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1. Introduction

Solving nonlinear equations is one of the most important problems in numerical analysis. In this paper, we consider iter-
ative methods to find a multiple root a of multiplicity m, i.e., f ðjÞðaÞ ¼ 0; j ¼ 0;1; . . . ;m� 1 and f ðmÞðaÞ – 0, of a nonlinear
equation f ðxÞ ¼ 0.

Newton’s method is only of first order unless it is modified to gain the second order of convergence, see Schröder [1]. This
modification requires a knowledge of the multiplicity. Traub [2] has suggested to use any method for f ðmÞðxÞ or gðxÞ ¼ f ðxÞ

f 0 ðxÞ.
Any such method will require higher derivatives than the corresponding one for simple zeros. Also the first one of those
methods require the knowledge of the multiplicity m. In such a case, there are several other methods developed by Hansen
and Patrick [3], Victory and Neta [4], Dong [5,6], Neta and Johnson [7], Neta [8] and Werner [9]. See also Neta [10]. Since in
general one does not know the multiplicity, Traub [2] suggested a way to approximate it during the iteration. The way it is
done is by evaluating the quotient
xn�2 � xn

xn�2 � xn�1
and rounding the number up.
For example, the quadratically convergent modified Newton’s method is (see [1])
xnþ1 ¼ xn �m
fn

f 0n
ð1Þ
and the cubically convergent Halley’s method [11] is a special case of the Hansen and Patrick’s method [3]
xnþ1 ¼ xn �
fn

mþ1
2m f 0n �

fnf 00n
2f 0n

; ð2Þ
where f ðiÞn is short for f ðiÞðxnÞ. Another third-order method was developed by Victory and Neta [4] and based on King’s fifth
order method (for simple roots) [12]
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yn ¼ xn � un;

xnþ1 ¼ yn �
f ðynÞ

f 0n

fn þ Af ðynÞ
fn þ Bf ðynÞ

;
ð3Þ
where
A ¼ l2m � lmþ1;

B ¼ �lmðm� 2Þðm� 1Þ þ 1

ðm� 1Þ2
; ð4Þ

l ¼ m
m� 1

ð5Þ
and
un ¼
fn

f 0n
: ð6Þ
Dong [5] has developed two third-order methods requiring two evaluations of f and one evaluation of f 0
yn ¼ xn �
ffiffiffiffiffi
m
p

un;

xnþ1 ¼ yn �m 1� 1ffiffiffi
m
p

� �1�m
f ðynÞ

f 0n
;

8<
: ð7Þ

yn ¼ xn � un;

xnþ1 ¼ yn þ un f ðynÞ
f ðynÞ� 1�1

mð Þm�1
fn
;

8<
: ð8Þ
where un is given by (6).
Yet two other third-order methods developed by Dong [6], both require the same information and both based on a family

of fourth order methods (for simple roots) due to Jarratt [13]:
yn ¼ xn � un;

xnþ1 ¼ yn � fn

m
m�1ð Þ

mþ1
f 0 ðynÞþm�m2�1

m�1ð Þ2
f 0n
;

8<
: ð9Þ

yn ¼ xn � m
mþ1 un;

xnþ1 ¼ yn �
m

mþ1fn

1þ1
mð Þmf 0 ðynÞ�f 0n

;

8<
: ð10Þ
where un is given by (6).
Osada [14] has developed a third-order method using the second derivative,
xnþ1 ¼ xn �
1
2

mðmþ 1Þun þ
1
2
ðm� 1Þ2 f 0n

f 00n
; ð11Þ
where un is given by (6).
Neta and Johnson [7] have developed a fourth order method requiring one function- and three derivative-evaluation per

step. The method is based on Jarratt’s method [15] given by the iteration
xnþ1 ¼ xn �
fn

a1f 0n þ a2f 0ðynÞ þ a3f 0ðgnÞ
; ð12Þ
where un is given by (6) and
yn ¼ xn � aun;

vn ¼
fn

f 0ðynÞ
;

gn ¼ xn � bun � cvn:

ð13Þ
Neta and Johnson [7] give a table of values for the parameters a; b; c; a1; a2; a3 for several values of m. In the case m ¼ 2 they
found a method that will require only two derivative-evaluations (a3 ¼ 0). This was not possible for higher m.

Neta [8] has developed a fourth order method requiring one function- and three derivative-evaluation per step. The meth-
od is based on Murakami’s method [16] given by the iteration
xnþ1 ¼ xn � a1un � a2vn � a3w3ðxnÞ � wðxnÞ; ð14Þ

where un is given by (6), vn; yn, and gn are given by (13) and
w3ðxnÞ ¼
fn

f 0ðgnÞ
;

wðxnÞ ¼
fn

b1f 0n þ b2f 0ðynÞ
:

ð15Þ
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Neta [8] gives a table of values for the parameters a; b; c; a1; a2; a3; b1; b2 for several values of m.
A method of order 1.5 requiring two function- and one derivative-evaluation is given by Werner [9]. It is only for double

roots
Table 1
Compar

Algorith

Werner
Schröde
Hansen
Halley
Laguerr
Hansen
Victory
Dong [5
Dong [6
Osada [
Neta an
Neta an
Neta [8
Neta [1
Neta [1
Neta [1
Neta [1
Neta [1
Chun a
yn ¼ xn � un;

xnþ1 ¼ xn � snun;
ð16Þ
where
sn ¼
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4f ðynÞ=fn

p ; if f ðynÞ=fn 6
1
4 ;

1
2 fn=f ðynÞ; otherwise:

8<
:

Later we give a table comparing the efficiency of all known methods for multiple roots including our new ones we develop
here. The informational efficiency, E, of a method of order p using d function/derivative evaluations is defined [2] as
E ¼ p
d
: ð17Þ
The efficiency index, I, is defined as
I ¼ p1=d: ð18Þ
It can be seen in Table 1 that our new method is competitive with the previously developed schemes.
There is an approach in [17] that uses any pair of existing methods in constructing new iterative methods or families of

the same order in the case of simple roots. Now, a simple question arises; does the approach also work for multiple roots
case? The answer indeed is affirmative as will be seen in the following section. To this end and for the sake of illustration,
two methods for multiple roots are considered. One is Osada’s third-order method (11) and the other is the Euler–Chebyshev
method of order three [2]
xnþ1 ¼ xn �
mð3�mÞ

2
f ðxnÞ
f 0ðxnÞ

�m2

2
f ðxnÞ2f 00ðxnÞ

f 0ðxnÞ3
: ð19Þ
The methods (11) and (19) are used to obtain a new modification of Newton’s method for multiple roots. The new method is
shown to be cubically convergent by analysis of convergence, its performance and practical utility are demonstrated by
numerical examples.

2. Development of method and convergence analysis

Now, we approximately equate the correcting terms of both methods (11) and (19) to obtain the following approximate
expression:
�1
2

mðmþ 1Þ f ðxnÞ
f 0ðxnÞ

þ 1
2
ðm� 1Þ2 f 0ðxnÞ

f 00ðxnÞ
� �mð3�mÞ

2
f ðxnÞ
f 0ðxnÞ

�m2

2
f ðxnÞ2f 00ðxnÞ

f 0ðxnÞ3
; ð20Þ
ison of methods for multiple roots.

m p d E I f 0 f 00 f 000

[9] (16) m ¼ 2 1.5 3 0.5 1.145 1
r [1] (1) 2 2 1 1.414 1
and Patrick [3] 3 3 1 1.442 1 1

(2) 3 3 1 1.442 1 1
e 3 3 1 1.442 1 1
and Patrick [3] 3 4 .75 1.316 1 1 1
and Neta [4] (3) 3 3 1 1.442 1
] (7), (8) 3 3 1 1.442 1
] (9), (10) 3 3 1 1.442 2
14] 3 3 1 1.442 1 1
d Johnson [7] (12) m – 2 4 4 1 1.414 3
d Johnson [7] (12) m ¼ 2 4 3 1.333 1.587 2
] 4 4 1 1.414 1 3
9] m – 3 3 3 1 1.442 1 1
9] m ¼ 3 2 3 .667 1.259 1 1
9] 3 3 1 1.442 1
9] 2.732 2 1.366 1.653 1
9] 2.732 2 1.366 1.653 1
nd Neta (22) 3 3 1 1.442 1 1
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this gives a new approximation
f ðxnÞf 00ðxnÞ
2f 0ðxnÞ

� m� 1
m

f 0ðxnÞ �
1
2
ðm� 1Þ2

m2

f 0ðxnÞ3

f ðxnÞf 00ðxnÞ
: ð21Þ
If we apply the approximation (21) to Halley’s method (2), then we obtain a new method
xnþ1 ¼ xn �
2m2f ðxnÞ2f 00ðxnÞ

mð3�mÞf ðxnÞf 0ðxnÞf 00ðxnÞ þ ðm� 1Þ2f 0ðxnÞ3
: ð22Þ
For (22), we have

Theorem 1. Let a 2 I be a multiple root of multiplicity m of a sufficiently differentiable function f : I ! R for an open interval I. If
x0 is sufficiently close to a, then the method defined by (22) has third-order convergence, and satisfies the error equation
enþ1 ¼
ðm2 þ 3ÞC2

1 � 2mðm� 1ÞC2

2m2ðm� 1Þ e3
n þ Oðe4

nÞ; ð23Þ
where en ¼ xn � a and Cj ¼ m!
ðmþjÞ!

f ðmþjÞðaÞ
f ðmÞðaÞ .

Proof. Using Taylor expansion of f ðxnÞ about a, we have
f ðxnÞ ¼
f ðmÞðaÞ

m!
em

n 1þ C1en þ C2e2
n þ Oðe3

nÞ
� �

; ð24Þ

f 0ðxnÞ ¼
f ðmÞðaÞ
ðm� 1Þ! em�1

n 1þmþ 1
m

C1en þ
mþ 2

m
C2e2

n þ Oðe3
nÞ

� �
; ð25Þ

f 0ðxnÞ2 ¼
f ðmÞðaÞ2

½ðm� 1Þ!�2
e2m�2

n 1þ 2
mþ 1

m
C1en þ

mþ 1
m

C1

	 
2

þ 2
mþ 2

m
C2

" #
e2

n þ Oðe3
nÞ

( )
; ð26Þ

f 00ðxnÞ ¼
f ðmÞðaÞ
ðm� 2Þ! em�2

n 1þmþ 1
m� 1

C1en þ
ðmþ 1Þðmþ 2Þ

mðm� 1Þ C2e2
n þ Oðe3

nÞ
� �

; ð27Þ
where Cj ¼ m!
ðmþjÞ!

f ðmþjÞðaÞ
f ðmÞðaÞ and en ¼ xn � a.

Dividing (24) by (25) gives us
f ðxnÞ
f 0ðxnÞ

¼ en

m
1� 1

m
C1en þ

ðmþ 1ÞC2
1 � 2mC2

m2 e2
n þ Oðe3

nÞ
" #

: ð28Þ
We now use Maple [18] to collect all these expansions into (22) to have
mð3�mÞf ðxnÞf 00ðxnÞ þ ðm� 1Þ2 f 0ðxnÞð Þ2 ¼ e2m�2
n

ððm� 1Þ!Þ2
2ðm� 1Þ þ 2

m
ð2m2 �mþ 1ÞC1en

�

þ 2m3 þm2 þ 1
m2 C2

1 þ
4m2 � 2mþ 10

m
C2

� �
e2

n

þ4
m3 þm2 þmþ 1

m2 C1C2 þ
m2 �mþ 6

m
C3

� �
e3

n

�
; ð29Þ

2m2f ðxnÞf 00ðxnÞ ¼
e2m�2

n

ððm� 1Þ!Þ2
2mðm� 1Þ þ 4m2C1en þ 2mðmþ 1ÞC2

1 þ 4ðm2 þmþ 1ÞC2

h i
e2

n

n

þ4 ðm2 þ 2mþ 3ÞC3 þ ðmþ 1Þ2C1C2

h i
e3

n

o
: ð30Þ
Now divide (30) by (29) and multiply by (28) and collect terms we have
enþ1 ¼
ðm2 þ 3ÞC2

1 � 2mðm� 1ÞC2

2m2ðm� 1Þ e3
n þ Oðe4

nÞ; ð31Þ
which indicates that the order of convergence of the methods defined by (22) is at least three. This completes the proof. h

Note that the method requires one evaluation of the function, the first and the second derivative at each step, therefore
the informational efficiency is E ¼ 1 and the efficiency index is I ¼ 1:442.

In a similar fashion, the proposed approach can be continuously applied to produce various types of new approximations
from the other iterative methods for multiple roots, which can in turn be freely employed to find many new iterative meth-
ods or families for multiple roots.
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3. Numerical examples

We present some numerical test results for various third-order multiple root-finding methods as well as our new meth-
ods and the Newton method in Table 3. Compared were the Newton method (1) (NM), Halley-like method (2) (HM), Osada’s
method (11) (OM), the Euler–Chebyshev method (19) (ECM), and the method (22) (CM) introduced in this contribution. All
computations were done using MAPLE with 128 digit floating point arithmetics (Digits :¼ 128). Displayed in Table 3 are the
number of iterations (IT) required such that jf ðxnÞj < 10�32, and the value of jf ðxnÞj after the required iterations.

The following functions are used for the comparison and we display the approximate zeros x� found up to the 28th dec-
imal places
Table 2
Compar
converg

x0

0.0001
1
2
3
4
5
6
7
8
9

Table 3
Compar

f ðxÞ

f1; x0 ¼
f1; x0 ¼

f2; x0 ¼
f2; x0 ¼

f3; x0 ¼
f3; x0 ¼

f4; x0 ¼
f4; x0 ¼

f5; x0 ¼
f5; x0 ¼

f6; x0 ¼
f6; x0 ¼

f7; x0 ¼
f7; x0 ¼
f1ðxÞ ¼ ðx3 þ 4x2 � 10Þ3; x� ¼ 1:3652300134140968457608068290;

f2ðxÞ ¼ ðsin2 x� x2 þ 1Þ2; x� ¼ 1:4044916482153412260350868178;

f3ðxÞ ¼ ðx2 � ex � 3xþ 2Þ5; x� ¼ 0:25753028543986076045536730494;

f4ðxÞ ¼ ðcos x� xÞ3; x� ¼ 0:73908513321516064165531208767;

f5ðxÞ ¼ ððx� 1Þ3 � 1Þ6; x� ¼ 2;

f6ðxÞ ¼ ðxex2 � sin2 xþ 3 cos xþ 5Þ4; x� ¼ �1:2076478271309189270094167584;

f7ðxÞ ¼ ðsin x� x=2Þ2; x� ¼ 1:8954942670339809471440357381:
We also ran the second case with various initial points and average the number of iterations required for convergence. These
results are given in Table 2.

The results presented in Tables 2 and 3 show that for the functions we tested, the new method introduced here have at
least equal performance as compared to the other multiple root-finding methods of the same order, and also converge more
rapidly than Newton’s method for multiple roots.
ison of various third-order multiple root-finding methods and Newton’s method. The last row gives the average number of iterations required for
ence when starting from various initial guesses.

NM HM OM ECM CM

46 23 37 68 35
7 5 6 6 6
7 5 5 5 5
7 5 6 6 6
7 6 5 5 5
8 5 6 6 6
8 6 7 7 7
8 6 7 6 6
9 6 7 6 7
9 9 7 6 6
11.6 7.6 9.3 12.1 8.9

ison of various third-order multiple root-finding methods and Newton’s method.

IT ðjf ðxnÞjÞ

NM HM OM ECM CM

2 6(8.49e�54) 4(7.06e�49) 4(6.47e�33) 4(4.01e�38) 4(4.01e�38)
1 6(4.91e�62) 4(3.38e�57) 5(5.40e�84) 4(1.94e�38) 4(1.94e�38)

2:3 7(7.31e�52) 5(4.84e�57) 5(2.07e�38) 5(1.73e�47) 5(4.55e�42)
2 7(5.11e�64) 5(7.43e�77) 5(3.53e�51) 5(1.53e�63) 5(4.09e�56)

0 4(1.03e�55) 3(1.68e�53) 3(5.83e�62) 3(4.31e�58) 3(1.71e�55)
1 4(3.46e�52) 4(1.39e�85) 4(2.01e�91) 4(2.24e�89) 4(1.93e�87)

1:7 5(6.04e�47) 4(9.12e�43) 4(1.17e�39) 4(5.25e�41) 4(5.25e�41)
1 5(1.22e�60) 4(1.78e�85) 4(1.42e�78) 4(1.43e�81) 4(-1.43e�81)

3 6(2.70e�45) 4(7.44e�45) 5(3.12e�85) 5(1.89e�94) 4(3.55e�37)
�1 10(5.23e�49) 11(2.22e�65) 24(7.70e�44) 23(1.87e�52) 5(2.67e�77)

�2 8(5.60e�37) 5(1.60e�61) 6(5.09e�45) 6(3.21e�64) 6(2.83e�82)
�1 6(5.61e�60) 3(4.75e�35) 5(1.56e�103) 4(1.47e�47) 4(9.70e�58)

1:7 6(3.80e�57) 4(7.40e�47) 5(1.81e�76) 4(1.01e�37) 5(1.03e�92)
2 5(2.09e�40) 4(1.55e�65) 4(3.45e�53) 4(1.67e�59) 4(8.23e�56)
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