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1. Introduction

Solving nonlinear equations is one of the most important problems in numerical analysis. In this paper, we consider iter-
ative methods to find a multiple root o of multiplicity m, i.e., f9(2) =0, j=0,1,...,m -1 and f™(a) # 0, of a nonlinear
equation f(x) = 0.

Newton’s method is only of first order unless it is modified to gain the second order of convergence, see Schréder [1]. This
modification requires a knowledge of the multiplicity. Traub [2] has suggested to use any method for f(™ (x) or g(x) :}%.
Any such method will require higher derivatives than the corresponding one for simple zeros. Also the first one of those
methods require the knowledge of the multiplicity m. In such a case, there are several other methods developed by Hansen
and Patrick [3], Victory and Neta [4], Dong [5,6], Neta and Johnson [7], Neta [8] and Werner [9]. See also Neta [10]. Since in
general one does not know the multiplicity, Traub [2] suggested a way to approximate it during the iteration. The way it is
done is by evaluating the quotient

Xn—2 — Xn
Xn-2 — Xn-1

and rounding the number up.
For example, the quadratically convergent modified Newton’s method is (see [1])

fn

an:xnfmf—r; (1)

and the cubically convergent Halley’s method [11] is a special case of the Hansen and Patrick’s method [3]

o
mil fr _ Jnfy?
2m Jn 2fh

(2)

Xny1 = Xp

where f{" is short for f®(x,). Another third-order method was developed by Victory and Neta [4] and based on King's fifth
order method (for simple roots) [12]
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Dong [5] has developed two third-order methods requiring two evaluations of f and one evaluation of f’
Yo = Xq — /My,
1-m (7)
Xn+1:yn_m<1_#) f(f—r/l"):
yn = Xp — Up,
- U (¥) (8)
n+1 .yn +f(yn)—(1—#)m71f,.7

where u, is given by (6).
Yet two other third-order methods developed by Dong [6], both require the same information and both based on a family
of fourth order methods (for simple roots) due to Jarratt [13]:

Yn =Xn — Un,

v _ fa 9)
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Xni1 =Yn — m7
where u, is given by (6).
Osada [14] has developed a third-order method using the second derivative,

2y
f_,,’
n

1 1
Xnp1 =Xn —=m(m+ Du, +-(m—1)
2 2
where u, is given by (6).
Neta and Johnson [7] have developed a fourth order method requiring one function- and three derivative-evaluation per
step. The method is based on Jarratt’s method [15] given by the iteration

(11)
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where u, is given by (6) and

Yn = Xn — AUy,

fa
AL )
N, = Xn — bup — cvy.
Neta and Johnson [7] give a table of values for the parameters a, b, c,a;, a,, as for several values of m. In the case m = 2 they
found a method that will require only two derivative-evaluations (a; = 0). This was not possible for higher m.
Neta [8] has developed a fourth order method requiring one function- and three derivative-evaluation per step. The meth-
od is based on Murakami’s method [16] given by the iteration

Xnp1 = Xn — (il — G2 Up — Q3W3(Xn) — Y (Xn), (14)
where u, is given by (6), v,,y,, and #, are given by (13) and
o
W3 (XH) - )
f (nn)f (15)
¥(Xn) .
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Neta [8] gives a table of values for the parameters a, b, c,a;, a,, as, by, b, for several values of m.
A method of order 1.5 requiring two function- and one derivative-evaluation is given by Werner [9]. It is only for double
roots
= Xp — Uy,
yn n n (16)
Xnt1 = Xn — Spln,
where

2 i <1
s, = 4 VIO i)/ <3

% n/f( n)v otherwise.

Later we give a table comparing the efficiency of all known methods for multiple roots including our new ones we develop
here. The informational efficiency, E, of a method of order p using d function/derivative evaluations is defined [2] as

_p
E= q (17)
The efficiency index, I, is defined as
I=p"e. (18)

It can be seen in Table 1 that our new method is competitive with the previously developed schemes.

There is an approach in [17] that uses any pair of existing methods in constructing new iterative methods or families of
the same order in the case of simple roots. Now, a simple question arises; does the approach also work for multiple roots
case? The answer indeed is affirmative as will be seen in the following section. To this end and for the sake of illustration,
two methods for multiple roots are considered. One is Osada’s third-order method (11) and the other is the Euler-Chebyshev
method of order three [2]

2 2¢en
Xpo1 = Xp — m(3 - m) f/(xﬂ) _m_f(xn) f (3X") . (-19)
2 i) 2 fi(x)
The methods (11) and (19) are used to obtain a new modification of Newton’s method for multiple roots. The new method is
shown to be cubically convergent by analysis of convergence, its performance and practical utility are demonstrated by
numerical examples.

2. Development of method and convergence analysis

Now, we approximately equate the correcting terms of both methods (11) and (19) to obtain the following approximate
expression:

1 fxa) 1 2 f'(%n) m@3-m) f(x,) m? f(xn)zf”(xn)
—omm+ 1) 4 S (m—1) ~ - - Sty (20)
2 fiia) "2 Frin) 2 ) 2 fix)
Table 1
Comparison of methods for multiple roots.
Algorithm p d E I f f" f"
Werner [9] (16) m = 2 15 3 0.5 1.145 1
Schroder [1] (1) 2 2 1 1.414 1
Hansen and Patrick [3] 3 3 1 1.442 1 1
Halley (2) 3 3 1 1.442 1 1
Laguerre 3 3 1 1.442 1 1
Hansen and Patrick [3] 3 4 .75 1.316 1 1 1
Victory and Neta [4] (3) 3 3 1 1.442 1
Dong [5] (7), (8) 3 3 1 1.442 1
Dong [6] (9), (10) 3 3 1 1.442 2
Osada [14] 3 3 1 1.442 1 1
Neta and Johnson [7] (12) m # 2 4 4 1 1.414 3
Neta and Johnson [7] (12) m =2 4 3 1.333 1.587 2
Neta [8] 4 4 1 1414 1 3
Neta [19] m # 3 3 3 1 1.442 1 1
Neta [19] m =3 2 3 .667 1.259 1 1
Neta [19] 3 3 1 1.442 1
Neta [19] 2.732 2 1.366 1.653 1
Neta [19] 2.732 2 1.366 1.653 1
Chun and Neta (22) 3 3 1 1.442 1 1
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this gives a new approximation

fonf () m=1p, 0 1m=17 S
2f"(xn) m Y2 m o f)f (%)

If we apply the approximation (21) to Halley’s method (2), then we obtain a new method

2m%f (%a)*f" (Xn)
m(3 — m)f (%)’ (xa)f" (%) + (M — 1)°f(xa)*

Xny1 = Xp —

For (22), we have

477

(21)

(22)

Theorem 1. Let o € I be a multiple root of multiplicity m of a sufficiently differentiable function f : I — R for an open interval L. If

Xo is sufficiently close to o, then the method defined by (22) has third-order convergence, and satisfies the error equation

(m? +3)C? — 2m(m — 1)C,
€ny1 = Zn']lz(m — 1) ei + O(e‘rt)v

(m-+j)
where e, = X, — o and Cj = G L2l

Proof. Using Taylor expansion of f(x,) about &, we have

(m)
Flx) =1 m('“) e"[1 + Cre, + Ce? + 0(e3)],

, m (g m+1 m+2
f'(xn) = ({n _(1))!5321—1 {1 + Cien + - Czeﬁ + O(eﬁ)},

fxa)* = [(ﬁmi(oi);!]z eﬁmz{l +2 m; Leve,+ (m; ! C1>2 +2 an; 262 + O(Ei)},
N
where C; = ;s f}?ﬂ;’;g) and e, = x, — 0.
Dividing (24) by (25) gives us
ff((’;)) = {1 - %Qen Jmr G = 2mC, Ugi’ 2MC2 g2 | O(ei)} .

We now use Maple [18] to collect all these expansions into (22) to have

m(3 — M) () + (m — 12 () = {2<m )42 @m - m 1)Cre,

(m-1)}

2md +m? +1 4m? —-2m+10

+{ +mz ey + Cz}eﬁ
m4+m>+m+1 m>—m+6

+4{ ot e+ ot cg}ei},

2m2f (xa)f" (%) = ﬁ {2m(m — 1)+ 4m?Cye, + [Zm(m +1)C +4m? +m + 1)cz]eg

+4[(m? +2m + 3)Cs + (M +1)°C G e} |
Now divide (30) by (29) and multiply by (28) and collect terms we have

(m? +3)C? — 2m(m — 1)C,
€ni1 = 2n;2(m — -l) ergl + O(e;‘)v

(23)

(28)

(29)

31

which indicates that the order of convergence of the methods defined by (22) is at least three. This completes the proof. [

Note that the method requires one evaluation of the function, the first and the second derivative at each step, therefore

the informational efficiency is E = 1 and the efficiency index is [ = 1.442.

In a similar fashion, the proposed approach can be continuously applied to produce various types of new approximations
from the other iterative methods for multiple roots, which can in turn be freely employed to find many new iterative meth-

ods or families for multiple roots.
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3. Numerical examples

We present some numerical test results for various third-order multiple root-finding methods as well as our new meth-
ods and the Newton method in Table 3. Compared were the Newton method (1) (NM), Halley-like method (2) (HM), Osada’s
method (11) (OM), the Euler-Chebyshev method (19) (ECM), and the method (22) (CM) introduced in this contribution. All
computations were done using MAPLE with 128 digit floating point arithmetics (Digits := 128). Displayed in Table 3 are the
number of iterations (IT) required such that |f(x,)| < 107, and the value of |f(x,)| after the required iterations.

The following functions are used for the comparison and we display the approximate zeros x. found up to the 28th dec-
imal places

We also ran the second case with various initial points and average the number of iterations required for convergence. These
results are given in Table 2.

The results presented in Tables 2 and 3 show that for the functions we tested, the new method introduced here have at
least equal performance as compared to the other multiple root-finding methods of the same order, and also converge more
rapidly than Newton’s method for multiple roots.

Table 2
Comparison of various third-order multiple root-finding methods and Newton’s method. The last row gives the average number of iterations required for
convergence when starting from various initial guesses.

Xo NM HM OM ECM M
0.0001 46 23 37 68 35
1 7 5 6 6 6
2 7 5 5 5 5
3 7 5 6 6 6
4 7 6 5 5 5
5 8 5 6 6 6
6 8 6 7 7 7
7 8 6 7 6 6
8 9 6 7 6 7
9 9 9 7 6 6

11.6 7.6 9.3 12.1 8.9
Table 3
Comparison of various third-order multiple root-finding methods and Newton’s method.
f) IT (If (xa)l)

NM HM oM ECM M

fi,%0 =2 6(8.49e—54) 4(7.06e—49) 4(6.47e-33) 4(4.01e-38) 4(4.01e-38)
fi.xo=1 6(4.91e—62) 4(3.38e—57) 5(5.40e—84) 4(1.94e—-38) 4(1.94e—-38)
fa,%0 =23 7(7.31e-52) 5(4.84e—57) 5(2.07e—38) 5(1.73e—47) 5(4.55e—42)
fa,%0 =2 7(5.11e—64) 5(7.43e-77) 5(3.53e-51) 5(1.53e—63) 5(4.09e—56)
f3.%=0 4(1.03e-55) 3(1.68e—53) 3(5.83e-62) 3(4.31e-58) 3(1.71e-55)
f.%0 =1 4(3.46e—52) 4(1.39e-85) 4(2.01e-91) 4(2.24e-89) 4(1.93e-87)
fa, %0 =1.7 5(6.04e—47) 4(9.12e-43) 4(1.17e-39) 4(5.25e-41) 4(5.25e—-41)
faxo =1 5(1.22e—60) 4(1.78e—85) 4(1.42e—-78) 4(1.43e-81) 4(-1.43e-81)
fs. X0 =3 6(2.70e—45) 4(7.44e—45) 5(3.12e-85) 5(1.89e—-94) 4(3.55e—37)
fo,x0 = -1 10(5.23e—49) 11(2.22e—65) 24(7.70e—44) 23(1.87e-52) 5(2.67e-77)
fo. X0 = -2 8(5.60e—37) 5(1.60e—61) 6(5.09e—45) 6(3.21e—64) 6(2.83e-82)
fo, %0 =1 6(5.61e—60) 3(4.75e—35) 5(1.56e—103) 4(1.47e-47) 4(9.70e—58)
fr.%0=1.7 6(3.80e—57) 4(7.40e—47) 5(1.81e-76) 4(1.01e-37) 5(1.03e-92)
fr,% =2 5(2.09e—40) 4(1.55e-65) 4(3.45e—-53) 4(1.67e—-59) 4(8.23e-56)
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