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Abstract

Multiple-zero finders with optimal quartic convergence for nonlinear equations are proposed in this paper with a weight function
of the principal kth root of a derivative-to-derivative ratio. The optimality of the proposed multiple-zero finders is checked for their
consistency based on Kung–Traub’s conjecture established in 1974. Through various test equations, relevant numerical experiments
strongly support the claimed theory in this paper. Also investigated are extraneous fixed points of the iterative maps associated with
the proposed methods. Their dynamics is explored along with illustrated basins of attraction for various polynomials.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.

Keywords: Multiple-zero finder; Quartic-order method; Asymptotic error constant; Principal root

1. Introduction

Efficient zero-finding techniques for nonlinear equations f (x) = 0 have been investigated to solve a variety of
scientific and engineering problems including the prediction of weather forecast, the ground trace of an artificial
satellite as well as the location of an object via global positioning system coordinates. The most widely accepted
classical Newton’s method

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0, 1, 2, . . . (1.1)

usually solves the nonlinear equation f (x) = 0 without difficulty, provided that a good initial guess x0 is chosen near
the zero α. For α with given multiplicity of m ≥ 1, modified Newton’s method [38,40] in the following form

xn+1 = xn − m
f (xn)

f ′(xn)
, n = 0, 1, 2, . . . (1.2)
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is frequently used by many researchers. It is known that numerical scheme (1.2) is a second-order one-point
optimal [23] method. There are relatively very few methods for multiple roots when the multiplicity is known. See,
e.g., a method of order 1.5 [47], a method of order 2 [40], third order methods [14,15,18,45,36,28,39,9,19,16,22,30],
in addition to the fourth order methods [33,29,24,25,21,49].

This paper proposes a family of new efficient and optimal quartic-order multiple-zero finders with multiplicity of
m ≥ 1. By use of the kth root of a derivative-to-derivative ratio, we extend modified Newton’s method to design two-
point optimal quartic-order multiple-zero finders with evaluations of two derivatives and one function per iteration.
The optimality will be checked on the basis of Kung–Traub’s conjecture [23] that any multipoint method [37] without
memory can reach its convergence order of at most 2r−1 for r functional evaluations.

This paper is comprised of six sections. Following this introductory section, Section 2 briefly states a review of
existing studies on multiple-zero finders. Described in Section 3 is methodology and convergence analysis for newly
proposed multiple-zero finders. A main theorem is established to derive asymptotic error constants and error equations
by use of weight functions dependent upon the principal kth root of a derivative-to-derivative ratio. In Section 4,
special forms of weight functions are considered based on polynomials and rational functions with labeled case
numbers. Section 5 discusses the extraneous fixed points and related dynamics of the method. Tabulated in Section 6
are computational results for a variety of numerical examples. Table 9 compares the magnitudes of en = xn −α of the
proposed methods with those of typical existing methods. Interesting basins of attraction associated with the proposed
methods are displayed with detailed analyses and comments. Stated at the end are overall conclusion and future work.

2. Preliminary review of existing multiple-root finders

Typical quartic-order multiple-zero finders can be found in papers [17,24,25,42]. Interesting works of Liu
et al. [25], Soleymani et al. [42] and one of the methods in Li et al. [24] are introduced here, respectively in (2.1)–(2.3):

yn = xn − m
f (xn)

f ′(xn)
,

xn+1 = yn − mG f (w) ·
f (xn)

f ′(xn)
, w =

m−1


f ′(yn)

f ′(xn)
, m > 1,

where G f is sufficiently differentiable at 0 with G f (0) = 0, G ′

f (0) = 1, G ′′

f (0) =
4m

m − 1
.

(2.1)



yn = xn −
2m

m + 2
f (xn)

f ′(xn)
,

xn+1 = xn +
4md

d(m2 + 2m − 4)− m2v


1 −

m3(m − 2)

16d2


v −

m + 2
m

d

2


·
f (xn)

f ′(xn)
,

v =
f ′(yn)

f ′(xn)
, d =


m

m + 2

m

.

(2.2)



yn = xn −
2m

m + 2
f (xn)

f ′(xn)
,

xn+1 = xn −


a3 +

1
b1 + b2v


·

f (xn)

f ′(xn)
, v =

f ′(yn)

f ′(xn)
,

where a3 = −
m(m − 2)

2
, b1 = −

1
m
, b2 =

1
md

, d =


m

m + 2

m

.

(2.3)

Besides that, Zhou et al. [49] proposed the following fourth-order iterative scheme:
yn = xn −

2m

m + 2
f (xn)

f ′(xn)
,

xn+1 = xn − Z f (v) ·
f (xn)

f ′(xn)
, with v =

f ′(yn)

f ′(xn)
, Z f (·) ∈ C2(R).
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In particular, Z f (v) in the form of a first-order rational function is considered as follows:
yn = xn −

2m

m + 2
f (xn)

f ′(xn)
,

xn+1 = xn −

 b + cv

1 + av


·

f (xn)

f ′(xn)
, a = −

1
d
, b = −

m2

2
, c =

m(m − 2)
2d

, d =


m

m + 2

m

.

(2.4)

Remark 2.1. We find that Method (2.3) is identical with Method (2.4) in view of the relation

a3 +
1

b1 + b2v
= −

m2

2
−

mv

d − v
=

b + cv

1 + av

via direct substitution of b1, b2, a3 and due to the fact that

a =
b2

b1
= −

1
d
, b = a3 +

1
b1

= −
m2

2
, c =

a3b2

b1
=

m(m − 2)
2d

, d =


m

m + 2

m

.

Convergence behavior of existing methods (2.1)–(2.3) for various test equations will be compared later in Section 6
with proposed methods to be shown in the next section.

3. Methodology and convergence analysis

Let a function f : C → C have a multiple zero α with integer multiplicity m ≥ 1 and be analytic [1] in a small
neighborhood of α. Then new iterative methods are proposed below to find an approximate zero α of multiplicity m,
given an initial guess x0 sufficiently close to α:

yn = xn − γ
f (xn)

f ′(xn)
, γ ∈ R,

xn+1 = xn − Q f (s) ·
f (xn)

f ′(xn)
, s =


f ′(yn)

f ′(xn)

 1
k

, k ∈ N,
(3.1)

where γ ∈ R is a parameter; Q f : C → C is analytic in a neighborhood of λ with λ ∈ R to be determined
later for optimal quartic-order convergence. Since s is a one-to-k multiple-valued function, we consider its princi-
pal analytic branch [1]. Hence, it is convenient to treat s as a principal root given by s = exp[

1
k Log( f ′(yn)

f ′(xn)
)], with

Log( f ′(yn)
f ′(xn)

) = Log
 f ′(yn)

f ′(xn)

+i Arg( f ′(yn)
f ′(xn)

) for −π < Arg( f ′(yn)
f ′(xn)

) ≤ π ; this convention of Arg(z) for z ∈ C agrees with
that of Log[z] command of Mathematica [48] to be adopted in numerical experiments of Section 6. By means of further

inspection of s, we find that λ ∈ R is characterized in such a way that s =
 f ′(yn)

f ′(xn)

 1
k ·exp[

i
k Arg( f ′(yn)

f ′(xn)
)] = λ+ O(en).

Definition 3.1 (Error Equation, Asymptotic Error Constant, Order of Convergence). Let x0, x1, . . . , xn, . . . be a
sequence converging to α and en = xn − α be the nth iterate error. If there exist real numbers p ∈ R and b ∈ R − {0}

such that the following error equation holds

en+1 = b en
p

+ O(ep+1
n ), (3.2)

then b or |b| is called the asymptotic error constant and p is called the order of convergence [44].

In this paper, we investigate the optimal convergence of proposed methods (3.1). We here establish a main theorem
describing the convergence analysis regarding proposed methods (3.1) and find out how to select the parameter γ
and the weight function Q f for optimal fourth-order convergence. Three functional evaluations in (3.1) are evidently
qualified for the possibility of optimal order of four in the sense of Kung–Traub. Hence, it suffices to determine the
constant parameter γ and relevant properties of the weight function Q f for fourth-order convergence.
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Applying the Taylor’s series expansion of f about α, we get the following relations:

f (xn) =
f (m)(α)

m!
en

m
[1 + A1en + A2e2

n + A3e3
n + A4e4

n + O(e5
n)], (3.3)

f ′(xn) =
f (m)(α)

(m − 1)!
en

m−1
[1 + B1en + B2e2

n + B3e3
n + B4e4

n + O(e5
n)], (3.4)

where Ak =
m!

(m+k)!θk, Bk =
(m−1)!
(m+k−1)!θk and θk =

f (m+k)(α)

f (m)(α)
for k = 1, 2, 3, 4.

Dividing (3.3) by (3.4), we have

f (xn)

f ′(xn)
=

1
m

[en − K1e2
n − K2e3

n + K3e4
n + O(e5

n)], (3.5)

where K1 = −A1 + B1, K2 = −A2 + A1 B1 − B2
1 + B2 and K3 = −A3 + A2 B1 − A1 B2

1 + B3
1 + A1 B2 −2B1 B2 + B3.

Instead of using the parameter γ directly, we introduce a new parameter given by t = 1 − γ /m for algebraic
convenience of shortened expressions. Then, from the above relation (3.5), we obtain

yn = α + te + K1(1 − t)e2
n + K2(1 − t)e3

n + K3(1 − t)e4
n + O(e5

n). (3.6)

Our aim is to determine a fixed value of t for the desired quartic convergence of the proposed scheme. Expanding
f ′(yn) about the multiple zero α leads us to the following relation:

f ′(yn) =
f (m)(α)em−1

n

(m − 1)!


tm−2

[t + (B1t2
+ K1(m − 1)(1 − t))]en

+
1
2

tm−3
[K 2

1 (m − 2)(m − 1)(1 − t)2 − 2B1 K1m(1 − t)t2
+ 2t (B2t3

+ K2(m − 1)(1 − t))]e2
n

+
1
6

tm−4
[K 3

1 (m − 3)(m − 2)(m − 1)(1 − t)3 + 3B1 K 2
1 (m − 1)m(1 − t)2t2

+ 6K1(1 − t)t (K2(m − 2)(m − 1)(1 − t)+ B2(m + 1)t3)+ 6t2(K3(m − 1)(1 − t)

+ t (B1 K1m(1 − t)+ B3t3))]e3
n


+ O(e4

n). (3.7)

For later use, we now conveniently denote

s =


f ′(yn)

f ′(xn)

 1
k

. (3.8)

Then, applying Taylor’s expansion or multinomial expansion, we get the above expression s as follows:

s = t
m−1

k +
(t − 1)t

m−1−k
k (K1 − K1m + B1t)

k
en −

(t − 1)t
m−1−2k

k

2k2 [K 2
1 (1 + k − m)(m − 1)(t − 1)

+ 2B1 K1t[1 − m + t (m − 1 + k)] + t[−B2
1 (t − 1)t + k{2K2(m − 1)+ (B2

1 − 2B2)t (t + 1)}]]e2
n

+
(t − 1)t

m−1−3k
k

6k3 [−K 3
1 (1 + k − m)(1 + 2k − m)(m − 1)(t − 1)2

+ 3B1 K 2
1 (m − 1)(t − 1)t[1 + k − m + (−1 + k + m)t]

+ 3K1t{2kK2(1 + k − m)(m − 1)− (m − 1)t[B2
1 (1 + k)+ 2k(−B2 + K2(1 + k − m))]

+ 2B2
1 (−1 + k + m)t2

+ [B2
1 (k − 1)− 2B2k](−1 + 2k + m)t3

} + t2
{B3

1 t[(t − 1)2 − 3k(t2
− 1)

+ 2k2(1 + t + t2)] + 6k2
[K3(1 − m)+ B3t (1 + t + t2)] − 6B1k[K2(1 − m + (−1 + k + m)t)

+ B2t (1 + k(1 + t)+ (k − 1)t2)]}]e3
n + O(e4

n). (3.9)
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We now let λ = t
m−1

k for notational simplicity. It is worth to carefully treat the branch point t = 0 of λ. If t = 0, s
in (3.8) can be written more compactly as:

s = e
m−1

k
n


K

m−1
k

1 +
K

m−1
k −1

1

k
(−B1 K1 + K2(m − 1))en +

K
m−1

k −2
1

2k2 ((B2
1 (1 + k)− 2k B2)K

2
1

+ 2k B1 K 3
1 + (m − 1)(2K1(−B1 K2 + kK3)+ K 2

2 (−1 − k + m)))e2
n

+
K

m−1
k −3

1

6k3 (−6k B2
1 K 4

1 + K 2
1 (m − 1)(3(−2B2k + B2

1 (1 + k))K2 + 6k(−B1 K3 + kK4))

+ K1(m − 1)(3B1 K 2
2 (k − m + 1)− 6kK2 K3(k − m + 1))+ K 3

2 (k − m + 1)(1 + 2k − m)(m − 1)

+ K 3
1 (−6B3k2

+ 6B1 B2k(1 + k)− B3
1 (1 + k)(1 + 2k)+ 6k B1 K2(k + m − 1)))e3

n + O(e4
n)


. (3.10)

As a result, we will use s in (3.9) and (3.10) respectively for t ≠ 0 and t = 0. If t ≠ 0, then we find that λ = t
m−1

k is
well defined for all values of m ∈ N. Expanding Taylor series of Q f (s) about λ up to third-order terms we find:

Q f (s) = Q0 + Q1(s − λ)+ Q2(s − λ)2 + Q3(s − λ)3 + O(e4
n). (3.11)

Hence by substituting (3.3)–(3.11) into the proposed method (3.1), we obtain the error equation as

en+1 = en − Q f (s) ·
f (xn)

f ′(xn)
= ψ1en + ψ2e2

n + ψ3e3
n + ψ4e4

n + O(e5
n), (3.12)

where ψ1 = 1 −
Q0
m and the coefficients ψi (2 ≤ i ≤ 4) generally depend on the parameters t, Q j ( j = 0, 1 · · · ),

θi (i = 1, 2, . . .) and the function f (x). Solving ψ1 = 0, ψ2 = 0 independently of θi for Q0 and Q1, we get

Q0 = m, Q1 =
mkt

1−m+k
k

(t − 1)[t + 1 + m(t − 1)]
. (3.13)

Substituting (3.13) into ψ3 = 0 and simplifying, we have:
−

Q2(t − 1)2t−2+2(m−1)/k(1 + m(t − 1)+ t)2

k2m3(m + 1)2
−
(m − 1)(1 + t)− (−3 + m)(1 + m)t2

+ (1 + m)2t3

2m2(1 + m)2t (1 + m(t − 1)+ t)

−
(t − 1)(1 + m(t − 1)+ t)

2km2(m + 1)2t


θ2

1 −
t (m − (m + 2)t)

m(m + 1)(m + 2)(1 + m(t − 1)+ t)
θ2 = 0. (3.14)

We first let ψ3 = ψ31θ
2
1 + ψ32θ2. To make ψ3 = 0 independently of θ1 and θ2, we solve ψ31 = 0 and ψ32 = 0

simultaneously of t and Q2. As a result, with the use of notation

ρ =


m

m + 2

m−1
k

, (3.15)

we obtain:

t =
m

m + 2
, λ = ρ, Q0 = m, Q1 = −

km2(m + 2)
4ρ

, Q2 =
km2(m + 2)(1 + k + km)

8ρ2 . (3.16)

If t = 0, i.e., if γ = m, then we readily choose k = m − 1 ≠ 0 or m = 1 via special treatment from (3.6) in order
that s might start with a lowest integer-order term in en . This eventually leads us to summarized results together with
the corresponding error equation shown in (3.17) or (3.18):

m ≠ 1, γ = m, Q0 = m, Q1 = m, Q2 =
2m2

m − 1
, k = m − 1,

en+1 =

 m3
+ 8m2

+ m + 2

2(m − 1)2m3(m + 1)3
−

Q3

m4(m + 1)3


θ3

1 −
1

(m − 1)m(m + 1)2(m + 2)
θ1θ2


e4

n + O(e5
n).

(3.17)
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or 
m = 1, γ = 1, Q0 = 1, Q1 = −

k

2
, k ∈ N,

en+1 =


k + 1

4k
−

Q2

k2


θ2

1 +
1

12
θ2


e3

n + O(e4
n).

(3.18)

Remark 3.1. It is seen that method (2.1) can be obtained if we take Q f = m(1 + G) when γ = m via (3.17) under
the restriction of f to R. One can see that (3.18) describes only a family of cubic-order simple-zero finders. In addition,
existing Methods (2.2), (2.3) are special cases when k = 1 is chosen from proposed methods (3.1). Note also that they
satisfy (3.16) when each of their respective weight functions is represented as Q f (s) with k = 1.

In this investigation, we will limit ourselves only to the case for nonzero t =
m

m+2 (i.e., γ =
2m

m+2 ) as shown in
(3.16). Substituting (3.13) and (3.16) into ψ4, we find

ψ4 = φ1θ
3
1 + φ2θ1θ2 + φ3θ3, (3.19)

where

φ1 =
16 + 24(1 + m)+ k2(8 + 16m + 12m2

+ 14m3
+ 14m4

+ 6m5
+ m6)

3k2m5(m + 1)3(m + 2)2
+

64ρ3 Q3

k3m2(m + 1)3(m + 2)3
,

ρ =


m

m + 2

m−1
k

,

φ2 = −
1

m(m + 1)2(m + 2)
, and φ3 =

m

(m + 1)(m + 2)3(m + 3)
.

The consequence of the analysis carried out thus far immediately leads us to the following theorem.

Theorem 3.2. Let f : C → C have a zero α of multiplicity m ∈ N and be analytic in a small neighborhood

of α. Let k ∈ N be given. Let γ =
2m

m+2 , ρ = ( m
m+2 )

m−1
k and θ j =

f (m+ j)(α)

f (m)(α)
for j ∈ N. Let x0 be an initial

guess chosen in a sufficiently small neighborhood of α. Let Q f : C → C be analytic in a neighborhood of ρ. Let

Q j =
1
j !

d j

ds j Q f (s)|s=ρ for 1 ≤ j ≤ 3. Suppose that Q0 = m, Q1 = −
km2(m+2)

4ρ and Q2 =
km2(m+2)(1+k+km)

8ρ2 hold.
Then iterative methods (3.1) are of optimal fourth-order and possess the following error equation:

en+1 = (φ1θ
3
1 + φ2θ1θ2 + φ3θ3)e

4
n + O(e5

n), (3.20)

where φi (1 ≤ i ≤ 3) are given in (3.19).

4. Special cases of weight functions with γ =
2m

m+2

Using relations (3.9), (3.11) and (3.16), the Taylor-polynomial form of Q f (s) is easily given by

Q f (s) = m −
km2(m + 2)

4ρ
(s − ρ)+

km2(m + 2)(1 + k + km)

8ρ2 + Q3(s − ρ)3, (4.1)

where s and ρ are introduced respectively in (3.8) and (3.15). Special cases of Q f (S) are considered here. In each
case, relevant coefficients are determined based on relation (3.16).

Although a variety forms of weight functions Q f (s) are available in view of Taylor-polynomial forms shown by
(4.1), we will limit ourselves to considering several cases of weight functions comprising low-order polynomials or
simple rational functions.

Case 1: Second-order polynomial weight functions: Q3 = 0

Q f (s) = m −
km2(m + 2)

4ρ
(s − ρ)+

km2(m + 2)(1 + k + km)

8ρ2 (s − ρ)2. (4.2)
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Table 1
Typical Q f (s) of Case 1 with k, ρ.

CN k ρ Q f (s)

1A m ( m
m+2 )

m−1
m m −

m3(m+2)
4ρ (s − ρ)+

m3(m+2)(1+m+m2)
8ρ2 (s − ρ)2

1B m − 1 m
m+2 m −

(m−1)m2(m+2)
4ρ (s − ρ)+

(m−1)m4(m+2)
8ρ2 (s − ρ)2

1C m + 1 ( m
m+2 )

m−1
m+1 m −

m2(m+1)(m+2)
4ρ (s − ρ)+

m2(m+1)(m+2)(m2
+2m+2)

8ρ2 (s − ρ)2

1D m + 2 ( m
m+2 )

m−1
m+2 m −

m2(m+2)2
4ρ (s − ρ)+

m2(m+22)(m2
+3m+3)

8ρ2 (s − ρ)2

1E m + 3 ( m
m+2 )

m−1
m+3 m −

m2(m+2)(m+3)
4ρ (s − ρ)+

m2(m+23)(m+3)
8ρ2 (s − ρ)2

Table 2
Typical Q f (s) of Case 2 with ai , b j , Q3.

CN a1 a2 a3 b2 b3 Q f (s) Q3

2A m µ
4ρ 0 δ

2ρ 0 m+a2(s−ρ)
1+b2(s−ρ)

−
mτδ2

16ρ3

2B m 0 0 τ
4ρ −

τµ

16mρ2
m

1+b2(s−ρ)+b3(s−ρ)2
τ2(−2mδ+µ)

64ρ3

2C m 0 τµ

16ρ2
τ

4ρ 0 m+a3(s−ρ)
2

1+b2(s−ρ)
−

mτ2δ
32ρ3

Here, µ = m(2 + 2k − km2), δ = 1 + k + km and τ = km(m + 2).

We list typical second-order Q f (s) with interesting combinations of k, ρ in Table 1, where CN stands for the
corresponding case identification number.

Case 2: Second-order rational weight functions

Q f (s) =
a1 + a2(s − ρ)+ a3(s − ρ)2

1 + b2(s − ρ)+ b3(s − ρ)2
, (4.3)

where a1 = m, a2 =
µ
4ρ +

4ρ
τ
(−a3+b3m)with µ = m(2+2k−km2), τ = km(m+2) and b2 =

δ
2ρ +

4ρ
mτ (−a3+b3m)

with δ = 1 + k + km are determined using (3.16) with a3 and b3 as parameters to be selected. Although we explicitly
obtain relations a2 = a2(a3, b3) and b2 = b2(a3, b3) in terms of two parameters a3 and b3, one should note that
they allow us to conveniently solve for any two parameters in terms of other two remaining parameters out of four
parameters a2, b2, a3, b3.

In fact, in Table 2, we list typical Q f (s) with interesting combinations of ai , b j , Q3. Sub-cases of {2A, 2B,
2C} are conveniently designated as {2A1, 2B1, 2C1}, {2A2, 2B2, 2C2} and {2A3, 2B3, 2C3}, respectively for
k = m, k = m − 1 and k = m + 3.

Remark 4.1. (a) When m = 2, k = m −1 = 1, sub-case numbers 2A2, 2B2, 2C2 all denote the same Q f (s) =
2

4s−1

due to the values of ρ =
1
2 , µ = 0, δ = 4, τ = 8, a2 = a3 = b3 = 0, b2 = 4 in Table 2. Besides that, (2.2)

shows that Q f (s) = −
4m( m

m+2 )
m

( m
m+2 )

m (m2+2m−4)−m2s


1 −

m3(m−2)
16( m

m+2 )
2m {s − ( m

m+2 )
m−1

}
2


=
2

4s−1 when m = 2. Likewise,

(2.3) shows that Qs(s) =
2

4s−1 when m = 2.
(b) When k = m = 2, sub-case number 2B1 also denotes Q f (s) =

2
4s−1 .

(c) As a result, sub-case numbers 2B1, 2A2, 2B2, 2C2 all denote the same Q f (s) =
2

4s−1 , when m = 2.

In the next section, we will discuss the extraneous fixed points [20,46] of Q f and relevant dynamics of the proposed
method. The dynamics behind basins of attraction was initiated by Stewart [43] and followed by works of Chun
et al. [31,10,11], Chicharro et al. [7], Cordero et al. [13] and Neta et al. [32], in addition to the works of Amat et al.
[3,4,2,5], Scott et al. [41] and Chun et al. [8]. The only papers comparing basins of attraction for methods to obtain
multiple roots are due to Neta et al. [34], Neta and Chun [30,31], and Chun and Neta [10]. More recent results on
basins of attraction can be found in [6,26,27].
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5. Extraneous fixed points

In general, multipoint iterative methods finding a zero α of a nonlinear equation f (x) = 0 can be written as

xn+1 = R f (xn), n = 0, 1, . . . , (5.1)

where a fixed point ξ of R f is α. The iteration function R f , however, might possess other fixed points ξ ≠ α.
Such fixed points are called the extraneous fixed points of the iteration function R f . Extraneous fixed points may
form attractive, indifferent or repulsive cycles as well as other periodic orbits to display chaotic dynamics of the
method under investigation. This motivates our technical selection of appropriate parameters among free parameters
a2, b2, a3, b3 of Q f in Case 2 of the preceding section via intensive analysis of the extraneous fixed points under some
constraints.

The proposed method (3.1) can be put in the form:

xn+1 = R f (xn) = xn −
f (xn)

f ′(xn)
H f (xn), (5.2)

where H f (xn) = Q f (s) can be regarded as a weight function of the classical Newton’s method. It is obvious that α is
a fixed point of R f . The points ξ ≠ α for which H f (ξ) = 0 are extraneous fixed points of R f . It is interesting to vary
k with some choices of free parameters in Cases 1 and 2 and observe the resulting dynamics of the method related to
the extraneous fixed points.

If we look at H f in Case 1, it varies with one integer parameter k ≥ 1. Thus all of its listed five sub-cases are
dynamically different from each other. Similarly, if we look at H f in Case 2, it varies with one integer parameter k ≥ 1
as well as with two of four parameters a2, b2, a3, b3. Thus all of its sub-cases are different dynamically. According
to a study of Neta et al. [31], the dynamics of members associated with Case 1 of a polynomial-type weight function
for k ∈ {1,m − 1} did not give good results. Thus for this reason, it is reasonable in this study to exclude Case 1 for
further investigation of its dynamics.

We limit ourselves to paying a special attention to Case 2 of a rational-type weight function in order to explore
further properties of extraneous fixed points and relevant dynamics.

By closely following the works of Chun et al. [31,10,12] and Neta et al. [31,32,35], we construct H f (xn) = Q f (s)
in (5.2) as follows:

H f (xn) =
m + a2(s − ρ)+ a3(s − ρ)2

1 + b2(s − ρ)+ b3(s − ρ)2
, (5.3)

where s is given by (3.8) and parameters a2, b2, a3, b3 are described in (4.3). We now apply a polynomial f (z) =

(z2
− 1)m to H f (xn) and construct a weight function H(z), with a change of a variable ζ = z2, in the form of

H(z) =
F(ζ )

D(ζ )
, (5.4)

where F(ζ ) = m + a2(ω − ρ) + a3(ω − ρ)2, D(ζ ) = 1 + b2(ω − ρ) + b3(ω − ρ)2, ω =

∆(m + 1 + ζ−1){(m +

1)2 − ζ−1
}
m−1

 1
k and ∆ = (m + 2)1−2m .

It is interesting to investigate the complex dynamics of the iterative map Rp, as constructed with the above H(z),
of the form

zn+1 = Rp(zn) = zn −
p(zn)

p′(zn)
H(zn), (5.5)

in connection with the basins of attraction for a variety of polynomials p(zn) and a weight function H(zn). Indeed,
Rp(z) represents the classical Newton’s method with a weight function H(z) and may possess its fixed points as zeros
of p(z) or extraneous fixed points associated with H(z). As a result, basins of attraction for the fixed points or the
extraneous fixed points as well as their periodic orbits may make an impact on the complicated and chaotic complex
dynamics whose visual description for various polynomials will be shown in the latter part of Section 6.

We now inspect the zeros ζ of F in (5.4) more closely. The extraneous fixed points ξ of iterative map Rp (5.5) can
be found from the zeros ζ of F via relation ξ = ζ 1/2, provided that D(ζ ) ≠ 0. Note that F is a finite sum of fractional
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powers in ζ . It must be emphasized that any general algebraic ways of zero-finding of F(ζ ) seem to be infeasible.
In order to find the zeros ζ of F , we need to solve for ζ simultaneously by eliminating ω from the following two
relations:

F(ζ ) = m + a2(ω − ρ)+ a3(ω − ρ)2 = 0,

T (ζ ) = ωkζm
− ∆(1 + (m + 1)ζ ){(m + 1)2ζ − 1}

m−1
= 0,

(5.6)

where T is introduced for convenience of notation. From the first equation F(ζ ) = 0, we can solve for ω =

ω(a2, a3, ρ) in terms of parameters a2, a3 and the constant ρ = ρ(m, k). Substitution of ω into the second equation
T (ζ ) = 0 yields the desired zeros ζ = ζ(m, k) in terms of parameters m and k. Based on a close inspection of (5.6),
it is worthwhile for us to describe some properties about zeros ζ of F in the following remark.

Remark 5.1. (1) The first equation of (5.6) immediately ensures that no zeros ζ of F , i.e., no extraneous fixed points
ξ exist when a2 = a3 = 0, which occurs in Case 2B as shown in Table 2. In addition, a2 = a3 = 0 occurs when
µ = m(2 + 2k − km2) = 0 for a pair of values (m, k) = (2, 1). Hence, no extraneous fixed points ξ exist for
Methods Case 2A and Case2C when a particular pair of values (m, k) = (2, 1) is employed.

(2) In view of the relations a2 =
µ
4ρ +

4ρ
τ
(−a3 + b3m) and b2 =

δ
2ρ +

4ρ
mτ (−a3 + b3m), we find b2 =

a2
m +

τ
4ρ and

b3 =
1
m (a3 +

(4a2ρ−µ)

16ρ2 τ).

(3) The second equation T defines a polynomial of degree m in ζ . Hence we may apply known polynomial root-
finding methods to the root-finding of F .

(4) The leading term of T is given by

ωk

− (m+1
m+2 )

2m−1

ζm .

(5) T contains at most m roots whose values are dependent on both m and k.
(6) The maximal number of extraneous fixed points ξ of iterative map (5.5) associated with H(z) is 2m, since F(ζ )

contains at most m roots.
(7) In general, not all the roots ζ of T satisfy H(ζ ) = 0. Hence back substitution of ζ is required to check whether

they satisfy H(ζ ) = 0. The desired roots ζ are then used to find the extraneous roots ξ by taking ξ = ζ
1
2 counting

all their analytic branches.

In view of Remark 5.1-(1), no extraneous fixed points ξ of the iterative map (5.5) exist for Method 2B. As a result,
we are only interested in solving (5.6) for zeros ζ of F associated with Method 2A and Method 2C. From the first
equation of (5.6), we solve for ω:

ω =


ρ


1 −

4m

µ


, for Method 2A,

ρ


1 ± 4i


m

µτ


, for Method 2C.

(5.7)

Substituting this ω into T (ζ ) = 0, the second equation of (5.6), we can express T (ζ ) explicitly by means of m, k, ζ .
For given values of m and k, the zeros ζ can be found, among which suitable ones satisfying H(ζ ) = 0 give desired
extraneous fixed points ξ = ζ 1/2. We especially wish to explore the dynamical behavior of (5.5) with selected pairs
of values of (m, k) for k ∈ {m − 1,m,m + 3} and m ∈ {2, 3, 4, 5}. Tables 3–5 list F(ζ ), extraneous fixed points ξ for

such selected values of m and k. For Method 2C with ω = ρ

1−4i


m
µτ


, we find that fourteen purely imaginary ex-

traneous fixed points ±0.790826i,±0.831866i,±0.838400i,±0.846759i,±0.87271i,±0.875406i,±0.879442i are
indeed attractive when the values of (m, k) are given by (3, 6), (4, 3), (4, 4), (4, 7), (5, 4), (5, 5), (5, 8), respectively.
All other extraneous fixed points ξ associated with H in this exploration are found to be repulsive.

In the latter part of Section 6, we will illustrate the complex dynamics behind the basins of attraction for iterative
maps (5.5) when applied to various polynomials. For convenience and later use, we denote 12 iterative map names for
Method 2A with given pairs of values (m, k) = (2, 1), (2, 2), . . . , (5, 8) in Table 3 respectively by GKN2Am2k1,
GKN2Am2k2, . . . , GKN2Am5k8. Similar map notations are also employed for Method 2B and Method 2C.

We wish to compare the dynamical behavior of (5.5) with that of another complex iterative map associated with
an existing method. The dynamics of Method (2.1) was studied by Neta et al. [31], which did not give good results.
Thus for the sake of comparison, we are interested in the dynamics of Method (2.3) (to be abbreviated by LCN6 later
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Table 3
F(ζ ) with Method 2A and extraneous fixed points ξ for 2 ≤ m ≤ 5.

m k F(ζ ) ξ = ζ 1/2 No. of ξ

1 m −
⋆ 0

2 2 3√
2

−
1
8
√
(9 − 1/ζ )(3 + 1/ζ ) ±0.191563 ± 0.158752i 4

5 3 · 2−6/5
− 2−6/5((9 − 1/ζ )(3 + 1/ζ ))1/5 ±0.202398 ± 0.164549i 4

2 4
5 − 5−3/2


(−16 + 1/ζ )2(4 + 1/ζ ) ±0.318721 ± 0.237713i,±0.202474

3 3 23
19 (

3
5 )

2/3
− 5−5/3((−16 + 1/ζ )2(4 + 1/ζ ))1/3 ±0.319208 ± 0.237756i,±0.202507 6

6 11
10 (

3
5 )

1/3
− 5−5/6((−16 + 1/ζ )2(4 + 1/ζ ))1/6 ±0.319497 ± 0.237782i,±0.202527

3 11
15 − 6−7/3((25 − 1/ζ )3(5 + 1/ζ ))1/3 ±0.166518 ± 0.0278804i,±0.364110 ± 0.250396i

4 4 29
27 (

2
3 )

3/4
− 6−7/4((25 − 1/ζ )3(5 + 1/ζ ))1/4 ±0.166519 ± 0.0278800i,±0.364152 ± 0.250395i 8

7 25
24 (

2
3 )

3/7
−

1
6 ((25 − 1/ζ )3(5 + 1/ζ ))1/7 ±0.166520 ± 0.0278797i,±0.364188 ± 0.250394i

4 47
63 − 7−9/4((−36 + 1/ζ )4(6 + 1/ζ ))1/4

±0.144767 ± 0.0387239i, ±0.389575 ± 0.253811i,
±0.13234

5 5 117
113 (

5
7 )

4/5
− 7−9/5((−36 + 1/ζ )4(6 + 1/ζ ))1/5

±0.144768 ± 0.0387239i, ±0.389583 ± 0.253811i,
±0.13234

10

8 93
91


5
7 − 7−9/8((−36 + 1/ζ )4(6 + 1/ζ ))1/8

±0.144768 ± 0.0387238i, ±0.389590 ± 0.253810i,
±0.132341

−
⋆: no suitable value.

Table 4

F(ζ ) with Method 2C when ω = ρ

1 − 4i


m
µτ


and extraneous fixed points ξ for 2 ≤ m ≤ 5.

m k F(ζ ) ξ = ζ 1/2 No. of ξ

1 m − 0
2 2 −

1
2 +

1√
2

−
1
8
√
(9 − 1/ζ )(3 + 1/ζ ) ±0.337740,±0.601200i 4

5 2−1/5(1 −

√
5

10 −
1
2 ((9 − 1/ζ )(3 + 1/ζ ))1/5) ±0.349353,±0.675194i 4

2 1
25 (15 −

√
10)−

1
25

√
5


(−16 +

1
ζ
)2(4 +

1
ζ
) ±0.748517i,±0.216849,±0.342619

3 3 ( 3
5 )

2
3 −

4·5−7/6

31/3
√

19
− 5−

5
3 ((−16 +

1
ζ
)2(4 +

1
ζ
))

1
3 ±0.769926i,±0.216456,±0.346197 6

6 14
32/354/3 − 5−5/6(−16 +

1
ζ
)2(4 +

1
ζ
)1/6 ±0.790826i,±0.216119,±0.349447

3 2
3 −

1
9
√

5
− 6−7/3((25 − 1/ζ )3(5 + 1/ζ ))1/3 ±0.831866i,±0.171227 ± 0.0257895i,±0.360331

4 4 17
21/4311/4 − 6−7/4((25 − 1/ζ )3(5 + 1/ζ ))1/4 ±0.838400i,±0.171195 ± 0.0258051i,±0.361263 8

7 84−
√

7
42·24/733/7 −

1
6 ((25 − 1/ζ )3(5 + 1/ζ ))

1
7 ±0.846759i,±0.171155 ± 0.0258243i,±0.362428

4 5
7 −

√
2/7
21 − 7−

9
4 ((36 − 1/ζ )4(6 + 1/ζ ))1/4

±0.87271i, ±0.147045 ± 0.0371392i,
±0.134114, ±0.37286

5 5 ( 5
7 )

4
5 −

4·7
−

13
10

5
1
5

√
113

− 7−
9
5 ((36 − 1/ζ )4(6 + 1/ζ ))

1
5

±0.875406i, ±0.147039 ± 0.0371435i,
±0.134109, ±0.373212

10

8


5
7 −

1
7
√

91
− 7−

9
8 ((36 − 1/ζ )4(6 + 1/ζ ))

1
8

±0.879442i, ±0.147030 ± 0.0371499i,
±0.134102, ±0.373735

in Section 6) that contains a first-order rational weight function, rather than that of Method (2.2) with a second-order
rational weight function. By repeating a similar analysis that we have done so far, iterative method (2.3) can be put in
the form:

xn+1 = R f (xn) = xn −
f (xn)

f ′(xn)
H f (xn), (5.8)

where H f (xn) =

a3 +

1
b1+b2s


, s =

f ′(yn)
f ′(xn)

, a3 = −
m(m−2)

2 , b1 = −
1
m , b2 =

1
md , d = ( m

m+2 )
m .
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Table 5

F(ζ ) with Method 2C when ω = ρ

1 + 4i


m
µτ


and extraneous fixed points ξ for 2 ≤ m ≤ 5.

m k F(ζ ) ξ = ζ 1/2 No. of ξ

1 m − 0
2 2 1

2 +
1√
2

−
1
8
√
(9 − 1/ζ )(3 + 1/ζ ) ±0.289943 ± 0.196945i 4

5 2−1/5(1 +

√
5

10 −
1
2 ((9 − 1/ζ )(3 + 1/ζ ))1/5) ±0.298027 ± 0.198635i 4

2 1
25 (15 +

√
10)−

1
25

√
5


(−16 +

1
ζ
)2(4 +

1
ζ
) ±0.371481 ± 0.238198i,±0.205350

3 3 ( 3
5 )

2
3 +

4·5−7/6

31/3
√

19
− 5−

5
3 ((−16 +

1
ζ
)2(4 +

1
ζ
))

1
3 ±0.370779 ± 0.238249i,±0.205320 6

6 16
32/354/3 − 5−5/6(−16 +

1
ζ
)2(4 +

1
ζ
)1/6 ±0.369900 ± 0.238310i,±0.205282

3 2
3 +

1
9
√

5
− 6−7/3((25 − 1/ζ )3(5 + 1/ζ ))1/3 ±0.167184 ± 0.0276061i,±0.400090 ± 0.247313i

4 4 19
21/4311/4 − 6−7/4((25 − 1/ζ )3(5 + 1/ζ ))1/4 ±0.167178 ± 0.0276085i,±0.399730 ± 0.247364i 8

7 84+
√

7
42·24/733/7 −

1
6 ((25 − 1/ζ )3(5 + 1/ζ ))

1
7 ±0.167170 ± 0.0276117i,±0.399248 ± 0.247431i

4 5
7 +

√
2/7
21 − 7−

9
4 ((36 − 1/ζ )4(6 + 1/ζ ))1/4

±0.145017 ± 0.0385588i, ±0.417034 ± 0.250374i,
±0.132531

5 5 ( 5
7 )

4
5 +

4·7
−

13
10

5
1
5

√
113

− 7−
9
5 ((36 − 1/ζ )4(6 + 1/ζ ))

1
5

±0.145015 ± 0.0385597i, ±0.416870 ± 0.250402i,
±0.132530

10

8


5
7 +

1
7
√

91
− 7−

9
8 ((36 − 1/ζ )4(6 + 1/ζ ))

1
8

±0.145013 ± 0.038561i, ±0.416620 ± 0.250443i,
±0.132529

Table 6
Extraneous fixed points ξ of H for 3 ≤ m ≤ 5.

m ξ No. of ξ

3 ±0.202285, ± 0.316011 ± 0.237459i 6
4 ±0.166502 ± 0.0278872i, ± 0.363341 ± 0.25042i 8
5 ±0.132338, ± 0.144764 ± 0.0387259i, ± 0.389278 ± 0.253836i 10

Like iterative map Rp (5.5), the complex iterative map Rp associated with R f can be written as

zn+1 = Rp(zn) = zn −
p(zn)

p′(zn)
H (zn). (5.9)

In addition, the weight function H (z) associated with H f (xn) for f (z) = (z2
− 1)m is found to be:

H (z) = −
m

2
·

F (z)

−d(m + 2)2m z2m + (m + 2)(1 + (m + 1)z2)(−1 + (m + 1)2z2)m−1 , (5.10)

provided that z ∉ {0,±1,± 1
m+1 }, where F (z) = −dm(m+2)2m z2m

+(m2
−4)(1+(m+1)z2)(−1+(1+m)2z2)m−1

and d = ( m
m+2 )

m .
Observe that F (z) is a polynomial of degree 2m. For m = 2, H (z) does not possess any extraneous fixed point. Oth-
erwise, it possesses 2m extraneous fixed points. Typical extraneous fixed points of H (z) are shown for 3 ≤ m ≤ 5 in
Table 6. They are all found to be repulsive.

6. Numerical experiments and basins of attraction

In this section we first deal with computational characteristics of proposed method (3.1) for a variety of test
functions in comparison with other existing methods. Later on in the latter part of this section, we will explore and
display the complex dynamics behind the basins of attraction of iterative maps (5.5) along with concluding remarks.

A variety of numerical experiments have been carried out with Mathematica programming to confirm the devel-
oped theory. In these experiments, we have moderately adopted the minimum number of precision digits as 112, via
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Mathematica command $MinPrecision = 112, to achieve the specified accuracy. In case that α is not exact, it is re-
placed by a more accurate value which has larger number of significant digits than the assigned $MinPrecision = 112.

Definition 6.1 (Computational Convergence Order). Assume that theoretical asymptotic error constant η =

limn→∞
|en |

|en−1|
p and convergence order p ≥ 1 are known. Define pn =

log |en/η|
log |en−1|

as the computational convergence
order. Note that limn→∞ pn = p.

Remark 6.1. Note that pn requires knowledge at two points xn, xn−1, while the usual COC (computational order of
convergence) log(|xn−xn−1|/|xn−1−xn−2|)

log(|xn−1−xn−2|/|xn−2−xn−3|)
does require knowledge at four points xn, xn−1, xn−2, xn−3. Hence pn can be

handled with a less number of working precision digits than the usual COC whose number of working precision digits
is at least p times as large as that of pn .

Computed values of xn are accurate up to $MinPrecision significant digits. If α has the same accuracy of
$MinPrecision as that of xn , then en = xn − α would be nearly zero and hence computing |en+1|/e

p
n | would

unfavorably break down. To clearly observe the convergence behavior, we desire α to have more significant digits
that are Φ digits higher than $MinPrecision. To supply such α, a set of following Mathematica commands are used:

sol = FindRoot[ f (x), {x, x0},PrecisionGoal → Φ + $MinPrecision,
WorkingPrecision → 2 ∗ $MinPrecision];

α = sol[[1, 2]].

In this experiment, we assign Φ = 16. As a result, the numbers of significant digits of xn and α are found to be
112 and 128, respectively. Nonetheless, the limited paper space allows us to list both of them only up to 15 significant
digits. We set the error bound ϵ to 1

2 × 10−80 satisfying |xn − α| < ϵ.
Iterative methods (3.1) with cases 1A, 1B, 1C, 1D, 1E and 2A, 2B, 2C were respectively identified by W1A, W1B,

W1C, W1D, W1E and W2A, W2B, W2C, being W-prefixed. Methods W1C, W1D, W2C3 have been successfully
applied to the test functions F1 − F3 below:

W1C : F1(x) =


x −

√
3x3 cos

πx

6


+

10

x2 + 1
− 4

2

(x − 3)3, m = 5, α = 3

W1D : F2(x) =


6x − 2i − 3π + 3 cos


x −

i

3


log(x4

+ 1)


cos


x −
i

3


,

m = 2, α =
i

3
+
π

2
, i =

√
−1

W2C3 : F3(x) = [x sin−1(x − 1)+ ex2
− 4]

3, m = 3, α ≈ 1.15736504704271,

where log z(z ∈ C) represents a principal analytic branch such that − π < Im(log z) ≤ π.

As seen in Table 8, they clearly confirmed quartic-order convergence. The values of computational asymptotic error
constant agree up to 10 significant digits with η. As expected, the computational convergence order well approaches 4.

Additional test functions in Table 7 are used to display the convergence behavior of proposed scheme (3.1).
In Table 9, we compare numerical errors |xn − α| of proposed methods W1A, W2A1, W2B2, W2C3 with those

of existing optimal fourth-order multiple-zero finders. Abbreviations Liu, Sol, LCN6 denote existing optimal fourth-
order multiple-zero finders obtained by Liu et al. (2.1) with G f (w) = w +

2m
m−1w

2, Soleymani et al. (2.2), Li et al.
(2.3), respectively.

The least errors within the prescribed error bound are highlighted in bold face. Most of existing methods other than
Method Liu exhibit similar performance. After two iterations, in view of strict comparison, Method W2C3 shows
slightly better convergence for f2, f3, f6, f7 and W2B2 for f1, f5, while method Sol for f4. It is worth to observe
that methods Sol, W2B2 and LCN6 display the same results for f6 due to Remark 4.1(a). It seems that Method Liu
is less accurate for the current set of test functions employed in this experiment. It might be worthwhile to note that
γ = m is used in Method Liu, while γ =

2m
m+2 in other remaining methods. By inspecting the asymptotic error

constant η(θi ,m, Q f ) =
|xn+1−α|

|xn−α|p when p is known, we find that the local convergence is dependent on the function
f (x), an initial value x0, the multiplicity m, the zero itself and the weight function Q f . Accordingly, for a given set
of test functions, one method is hardly expected to always show better performance than the others.
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Table 7
Additional test functions fi (x), zeros α and initial guesses x0.

i fi (x) α m x0

1 x3
[x4

+ log(x + 1)] 0 4 0.11

2 (4 + cos x − cos 3x − 4x)2(1 − x + cos x − cos3 x) ≈1.27016002579975 3 1.35

3 [sin(x2
− 4)− x log(x2

+ π − 3)]3(x2
− 4 + π)

√
4 − π 4 1.0

4 (x2
+ e−x2

+ x sin x − 2)6 ≈0.916952932621001 6 1.0

5 [cos( 2π
x )+ x3

+ 9]
5

−2 5 −1.9

6 [(x − 3)2 +
2

25 +
1

x3 log{(x − 3)2 + +
27
25 }][(x − 3)2 +

2
25 ] 3 −

i
√

2
5 2 2.97 − 0.33i

7 ( x2

1−log x −
1√
x
)7 1 7 0.9

Here log z (z ∈ C) represents a principal analytic branch with −π ≤ Im(log z) < π .

Table 8
Convergence for test functions F1(x)− F3(x) with methods W1C, W1D, W2C3.

MT F n xn |F(xn)| |xn − α| |en/e4
n−1| η pn

0 2.7 0.795179 0.3
1 3.00412039385887 9.073 × 10−10 4.120 × 10−3 0.5086905999 0.2152569195 3.28569

W1C F1 2 3.00000000006141 5.408 × 10−49 6.140 × 10−11 0.2130459405 4.00188
3 3.00000000000000 1.664 × 10−205 3.061 × 10−42 0.2152569195 4.00000
4 3.00000000000000 0.0 × 10−557 0.0 × 10−111

0
1.5
0.3


∗ 0.0127611 0.0782511

1
 1.57044483302481
0.333832082157843


8.226 × 10−7 6.101 × 10−4 16.27362171 12.18343574 3.88639

W1D F2 2
 1.57079632679357
0.333333333332306


6.2172 × 10−24 1.678 × 10−12 12.11228598 4.00079

3
 1.57079632679490
0.333333333333333


2.066 × 10−92 9.678 × 10−47 12.18343574 4.00000

4
 1.57079632679490
0.333333333333333


0.0 × 10−222 0.0 × 10−111

0 1.2 0.0988196 0.0426350
1 1.15737235256885 4.096 × 10−13 7.305 × 10−6 2.210997983 2.563142231 4.04684

W2C3 F3 2 1.15736504704271 4.087 × 10−58 7.300 × 10−21 2.563075141 4.00000
3 1.15736504704271 4.056 × 10−238 7.281 × 10−81 2.563142231 4.00000
4 1.15736504704271 0.0 × 10−334 0.0 × 10−111

MT = method, ∗
1.5
0.3


= 1.5 + 0.3i .

We introduce the efficiency index [25] defined by EI = p1/d where p is the order of convergence and d is the
number of distinct functional or derivative evaluations per iteration. The proposed methods (3.1) as well as all other
listed methods have same EIs of 41/3

≈ 1.587 being optimal in the sense of Kung–Traub’s conjecture. This paper
constructs optimal quartic-order multiple-zero finders with a weight function dependent upon the principal kth root of
f ′(yn)
f ′(xn)

and derives their relevant error equations. It is worth to note that existing methods (2.1)–(2.3) are special cases
of our proposed methods as stated in Remark 3.1.

It is very important for us to discuss initial values influencing the convergence behavior of iterative methods. We
find that iterative map (5.5) as Newton’s method with a weight function H(z) requires good initial values close to
zero α. It is, however, a difficult task to determine how close the initial values are to zero α, since initial values are
generally dependent upon computational precision, error bound and the given function f (x) under consideration.
Among various ways of selecting stable initial values, visual illustration of basins of attraction is a greatly effective
one. Since the area of convergence can be seen on the basins of attraction, it would be reasonable to say that larger area
of convergence indicates a better method. Clearly a quantitative analysis is necessary for measuring the size of area of
convergence. To this end, we provide Table 10 featuring a statistical data describing the average number of iterations
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Table 9
Comparison of |xn − α| for various multiple-zero finders.

f, x0; m |xn − α| Liu Sol LCN6 W1A W2A1 W2B2 W2C3

f1, 0.11; 4 |x1 − α| 2.26e−3 2.18e−5 2.18e−5 2.17e−5 2.18e−5 2.17e−5 2.18e−5
|x2 − α| 2.03e−13 2.49e−20 2.46e−20 2.43e−20 2.46e−20 2.42e−20 2.49e−20
|x3 − α| 8.95e−27 4.21e−80 3.98e−80 3.82e−80 3.98e−80 3.72e−80 4.20e−80

f2, 1.35; 3 |x1 − α| 4.64e−5 2.13e−5 2.20e−5 2.31e−5 2.20e−5 2.26e−5 2.12e−5
|x2 − α| 1.00e−17 1.58e−19 1.89e−19 2.43e−19 1.88e−19 2.14e−19 1.53e−19
|x3 − α| 2.19e−68 4.74e−76 1.02e−75 2.99e−75 1.01e−75 1.74e−75 4.23e−76

f3, 1.0; 4 |x1 − α| 3.74e−5 1.98e−4 2.00e−5 2.07e−5 2.00e−5 2.12e−5 1.91e−5
|x2 − α| 4.22e−18 3.39e−15 1.61e−19 1.93e−19 1.61e−19 2.16e−19 1.25e−19
|x3 − α| 6.85e−70 2.90e−58 6.78e−76 1.43e−75 6.72e−76 2.33e−75 2.36e−76

f4, 1.0; 6 |x1 − α| 6.09e−5 3.08e−5 3.29e−5 3.37e−5 3.29e−5 3.76e−5 3.09e−5
|x2 − α| 2.70e−17 7.99e−19 1.11e−18 1.25e−18 1.11e−18 2.16e−18 8.15e−19
|x3 − α| 1.05e−66 3.62e−73 1.45e−72 2.43e−72 1.45e−72 2.34e−71 3.92e−73

f5,−1.9; 5 |x1 − α| 8.57e−3 1.15e−5 1.02e−5 9.54e−6 1.02e−5 8.03e−6 1.14e−5
|x2 − α| 2.15e−9 1.06e−21 5.01e−22 3.13e−22 5.02e−22 8.22e−23 1.03e−21
|x3 − α| 8.67e−36 7.93e−86 2.86e−87 3.65e−88 2.90e−87 9.01e−91 6.81e−86

f6, 2.97, |x1 − α| 5.16e−4 6.95e−5 6.95e−5 9.44e−5 6.90e−5 6.95e−5 6.30e−5
−0.33i; 2 |x2 − α| 8.24e−12 2.58e−16 2.58e−16 1.20e−15 2.48e−16 2.58e−16 1.58e−16

|x3 − α| 5.34e−43 4.96e−62 4.96e−62 3.23e−59 4.19e−62 4.96e−62 6.39e−63

f7, 0.9; 7 |x1 − α| 2.24e−2 3.55e−6 8.11e−6 1.22e−5 8.09e−6 3.92e−5 2.78e−6
|x2 − α| 9.79e−7 5.17e−23 2.03e−21 1.14e−20 2.00e−21 2.02e−18 1.98e−23
|x3 − α| 3.74e−24 2.31e−90 7.94e−84 8.97e−81 7.62e−84 1.45e−71 5.15e−92

Here, 2.26e−3 denotes 2.26 × 10−3.

Table 10
Average number of iterations per point for each example (1–6) and each of the 7 methods.

Example 2A
k = m − 1

2A
k = m

2A
k = m + 3

2B
k = m − 1

2B
k = m

2B
k = m + 3

2C
k = m − 1

2C
k = m

2C
k = m + 3

LCN6

1 m = 2 4.42 3.41 3.40 4.42 4.42 4.36 4.42 3.36 3.35 4.42
2 m = 3 4.36 4.36 4.36 8.08 8.34 8.57 4.28 4.24 4.20 4.41
3 m = 3 5.96 5.97 5.99 13.05 – – 6.63 6.42 6.12 5.93
4 m = 4 4.63 4.63 4.63 – – – 4.58 4.57 4.56 4.62
5 m = 5 3.74 3.74 3.74 – – – 3.69 3.69 3.69 3.80
6 m = 5 6.18 6.19 6.19 – – – 6.10 6.05 5.95 6.15
Average 4.88 4.72 4.72 – – – 4.95 4.72 4.64 4.89

per point. In the following 6 examples, we take a 6 by 6 square centered at the origin and containing all the zeros of the
given functions. We assume that all zeros are of the same multiplicity m. We then take 360,000 equally spaced points
in the square as initial points for the iterative methods. We color the point based on the root it converged to. This way
we can find out if the method converged within the maximum number of iteration allowed and if it converged to the
root closer to the initial point.

We now are ready to discuss the complex dynamics of iterative maps (5.5) and (5.9) applied to various polynomials.
To continue our discussion, let us first identify three members of iterative maps associated with Case 2 for iterative
map (5.5) by GKN2A, GKN2B and GKN2C respectively with a choice of parameter values in Table 2. In addition,
we identify an iterative map (5.9) associated with LCN6.

Example 1. As a first example, we have taken a quadratic polynomial raised to the power of 2 with all real roots:

p1(z) = (z2
− 1)2. (6.1)

Clearly the roots are ±1 with multiplicity 2. Basins of attraction for iterative maps GKN2A, GKN2B and GKN2C
for k = m − 1, m, m + 3 and LCN6 are illustrated in Fig. 1. Each basin is painted in a different color. At a root its



Y.H. Geum et al. / Mathematics and Computers in Simulation 136 (2017) 1–21 15

Fig. 1. The top left for 2A k = m − 1, top center for 2A k = m, and top right for 2A k = m + 3, second row left for 2B k = m − 1, second row
center for 2B k = m, second row right for 2B k = m + 3, third row left for 2C k = m − 1, third row center for 2C k = m, third row right for 2C
k = m + 3 and the bottom for LCN6 for the roots of the polynomial (z2

− 1)2.

color is white, while getting darker for more iterations required for convergence within the iteration limit. At black
points, we recognize that the corresponding iterative maps did not converge within the iteration limit of 40 currently
prescribed in this experiment. Based on the displayed results in Fig. 1, we find that GKN2A and GKN2C with k = m
and k = m + 3 are best, since there are no black points. If we look at the first row of Table 10, we find that these are
the cases with the lowest number of iterations per point. On the other hand the case with k = m + 3 requires much
more CPU time than the one with k = m. LCN6 took less CPU time than GKN2A with k = m + 3, GKN2B and
GKN2C for those values of k we tried (see Table 11).

Example 2. In our second example, we have taken a cubic polynomial raised to the power of 3:

p2(z) = (z3
+ 4z2

− 10)3. (6.2)

Basins of attraction for GKN2A, GKN2B, GKN2C and LCN6 are illustrated in Fig. 2. We can see now that the
only cases with black points are GKN2B with the 3 k values we tried. In terms of the average number of iterations
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Fig. 2. The top left for 2A k = m − 1, top center for 2A k = m, and top right for 2A k = m + 3, second row left for 2B k = m − 1, second row
center for 2B k = m, second row right for 2B k = m + 3, third row left for 2C k = m − 1, third row center for 2C k = m, third row right for 2C
k = m + 3 and the bottom for LCN6 for the roots of the polynomial (z3

+ 4z2
− 10)3.

Table 11
CPU time (in seconds) required for each example (1–6) and each of the 7 methods using a Dell Multiplex-990.

Example 2A
k = m − 1

2A
k = m

2A
k = m + 3

2B
k = m − 1

2B
k = m

2B
k = m + 3

2C
k = m − 1

2C
k = m

2C
k = m + 3

LCN6

1 m = 2 186.19 170.19 779.11 291.45 469.54 1009.95 278.22 363.56 777.74 253.54
2 m = 3 642.06 1276.63 1270.01 1204.48 2521.55 2440.01 626.28 1233.04 1218.63 499.71
3 m = 3 884.43 1774.49 1774.23 1845.62 – – 959.88 1837.56 1721.48 663.30
4 m = 4 1172.47 1289.78 1310.64 – – – 1145.54 1272.71 1265.27 458.11
5 m = 5 875.45 972.38 937.06 – – – 841.20 968.51 886.16 298.49
6 m = 5 1578.43 1824.22 1701.97 – – – 1516.67 1701.92 1612.95 658.02
Average 889.85 1217.95 1295.50 – – – 894.63 1229.88 1247.04 471.86

(see Table 10) GKN2C for any k requires slightly less than GKN2A and LCN6 and much less than GKN2B. In terms
of CPU time, LCN6 is much faster than any of the other methods followed by GKN2C with k = m − 1 and GKN2A
with k = m − 1. In the following examples we will not show GKN2B with k = m, m + 3.
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Fig. 3. The top left for 2A k = m − 1, top center for 2A k = m, and top right for 2A k = m + 3, second row for 2B k = m − 1, third row left
for 2C k = m − 1, third row center for 2C k = m, third row right for 2C k = m + 3 and the bottom row for LCN6 for the roots of the polynomial
(z5

− 1)3.

Example 3. As a third example, we have taken a quintic polynomial raised to the power of 3:

p3(z) = (z5
− 1)3. (6.3)

Basins of attraction for GKN2A, GKN2B (with k = m − 1), GKN2C and LCN6 are illustrated in Fig. 3. GKN2B
and GKN2C are the only ones having black points. All the other plots seem to be the same. If we examine the average
number of iterations per point (see Table 10), we find that the range is 5.93–5.99 for GKN2A and LCN6 whereas
GKN2C requires slightly more 6.12–6.63. Again, no appreciable difference between GKN2A and LCN6. On the
other hand, the CPU time for LCN6 was the smallest (663 s) followed by GKN2A with k = m − 1 (884 s) and
GKN2C with k = m − 1 (960 s). We will not show GKN2B for the rest of the examples since they did not perform
as well as the others.

Example 4. As a fourth example, we have taken a different cubic polynomial raised to the power of 4:

p4(z) = (z3
− z)4. (6.4)

Now all the roots are real. Basins of attraction for GKN2A, GKN2C and LCN6 are illustrated in Fig. 4. It is clear
that the basins of attraction for all 7 methods are similar. The average number of iterations per point is also the
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Fig. 4. The top left for 2A k = m − 1, top center for 2A k = m, and top right for 2A k = m + 3, second row left for 2C k = m − 1, second row
center for 2C k = m, second row right for 2C k = m + 3 and the bottom for LCN6 for the roots of the polynomial (z3

− z)4.

same (4.56–4.63 iterations on average) but LCN6 is much faster (458.11 s) followed in a distance by GKN2C with
k = m − 1 (1145 s) and GKN2A with k = m − 1 (1172 s). We believe that the cost is associated with computing the
kth root.

Example 5. As a fifth example, we have taken a quadratic polynomial raised to the power of 5:

p5(z) = (z2
− 1)5. (6.5)

Basins of attraction for GKN2A, GKN2C and LCN6 are illustrated in Fig. 5. Again there is no visible difference
between the plots. Consulting Table 10 we find that GKN2A requires 3.74 iteration per point (on average) vs. 3.80
for LCN6. The lowest is GKN2C with 3.69 iterations per point (on average). As before the difference is in the CPU
time required. The algorithm LCN6 requires about 298.49 s followed by GKN2C with k = m − 1 with 841.20 s and
GKN2A with k = m −1 with 875.45 s. The other 4 require more than 900 s. Notice that even though the roots for this
polynomial are the same as those in example 1 (except for the multiplicity) we do not find black points in the basins
for this example.

Example 6. As a last example, we have taken a quartic polynomial raised to the power of 5:

p6(z) = (z4
− 1)5. (6.6)

Basins of attraction for GKN2A, GKN2C and LCN6 are illustrated in Fig. 6. There is no visible difference between
the plots for GKN2A and LCN6. There are black points in GKN2C for the three k values we chose. The average
number of iterations per point (see Table 10) is about the same for all cases. The CPU time for all new methods is
about 2.5 times the CPU time used by LCN6.

To summarize, we have averaged the number of iterations per point and the CPU time for all examples. We can
conclude that on average (on these 6 examples) LCN6 is the fastest followed by GKN2A and GKN2C both with
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Fig. 5. The top left for 2A k = m − 1, top center for 2A k = m, and top right for 2A k = m + 3, second row left for 2C k = m − 1, second row
center for 2C k = m, second row right for 2C k = m + 3 and the bottom for LCN6 for the roots of the polynomial (z2

− 1)5.

Table 12
Number of points requiring 40 iterations for each example (1–6) and each of the 7 methods.

Example 2A
k = m − 1

2A
k = m

2A
k = m + 3

2B
k = m − 1

2B
k = m

2B
k = m + 3

2C
k = m − 1

2C
k = m

2C
k = m + 3

LCN6

1 m = 2 10 289 1 1 10 289 10 289 9 565 10 289 1 1 10 289
2 m = 3 1 1 1 33 380 37 324 42 807 7 1 1 91
3 m = 3 293 282 315 83 434 – – 10 327 7453 3667 227
4 m = 4 0 0 0 – – – 0 0 0 0
5 m = 5 3 1 1 – – – 1 1 1 601
6 m = 5 281 281 225 – – – 3525 2705 1585 1217
Average 1811.17 94.33 90.5 – – – 4024.83 1693.5 875.83 2070.8

k = m − 1. In terms of the average number of iterations per point, all seven methods are about the same (4.6–4.9).
Another piece of information we collected here in Table 12 is the number of points requiring 40 iterations for each
example and each method. It turns out that GKN2A with k = m + 3 has the lowest number of points on average (90)
followed by GKN2A with k = m with 94 points. The highest was GKN2C with k = m − 1 and the second highest
is LCN6. We have thus found a more robust method than LCN6 which on average has the lowest number of points
requiring 40 iterations, namely GKN2A with k = m + 3 and k = m. Unfortunately these are also the ones that use
most CPU time.

By controlling parameters present in the structure of the weight function Q f of our proposed methods (3.1), we
have improved not only the computational errors but also the dynamical behavior affecting the structure of basins
of attraction with the presence of various extraneous fixed points of iterative map (5.5). A technique of varying the
extraneous fixed points is to adjust various parameters of the weight function of (5.5) when applied to a well-known
polynomial p(z) = (z2

−1)m as employed by [31,35,46]. In our future work developing a new family of multiple-zero
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Fig. 6. The top left for 2A k = m − 1, top center for 2A k = m, and top right for 2A k = m + 3, second row left for 2C k = m − 1, second row
center for 2C k = m, second row right for 2C k = m + 3 and the bottom for LCN6 for the roots of the polynomial (z4

− 1)5.

finders, our current approach based on the principal analytic branch of the kth root of a derivative-to-derivative ratio
would play a crucial role in designing a higher-order family of multiple-zero finders as well as in enhancing relevant
dynamics associated with basins of attraction when applied to a wide variety of complex polynomials by controlling
free parameters present in a structure of the desired weight function.
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