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a b s t r a c t

There are several methods for solving a nonlinear algebraic equation having roots of a
given multiplicity m. Here we compare a family of Laguerre methods of order three as well
as two others of the same order and show that Euler–Cauchy’s method is best. We discuss
the conjugacy maps and the effect of the extraneous roots on the basins of attraction.
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1. Introduction

There is a vast literature on the solution of nonlinear equations and nonlinear systems, see for example Ostrowski [1],
Traub [2], Neta [3] and the recent book by Petković et al. [4] and references therein. Most of the algorithms are for finding
a simple root of a nonlinear equation f ðxÞ ¼ 0, i.e., for a root a we have f ðaÞ ¼ 0 and f 0ðaÞ – 0. In this paper we are interested
in the case that a is a root of multiplicity m > 1. There are very few methods for multiple roots when the multiplicity is
known. The first one is due to Schröder [5] and it is also referred to as modified Newton,

xnþ1 ¼ xn �m
f ðxnÞ
f 0ðxnÞ

ð1Þ

The method is based on Newton’s method for the function GðxÞ ¼
ffiffiffiffiffiffiffiffiffi
f ðxÞm

p
which obviously has a simple root at a, the multiple

root with multiplicity m of f ðxÞ.
Another method based on the same G is Laguerre’s method

xnþ1 ¼ xn �
k f ðxnÞ

f 0ðxnÞ

1þ sgnðk�mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k�m
m

� �
ðk� 1Þ � k f ðxnÞf 00 ðxnÞ

f 0 ðxnÞ2

h ir ð2Þ

where k ( – 0; m) is a real parameter. When f ðxÞ is a polynomial of degree n, this method with k ¼ n is the ordinary Laguerre
method for multiple roots, see Bodewig [6]. This method converges cubically. Some special cases are:

� Euler–Cauchy for k ¼ 2m
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xnþ1 ¼ xn �
2m f ðxnÞ

f 0 ðxnÞ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m� 1Þ � 2m f ðxnÞf 00 ðxnÞ

f 0ðxnÞ2

q : ð3Þ

� Halley for k! 0 after rationalization

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

mþ1
2m �

f ðxnÞf 00 ðxnÞ
2f 0 ðxnÞ2

: ð4Þ

� Ostrowski for k!1

xnþ1 ¼ xn �
ffiffiffiffiffi
m
p f ðxnÞ

f 0 ðxnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f ðxnÞf 00ðxnÞ

f 0 ðxnÞ2

q : ð5Þ

Fig. 1. Euler–Cauchy’s method for the roots of the polynomial ðz2 � 1Þ2.

Fig. 2. Halley’s method for the roots of the polynomial ðz2 � 1Þ2.
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� Hansen–Patrick family [7] for k ¼ mð1=mþ 1Þ

xnþ1 ¼ xn �
mðmþ 1Þ f ðxnÞ

f 0ðxnÞ

mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmþ 1Þ � mð Þ �mðmþ 1Þ f ðxnÞf 00ðxnÞ

f 0 ðxnÞ2

q : ð6Þ

Petković et al. [8] have shown the equivalence between Laguerre family (2) and Hansen–Patrick family (6). When k! m the
method becomes second order given by (1). Two other cubically convergent methods that sometimes mistaken as members
of Laguerre’s family are: Euler–Chebyshev [2] given by

xnþ1 ¼ xn �
mð3�mÞ

2
þm2

2
f ðxnÞ
f 0ðxnÞ

f 00ðxnÞ
f 0ðxnÞ

� �
f ðxnÞ
f 0ðxnÞ

; ð7Þ

and Osada’s method [9] given by

Fig. 3. Ostrowski’s method for the roots of the polynomial ðz2 � 1Þ2.

Fig. 4. Euler–Chebyshev’s method for the roots of the polynomial ðz2 � 1Þ2.
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xnþ1 ¼ xn �
1
2

mðmþ 1Þ f ðxnÞ
f 0ðxnÞ

þ ðm� 1Þ2

2
f 0ðxnÞ
f 00ðxnÞ

: ð8Þ

Other variations on Chebyshev’s method are given by [10].
Osada [11] has shown that the error for Laguerre’s method (2) is given by

enþ1 ¼ K3ðm; kÞe3
n þ Oðe4

nÞ; ð9Þ

where the asymptotic error constant, K3ðm; kÞ is given by

K3ðm; kÞ ¼ A1ðm; kÞ
f ðmþ1ÞðaÞ
f ðmÞðaÞ

� �2

� A2ðmÞ
f ðmþ2ÞðaÞ
f ðmÞðaÞ ; ð10Þ

Fig. 5. Osada’s method for the roots of the polynomial ðz2 � 1Þ2.

Fig. 6. Euler–Cauchy’s method for the roots of the polynomial ðz3 � 1Þ2.
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with

A1ðm; kÞ ¼
1

2mðmþ 1Þ2
1� 1

k�m

� �
;

A2ðmÞ ¼
1

mðmþ 1Þðmþ 2Þ :

For Euler–Cauchy, the asymptotic error constant is

K3ðm;2mÞ ¼ m� 1

2m2ðmþ 1Þ2
f ðmþ1ÞðaÞ
f ðmÞðaÞ

� �2

� A2ðmÞ
f ðmþ2ÞðaÞ
f ðmÞðaÞ : ð11Þ

For Halley’s method (k! 0) the asymptotic error constant is

Fig. 7. Halley’s method for the roots of the polynomial ðz3 � 1Þ2.

Fig. 8. Ostrowski’s method for the roots of the polynomial ðz3 � 1Þ2.
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K3ðm; k! 0Þ ¼ 1
2m2ðmþ 1Þ

f ðmþ1ÞðaÞ
f ðmÞðaÞ

� �2

� A2ðmÞ
f ðmþ2ÞðaÞ
f ðmÞðaÞ : ð12Þ

For Ostrowski’s method (k!1) the asymptotic error constant is given by [1]

K3ðm; k!1Þ ¼
1

2mðmþ 1Þ2
f ðmþ1ÞðaÞ
f ðmÞðaÞ

� �2

� A2ðmÞ
f ðmþ2ÞðaÞ
f ðmÞðaÞ : ð13Þ

The asymptotic error constant for Euler–Chebyshev’s method (see [2]) is

K3 ¼
mþ 3

2m2ðmþ 1Þ2
f ðmþ1ÞðaÞ
f ðmÞðaÞ

� �2

� 1
mðmþ 1Þðmþ 2Þ

f ðmþ2ÞðaÞ
f ðmÞðaÞ : ð14Þ

The asymptotic error constant for Osada’s method [9] is

Fig. 9. Euler–Chebyshev’s method for the roots of the polynomial ðz3 � 1Þ2.

Fig. 10. Osada’s method for the roots of the polynomial ðz3 � 1Þ2.
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K3 ¼
ðmþ 1Þ2

2m2ðm� 1Þ
f ðmþ1ÞðaÞ
f ðmÞðaÞ

� �2

� 1
m

f ðmþ2ÞðaÞ
f ðmÞðaÞ : ð15Þ

If we define the efficiency index of a method of order p as

I ¼ p1=d; ð16Þ

where d is the number of function- (and derivative-) evaluation per step then all these methods have the same efficiency of
31=3 ¼ 1:442. There is no indication which method is superior by looking at the error constants. In the next sections we will
discuss basins of attraction and conjugacy maps for the polynomial ðz� aÞðz� bÞð Þm which is the generalization of a qua-
dratic polynomial to the case of multiple roots.

Fig. 11. Euler–Cauchy’s method for the roots of the polynomial ðz3 � 1Þ4.

Fig. 12. Halley’s method for the roots of the polynomial ðz3 � 1Þ4.
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2. Corresponding conjugacy maps for quadratic polynomials

Given two maps f and g from the Riemann sphere into itself, an analytic conjugacy between the two maps is a diffemor-
phism h from the Riemann sphere onto itself such that h � f ¼ g � h. Here we consider only quadratic polynomials raised to
mth power.

Theorem 2.1 (Euler–Cauchy’s method (3)). For a rational map RpðzÞ arising from Euler–Cauchy’s method applied to
pðzÞ ¼ ðz� aÞðz� bÞð Þm, a – b;RpðzÞ is conjugate via the Möbius transformation given by MðzÞ ¼ z�a

z�b to

SðzÞ ¼ zðz� 1Þ 1þ sgnðz2 � 1Þ
� �

:

Proof. Let pðzÞ ¼ ððz� aÞðz� bÞÞm, a – b and let M be the Möbius transformation given by MðzÞ ¼ z�a
z�b with its inverse

M�1ðuÞ ¼ ub�a
u�1 , which may be considered as a map from C [ f1g. We then have

Fig. 13. Ostrowski’s method for the roots of the polynomial ðz3 � 1Þ4.

Fig. 14. Euler–Chebyshev’s method for the roots of the polynomial ðz3 � 1Þ4.

10994 B. Neta, C. Chun / Applied Mathematics and Computation 219 (2013) 10987–11004



Author's personal copy

SðuÞ ¼ M � Rp �M�1ðuÞ ¼ M � Rp
ub� a
u� 1

� �
¼ uðu� 1Þ 1þ sgnðu2 � 1Þ

� �
: �

Theorem 2.2 (Halley’s method (4)). For a rational map RpðzÞ arising from Halley’s method applied to pðzÞ ¼ ðz� aÞðz� bÞð Þm,
a – b;RpðzÞ is conjugate via the Möbius transformation given by MðzÞ ¼ z�a

z�b to

SðzÞ ¼ z3:

Proof. Let pðzÞ ¼ ððz� aÞðz� bÞÞm, a – b and let M be the Möbius transformation given by MðzÞ ¼ z�a
z�b with its inverse

M�1ðuÞ ¼ ub�a
u�1 , which may be considered as a map from C [ f1g. We then have

SðuÞ ¼ M � Rp �M�1ðuÞ ¼ M � Rp
ub� a
u� 1

� �
¼ u3: �

Fig. 15. Osada’s method for the roots of the polynomial ðz3 � 1Þ4.

Fig. 16. Euler–Cauchy’s method for the roots of the polynomial ðz3 þ 4z2 � 10Þ3.
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Theorem 2.3 (Ostrowski’s method (5)). For a rational map RpðzÞ arising from Ostrowski’s method applied to
pðzÞ ¼ ðz� aÞðz� bÞð Þm, a – b;RpðzÞ is conjugate via the Möbius transformation given by MðzÞ ¼ z�a

z�b to

SðzÞ ¼ z sgnðzþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1

p
� 1

h i
:

Proof. Let pðzÞ ¼ ððz� aÞðz� bÞÞm, a – b and let M be the Möbius transformation given by MðzÞ ¼ z�a
z�b with its inverse

M�1ðuÞ ¼ ub�a
u�1 , which may be considered as a map from C [ f1g. We then have

SðuÞ ¼ M � Rp �M�1ðuÞ ¼ M � Rp
ub� a
u� 1

� �
¼ u sgnðuþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1

p
� 1

h i
: �

Fig. 17. Halley’s method for the roots of the polynomial ðz3 þ 4z2 � 10Þ3.

Fig. 18. Ostrowski’s method for the roots of the polynomial ðz3 þ 4z2 � 10Þ3.
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Theorem 2.4 (Euler–Chebyshev’s method (7)). For a rational map RpðzÞ arising from Euler–Chebyshev’s method applied to
pðzÞ ¼ ðz� aÞðz� bÞð Þm, a – b;RpðzÞ is conjugate via the Möbius transformation given by MðzÞ ¼ z�a

z�b to

SðzÞ ¼ z3ðzþ 2Þ:

Proof. Let pðzÞ ¼ ððz� aÞðz� bÞÞm, a – b and let M be the Möbius transformation given by MðzÞ ¼ z�a
z�b with its inverse

M�1ðuÞ ¼ ub�a
u�1 , which may be considered as a map from C [ f1g. We then have

SðuÞ ¼ M � Rp �M�1ðuÞ ¼ M � Rp
ub� a
u� 1

� �
¼ u3ðuþ 2Þ: �

Theorem 2.5 (Osada’s method (8)). For a rational map RpðzÞ arising from Osada’s method applied to pðzÞ ¼ ðz� aÞðz� bÞð Þm,
a – b;RpðzÞ is conjugate via the Möbius transformation given by MðzÞ ¼ z�a

z�b to

Fig. 19. Euler–Chebyshev’s method for the roots of the polynomial ðz3 þ 4z2 � 10Þ3.

Fig. 20. Osada’s method for the roots of the polynomial ðz3 þ 4z2 � 10Þ3.
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SðzÞ ¼ z3 ðm� 1Þzþ 2m½ �:

Proof. Let pðzÞ ¼ ððz� aÞðz� bÞÞm, a – b and let M be the Möbius transformation given by MðzÞ ¼ z�a
z�b with its inverse

M�1ðuÞ ¼ ub�a
u�1 , which may be considered as a map from C [ f1g. We then have

SðuÞ ¼ M � Rp �M�1ðuÞ ¼ M � Rp
ub� a
u� 1

� �
¼ u3 ðm� 1Þuþ 2m½ �: �

In the next two sections, we will analyze the basins of attraction to compare all these third order methods for multiple
roots. The idea of using basins of attraction was initiated by Stewart [12] and followed by the works of Amat et al. [13–16],
Scott et al. [18] and Chun et al. [17]. The only paper comparing basins of attraction for methods to obtain multiple roots is
due to Neta et al. [19]. They have not considered some of the methods appearing here.

Fig. 21. Euler–Cauchy’s method for the roots of the polynomial ðz4 � 1Þ5.

Fig. 22. Halley’s method for the roots of the polynomial ðz4 � 1Þ5.
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3. Extraneous fixed points

In solving a nonlinear equation iteratively we are looking for fixed points which are zeros of the given nonlinear function.
Many iterative methods have fixed points that are not zeros of the function of interest. Those points are called extraneous
fixed points (see [20]). Those points could be attractive which will trap an iteration sequence and give erroneous results.
Even if those extraneous fixed points are repulsive or indifferent they can complicate the situation by converging to a root
not close to the initial guess.

All of the methods discussed here can be written as

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

Hf ðxnÞ:

Clearly the root a of f ðxÞ is a fixed point of the method. The points n – a at which Hf ðnÞ ¼ 0 are also fixed points of the family,
since the second term on the right vanishes.

Fig. 23. Ostrowski’s method for the roots of the polynomial ðz4 � 1Þ5.

Fig. 24. Euler–Chebyshev’s method for the roots of the polynomial ðz4 � 1Þ5.

B. Neta, C. Chun / Applied Mathematics and Computation 219 (2013) 10987–11004 10999
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It is easy to see that Hf ðxnÞ for our methods is given in the table in Theorem 3.1.
From the table one can see that Hf does not vanish for Euler–Cauchy, Halley and Ostrowski’s methods. Therefore there are

no extraneous fixed points for these methods.

Theorem 3.1. There are two extraneous fixed points for Euler–Chebyshev’s method. They are the roots of

f ðnÞf 00ðnÞ
f 0ðnÞ2

¼ m� 3
m

: ð17Þ

Method Hf

Euler–Cauchy 2m

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m�1Þ�2mf ðxn Þf 00 ðxn Þ

f 0ðxn Þ2

q
Halley 1

mþ1
2m �

f ðxn Þf 00 ðxn Þ
2f 0ðxn Þ2

Ostrowski
ffiffiffi
m
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�f ðxn Þf 00 ðxn Þ
f 0ðxn Þ2

q
Euler–Chebyshev mð3�mÞ

2 þ m2

2
f ðxnÞ
f 0ðxnÞ

f 00 ðxnÞ
f 0ðxnÞ

Osada 1
2 mðmþ 1Þ � ðm�1Þ2

2
f 0ðxnÞ
f 00 ðxnÞ

f 0ðxnÞ
f ðxnÞ

Proof. The extraneous fixed points can be found by solving (17). For the polynomial ðz2 � 1Þm this leads to the equation

2mz2 � z2 � 1
2mz2 ¼ m� 3

m

for which the roots are n ¼ � 1ffiffi
5
p .

These fixed points are attractive. Vrcsay and Gilbert [20] show that if the points are attractive then the method will give
erroneous results. If the points are repulsive then the method may not converge to a root near the initial guess.

The poles are at z ¼ 0. h

Theorem 3.2. There are two extraneous fixed points for Osada’s method. They are the roots of

f ðnÞf 00ðnÞ
f 0ðnÞ2

¼ ðm� 1Þ2

mðmþ 1Þ : ð18Þ

Fig. 25. Osada’s method for the roots of the polynomial ðz4 � 1Þ5.
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Proof. The extraneous fixed points can be found by solving (18). For the polynomial ðz2 � 1Þm this leads to the equation

2mz2 � z2 � 1
2mz2 ¼ ðm� 1Þ2

mðmþ 1Þ ;

for which the roots are n ¼ �
ffiffiffiffiffiffiffiffiffi
mþ1

5m�3

q
.

These fixed points are repulsive for all m > 1.
The poles are at z ¼ � 1ffiffiffiffiffiffiffiffiffiffi

2m�1
p . h

4. Numerical experiments

We have used the above methods for 6 different polynomials having multiple roots with multiplicity m ¼ 2;3;4;5.
In our first example, we have taken the polynomial

Fig. 27. Halley’s method for the roots of the polynomial ðz5 � 1Þ3.

Fig. 26. Euler–Cauchy’s method for the roots of the polynomial ðz5 � 1Þ3.

B. Neta, C. Chun / Applied Mathematics and Computation 219 (2013) 10987–11004 11001
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p1ðzÞ ¼ ðz2 � 1Þ2 ð19Þ

whose roots z ¼ �1 are both real and of multiplicity m ¼ 2. The results are presented in Figs. 1–5. Notice that the darker the
shade in each basin, the faster the convergence to the root. Euler–Cauchy’s method (Fig. 1) for this example converged in 1
iteration to the closest root and in order to avoid having black points everywhere, we have used two different colors. This
only happened for ðz2 � 1Þm. Halley’s method (Fig. 2) is slightly better than Ostrowski’s (Fig. 3). Euler–Chebyshev’s (Fig. 4)
and and Osada’s method (Fig. 5) are not as good. Notice that these two methods are the only ones with extraneous fixed
points and poles along the real line.

Our next example is also having double roots. The polynomial have the three roots of unity,

p2ðzÞ ¼ ðz3 � 1Þ2: ð20Þ

The results are presented in Figs. 6–10. Again Euler–Cauchy’s (Fig. 6) and Ostrowski’s (Fig. 8) methods performed better
than Halley’s method (Fig. 2). The Euler–Chebyshev’s method (Fig. 9) was the worst and Osada’s method (Fig. 10) only
slightly better than that.

Fig. 29. Euler–Chebyshev’s method for the roots of the polynomial ðz5 � 1Þ3.

Fig. 28. Ostrowski’s method for the roots of the polynomial ðz5 � 1Þ3.
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The third example is a polynomial whose roots are all of multiplicity four. The roots are the three roots of unity, i.e.,

p3ðzÞ ¼ ðz3 � 1Þ4: ð21Þ

The results are presenetd in Figs. 11–15. Euler–Cauchy’s method was the best followed by Ostrowski’s method, Halley’s
method, Euler–Chebyshev’s and Osada’s schemes. The change in multiplicity, did not change the conclusions.

The fourth example is a polynomial whose roots are all of multiplicity three. The roots are �2:68261500670705�
:358259359924043i;1:36523001341410, i.e.,

p4ðzÞ ¼ ðz3 þ 4z2 � 10Þ3: ð22Þ

The results are presented in Figs. 16–20. Based on these figure, we arrive at the same conclusions as before.
In our next example we took the polynomial

p5ðzÞ ¼ ðz4 � 1Þ5 ð23Þ

where the roots are symmetrically located on the axes. In some sense this is similar to the first example, since in both cases
we have an even number of roots. The results are shown in Figs. 21–25. Again we can see the best is Euler–Cauchy’s method
(Fig. 21) and the worst is Osada’s method (Fig. 25).

In our last example we have the 5 roots of unity all with multiplicity three

p6ðzÞ ¼ ðz5 � 1Þ3: ð24Þ

The results are given in Figs. 26–30. Again we can see the best is Euler–Cauchy’s method (Fig. 26) and and the worst is
Osada’s method (Fig. 30).

5. Conclusions

In all six examples, we find that the best is Euler–Cauchy’s method and the worst are those with extraneous fixed points
and poles on the real line, namely Euler–Chebyshev’s and Osada’s schemes. Notice that Neta et al. [19] have found that Hal-
ley’s method is one of the best, but now that we have compared it to Euler–Cauchy’s method, we realized that the latter is
even better.
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