma.

