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Abstract
In this paperwe analyze an optimal eighth-order family ofmethods based on King's fourth or-
der method to solve a nonlinear equation. This family of methods was developed by Thukral
and Petković and uses a weight function. We analyze the family using the information on the
extraneous ixed points. Two measures of closeness of an extraneous points set to the imagi-
nary axis are considered and applied to the members of the family to ind its best performer.
The results are compared to a modi ied version of Wang-Liu method.

Keywords: Iterative methods; Order of convergence; Basin of attraction; Extraneous ixed
points; Weight functions

1 Introduction
The problem of solving a single nonlinear equation f(x) = 0 is fundamental in science and
engineering. For example, to minimize a function F (x) one has to ind the critical points, i.e.
to ind points where the derivative vanishes, i.e. F ′(x) = 0. There aremany algorithms for the
solution of nonlinear equations, see e.g. Traub [23], Neta [14] and the recent book by Petković
et al. [19]. The methods can be classi ied as one step and multistep. In a one step method we
have

xn+1 = ϕ(xn).
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The iteration function ϕ depends on the method used. For example, Newton's method is
given by

xn+1 = ϕ(xn) = xn −
f(xn)

f ′(xn)
. (1)

Some one point methods allow the use of older points, in such a case we have a one step
method with memory. For example, the secant method is given by

xn+1 = xn −
xn − xn−1

f(xn)− f(xn−1)
f(xn).

In order to increase the order of a one step method, we require higher derivatives. In
many cases the function is not smooth enough or the higher derivatives are too complicated.
Anotherway to increase the order is byusingmultistep. The recent bookbyPetković et al. [19]
is dedicated to multistep methods. A trivial example of a multistep method is a combination
of two Newton steps, i.e.

yn = xn −
f(xn)

f ′(xn)
,

xn+1 = yn −
f(yn)

f ′(yn)
.

Of course this is too expensive. The cost of a method is de ined by the number (d) of
function-evaluations per step. In the latter, the method requires four function-evaluations
(including derivatives). The ef iciency of a method is de ined by

I = p1/d,

where p is the order of the method. Clearly one strives to ind the most ef icient methods.
To this end, Kung and Traub [12] introduced the idea of optimality. A method using d eval-
uations is optimal if the order is 2d−1. They have also developed optimal multistep methods
of increasing order. Newton's method (1) is optimal of order 2. King [11] has developed an
optimal fourth order family of methods depending on a parameter β

wn = xn −
f(xn)

f ′(xn)
,

xn+1 = wn −
f(wn)

f ′(xn)

[
1 + βrn

1 + (β − 2)rn

]
,

(2)

where
rn =

f(wn)

f(xn)
. (3)

There are a number of ways to compare various techniques proposed for solving nonlin-
ear equations. Frequently, authors will pick a collection of sample equations, a collection of
algorithms for comparison and a starting point for each of the sample equations. Then com-
parisons of the various algorithms are based on the number of iterations required for conver-
gence, number of function evaluations, and/or amount of CPU time. ``The primary law in this
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type of comparison is that the starting point, although it may have been chosen at random,
represents only one of an in inite number of other choices" [20]. In recent years the Basin
of Attraction method was introduced to visually comprehend how an algorithm behaves as a
function of the various starting points. The irst comparative study using basin of attraction,
to the best of our knowledge, is by Vrscay and Gilbert [24]. They analyzed Schröder and König
rational iteration functions. Other work was done by Stewart [21], Amat et al. [1], [2], [3], [4],
Chicharro et al. [5], Chun et al. [6], [8], Cordero et al. [10], Neta et al. [16], [18] and Scott et
al. [20]. There are also similar results for methods to ind roots with multiplicity, see e.g. [7],
[15] and [17].

In this paper we empirically analyze a family of optimal eighth order methods based on
King's fourth order method (2). We assume that f : C → C. The analysis of King's method
(2) was included in [18]. It was found that the best choice (in terms of basin of attraction) for
the parameter is β = 3− 2

√
2.

2 Optimal Eighth-order Family of Methods
We analyze the following three-step family of methods based on King's fourth order method
(2)

wn = xn −
f(xn)

f ′(xn)
,

sn = wn −
f(wn)

f ′(xn)

[
1 + βrn

1 + (β − 2)rn

]
,

xn+1 = sn −
f(sn)

f ′(xn)

[
ϕ(rn) +

f(sn)

f(wn)− af(sn)
+

4f(sn)

f(xn)

]
,

(4)

where rn is given by (3) and ϕ(r) is a real-valued weight function satisfying the conditions (to
ensure eighth order convergence)

ϕ(0) = 1, ϕ′(0) = 2, ϕ′′(0) = 10− 4β, ϕ′′′(0) = 12β2 − 72β + 72. (5)
This method was developed by Thukral and Petković [22].

There aremany other optimal eighth ordermethods that are based on King's methodwith
a third step based on interpolating polynomials, e.g. Neta [13] has used inverse interpolation.
Wang and Liu [25] have developed a method based on Hermite interpolation to remove the
derivative in the third step. They also use Ostrowski's methodwhich is a special case of King's
methodwhen β = 0. Neta et al. [16] has improved themethod by replacing the function value
in the third step instead of the derivative. The modi ied method is given by

wn = xn −
f(xn)

f ′(xn)
,

sn = wn −
f(wn)

f ′(xn)

f(xn)

f(xn)− 2f(wn)
,

xn+1 = sn −
H3(sn)

f ′(sn)
,

(6)
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where
H3(sn) = f(xn) + f ′(xn)

(sn − wn)
2(sn − xn)

(wn − xn)(xn + 2wn − 3sn)

+ f ′(sn)
(sn − wn)(xn − sn)

xn + 2wn − 3sn

− f(xn)− f(wn)

xn − wn

(sn − xn)
3

(wn − xn)(xn + 2wn − 3sn)
.

(7)

We are only interested in the eighth ordermethod (4) which is based on aweight function.
Wewill compare our results to one of the bestmethods (see [16]), namely themodi iedWang-
Liu (WLN) given by (6)-(7). In a previous work [9] a method for choosing a weight function is
discussed. It was shown in [7] that one should not use a polynomial as a weight function, but
a rational function.

For the method (4) we consider the weight fucntions

ϕ(t) =
a+ bt

1 + dt+ gt2
,

ϕ(t) =
a+ bt+ ct2

1 + dt+ gt2
.

(8)

These functions satisfying the conditions (5) are given by

ϕ(t) =
2β(β − 2)t+ 2β − 1

(1 + 4β)t2 + 2(1− 4β + β2)t+ 2β − 1
, (9)

ϕ(t) =
(2(g − 2)β − g − 1)t2 + 2(g + β2 − 4β + 1)t+ 2β − 5

(2β − 5)gt2 + 2(g + 2β2 − 6β + 6)t+ 2β − 5
. (10)

Wedenote the family ofmethods (4)with theweight function (9)byLQK(LinearoverQuadrat-
ic usingKing-based) and theoneusing theweight function (10)byQQK(Quadratic overQuadrat-
ic using King-based). As we have seen in previous works, one should use the extraneous ixed
points to ind the best choice for the parameters.

3 Extraneous Fixed Points
In solving a nonlinear equation iteratively we are looking for ixed points which are zeros of
the given nonlinear function. Manymultipoint iterativemethods have ixed points that are not
zeros of the function of interest. Thus, it is necessary to investigate the number of extraneous
ixed points, their location and their properties. In order to ind the extraneous ixed point,
we rewrite the methods of interest in the form

xn+1 = xn −
f(xn)

f ′(xn)
Hf (xn, wn, sn), (11)

where the functionHf for King's based method is given by

Hf (xn, wn, sn) = 1 + rn
1 + βrn

1 + (β − 2)rn

+
f(sn)

f(xn)

[
ϕ(rn) +

f(sn)

f(wn)− af(sn)
+

4f(sn)

f(xn)

]
,

(12)
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and for WLN is given by

Hf (xn, wn, sn) = 1 +
f(wn)

f(xn)− 2f(wn)
+

H3(sn)

f(xn)

f ′(xn)

f ′(sn)
. (13)

Clearly, if xn is the root then from (11)we have xn+1 = xn and the iterative process converged.
Butwe can have xn+1 = xn even if xn is not the root butHf (xn, wn, sn) = 0.Those latter points
are called extraneous ixed points. Neta et al. [16] have discussed the extraneous ixed points
for WLN and they are all on the imaginary axis. It was demonstrated that it is best to have the
extraneous ixed points on the imaginary axis or close to it. For example, in the case of King's
method, we found that the best performance is when the parameter β = 3 − 2

√
2 since then

the extraneous ixed points are closest to the imaginary axis.
We have searched the parameter spaces (β, a in the case of LQK and β, g, a in the case

of QQK) and found that the extraneous ixed points are not on the imaginary axis. We have
tried to get several measures of closeness to the imaginary axis and experimented with those
members from the parameter spaces.

Let E = {z1, z2, ..., znβ,g,a
} be the set of the extraneous ixed points corresponding to the

values given to β, g and a. We de ine

d(β, g, a) = max
zi∈E

|Re(zi)|. (14)

We look for the paramters β, g and a which attain the minimum of d(β, g, a). For the family
LQK, theminimumof d(β, a) occurs atβ = −0.9 and a = 1.8. For theQQK family, theminimum
of d(β, g, a) occurs at β = −0.8, g = 4, a = 1.5, and at β = 3− 2

√
2, g = −2.2, a = 3.7.

Another method to choose the parameters is by considering the stability of z ∈ E de ined
by

dq(z) =
dq

dz
(z), (15)

where q is the iteration function of (11). We de ine a function, the averaged stabilty value of
the set E by

A(β, g, a) =

∑
zi∈E

|dq(zi)|

nβ,g,a

. (16)

The smaller A becomes, the less chaotic the basin of attraction tends to. For the family LQK,
the minimum of A(β, a) occurs at β = 2.7 and a = −0.8. For the value β = 3 − 2

√
2, the

mimimum of A(3− 2
√
2, a) occurs at a = 3.

In the next section we plot the basins of attraction for these ive cases along with the basin
for WLN to ind the best performer.

4 Numerical Experiments
In this section, we give the results of using the 7 cases described in Table 1 on ive differ-
ent polynomial equations. We also compare the results to 4 other methods based on King's
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method. The irst, denoted Neta6, is Neta's sixth order family of methods [26] given by

yn = xn −
f(xn)

f ′(xn)
,

zn = yn −
f(yn)

f ′(xn)

f(xn) + βf(yn)

fn + (β − 2)f(yn)
,

xn+1 = zn −
f(zn)

f ′(xn)

f(xn)− f(yn)

fn − 3f(yn)
.

(17)

The second one is a seventh order method based on Newton's interpolating polynomial
and King's method, denoted NIK7, and is given by (see (3.35) in [19])

yn = xn −
f(xn)

f ′(xn)
,

zn = yn −
f(yn)

f ′(xn)

f(xn) + βf(yn)

f(xn) + (β − 2)f(yn)
,

xn+1 = zn −
f(zn)

f [zn, yn] + f [zn, yn, xn](zn − yn)

(18)

The third is an eighth order method, denoted Neta8, and is given by [13]

yn = xn −
f(xn)

f ′(xn)
,

tn = yn −
f(yn)

f ′(xn)

f(xn) + βf(yn)

f(xn) + (β − 2)f(yn)
,

xn+1 = xn −
f(xn)

f ′(xn)
+ γf(xn)

2 − ρf(xn)
3,

(19)

where

ρ =
ϕy − ϕt

Fy − Ft

, γ = ϕy − ρFy, Fy = f(yn)− f(xn), Ft = f(tn)− f(xn),

ϕy =
yn − xn

F 2
y

− 1

Fyf ′(xn)
, ϕt =

tn − xn

F 2
t

− 1

Ftf ′(xn)
.

(20)

6



Changbum Chun and Beny Neta / American Journal of Algorithms and Computing
(2015) Vol. 2 No. 1 pp. 1-17

The last one is a sixteenth order method, denoted Neta16, and is given by [13]

yn = xn −
f(xn)

f ′(xn)
,

zn = yn −
f(yn)

f ′(xn)

f(xn) + βf(yn)

f(xn) + (β − 2)f(yn)
,

tn = xn −
f(xn)

f ′(xn)
+ cnf(xn)

2 − dnf(xn)
3

xn+1 = xn −
f(xn)

f ′(xn)
+ ρnf(xn)

2 − γnf(xn)
3 + qnf(xn)

4

(21)

where cn and dn are given

dn =
1

[f(yn)− f(xn)] [f(yn)− f(zn)]

[
yn − xn

f(yn)− f(xn)
− 1

f ′(xn)

]

− 1

[f(yn)− f(zn)] [f(zn)− f(xn)]

[
zn − xn

f(zn)− f(xn)
− 1

f ′(xn)

]

cn =
1

f(yn)− f(xn)

[
yn − xn

f(yn)− f(xn)
− 1

f ′(xn)

]
− dn [f(yn)− f(xn)]

(22)

and

qn =

ϕ(tn)− ϕ(zn)

F (tn)− F (zn)
− ϕ(yn)− ϕ(zn)

F (yn)− F (zn)

F (tn)− F (yn)
,

γn =
ϕ(tn)− ϕ(zn)

F (tn)− F (zn)
− qn (F (tn) + F (zn)) ,

ρn = ϕ(tn)− γnF (tn)− qnF
2(tn),

(23)

and for δn = yn, zn, tn
F (δn) = f(δn)− f(xn),

ϕ(δn) =
(δn − xn)

F 2(δn)
− 1

f ′(xn)F (δn)
.

(24)

In all these methods we have chosen the parameter β = 3 − 2
√
2 as suggested by the

analysis in [18].
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Table 1: The eleven cases for experimentation
case method β g a
1 LQK -0.9 - 1.8
2 LQK 3− 2

√
2 - 3

3 LQK 2.7 - -0.8
4 QQK -0.8 4 1.5
5 QQK 3− 2

√
2 -2.2 3.7

6 QQK -1.7 -3.3 -1.7
7 WLN - - -
8 Neta6 - - -
9 NIK7 - - -
10 Neta8 - - -
11 Neta16 - - -

We have ran our code for each case and each example on a 6 by 6 square centered at the
origin. We have taken 360,000 equally spaced points in the square as initial points for the
algorithms. We have recorded the root the method converged to and the numebr of iterations
it took. We chose a color for each root and the intensity of the color gives information on the
number of iterations. The slower the convergence the darker the shade. If the scheme did not
converge in 40 iterations to one of the roots, we color the point black.

Example 1
In our irst example, we have taken the quadratic polynomial

p1(z) = z2 − 1, (25)

whose roots, z = ±1, are both real. The results are given in Figures 1-6. It is clear that WLN
(Fig. 4 left) and NIK7 (Fig. 5 left ) are the best since there are no black points. Case 3 (Fig. 2
left) has large black region. Case 6 (Fig. 3 right) has points converging to the distant roots and
black region. Case 4 (Fig. 2 right), Neta6 (Fig. 4 right), Neta8 (Fig. 5 right), case 1 (Fig. 1 left
), and case 2 (Fig. 1 right) are slightly better but are not as good as cases 7 (Fig. 4 left) and 9
(Fig. 5 left). In order to get a more quantitative comparison, we have computed the average
number of iterations per point. The smaller the number the faster the method converged on
average. These numerical results are given in Table 2. It is clear from the table that WLN is
best followed by NIK7 and the worst are cases 6 and 11. Therefore, in the other examples we
will not show these cases. We have also computed the CPU time in seconds required to run
each program on each example. These results are given in Table 3 and they show that NIK7
and Neta6 are slightly faster than WLN. Again cases 6 and 11 took the most CPU time.
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Table 2: Average number of iterations per point for each example (1--6) and each case
case Ex1 Ex2 Ex3 Ex4 Ex5 Average
1 2.6166 7.4865 6.3671 31.3655 37.3817 17.04348
2 2.6548 3.9913 3.2882 6.9025 8.2288 5.01312
3 4.6811 8.9580 6.5885 15.2082 17.6276 10.61268
4 2.5688 5.7337 6.2696 23.6324 37.8956 15.22002
5 3.9804 4.9690 3.6428 8.1225 10.0625 6.15544
6 5.4280 31.3446 6.1734 22.0437 19.4689 16.89172

WLN 2.2676 2.7084 2.5306 3.7191 4.7871 3.20256
Neta6 2.5744 3.4305 3.1251 13.6225 33.7292 11.2963
NIK7 2.3195 6.3093 2.8332 6.9646 9.3339 5.5521
Neta8 2.5711 7.0367 2.8358 7.9514 9.1620 5.9114
Neta16 5.6447 7.5538 4.7945 11.4577 12.2628 8.3427

Fig. 1: LQK with β = −0.9 and a = 1.8 (left) and LQK with β = 3− 2
√
2 and a = 3 (right) for

the roots of the polynomial z2 − 1

Fig. 2: LQK with β = 2.7 and a = −0.8 (left) and QQK with β = −0.8, g = 4 and a = 1.5
(right) for the roots of the polynomial z2 − 1
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Fig. 3: QQK with β = 3− 2
√
2, g = −2.2 and a = 3.7 (left) and QQK with β = −1.7, g = −3.3

and a = −1.7 (right) for the roots of the polynomial z2 − 1

Fig. 4: WLN (left) and Neta6 (right for the roots of the polynomial z2 − 1

Fig. 5: NIK7 (left) and Neta8 (right) for the roots of the polynomial z2 − 1

Fig. 6: Neta16 for the roots of the polynomial z2 − 1

Example 2
In the second example we have taken a cubic polynomial with the 3 roots of unity, i.e.

p2(z) = z3 − 1. (26)
The results are presented in Figures 7-11. Again, WLN outperformed the others. Neta6 (Fig.
10 left) and case 2 (Fig. 7 right) are second best since the black regions are only in the bound-
ary between the roots. Case 3 is the worst among those in the Figures. These conclusions are
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con irmed quantitatively by the results in Table 2. The CPU time shows a slight advantage of
NIK7 over case 2, (see Table 3).

Fig. 7: LQK with β = −0.9 and a = 1.8 (left) and LQK with β = 3− 2
√
2 and a = 3 (right) for

the roots of the polynomial z3 − 1

Fig. 8: LQK with β = 2.7 and a = −0.8 (left) and QQK with β = −0.8, g = 4 and a = 1.5
(right) for the roots of the polynomial z3 − 1

Fig. 9: QQK with β = 3 − 2
√
2, g = −2.2 and a = 3.7 (left) and WLN (right) for the roots of

the polynomial z3 − 1

Fig. 10: Neta6 (left) and NIK7 (right) for the roots of the polynomial z3 − 1
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Fig. 11: Neta8 for the roots of the polynomial z3 − 1

Example 3
In the third example we have taken a polynomial of degree 4 with 4 real roots at ±1,±3,

i.e.
p3(z) = z4 − 10z2 + 9. (27)

The results are presented in Figures 12-16. Notice the chaos in Figures 12 left and 13 right.
This is also seen in Table 2. Again, WLN (Fig. 14 right) is the best performer followed by NIK7
(Fig. 15 right) and Neta8 (Fig. 16). The CPU time shows that Neta6 is slightly faster than
Neta8. Since cases 1 and 3 were the worst in this example, we will not show the basins for
these cases in the last two examples. Case 4 is slightly better that cases 1 and 3, but it has
more black points. That is the reason why the CPU time for case 4 is slightly higher than case
3.

Fig. 12: LQK with β = −0.9 and a = 1.8 (left) and LQK with β = 3 − 2
√
2 and a = 3 (right)

for the roots of the polynomial z4 − 10z2 + 9

Fig. 13: LQK with β = 2.7 and a = −0.8 (left) and QQK with β = −0.8, g = 4 and a = 1.5
(right) for the roots of the polynomial z4 − 10z2 + 9
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Fig. 14: QQK with β = 3− 2
√
2, g = −2.2 and a = 3.7 (left) and WLN (right) for the roots of

the polynomial z4 − 10z2 + 9

Fig. 15: Neta6 (left) and NIK7 (right) for the roots of the polynomial z4 − 10z2 + 9

Fig. 16: Neta8 for the roots of the polynomial z4 − 10z2 + 9

Example 4
In the next example we have taken a polynomial of degree 5 with the 5 roots of unity, i.e.

p4(z) = z5 − 1. (28)
The results are presented in Figures 17-20. Again, WLN (Fig. 18 right) is best, followed by
case 2 (Fig. 17 left) and NIK7 (Fig. 19 right). Case 4 (Fig. 17 right) shows the largest black
regions and it tooks the most CPU time to run.

Fig. 17: LQK with β = 3 − 2
√
2 and a = 3 (left) and QQK with β = −0.8, g = 4 and a = 1.5

(right) for the roots of the polynomial z5 − 1
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Fig. 18: QQK with β = 3− 2
√
2, g = −2.2 and a = 3.7 (left) and WLN (right) for the roots of

the polynomial z5 − 1

Fig. 19: Neta6 (left) and NIK7 (right) for the roots of the polynomial z5 − 1

Fig. 20: Neta8 for the roots of the polynomial z5 − 1

Table 3: CPU time in sec. for each example (1--6) and each case using Dell Optiplex 990
case Ex1 Ex2 Ex3 Ex4 Ex5 Average
1 258.89 904.13 980.49 - - -
2 332.70 610.46 592.22 1179.27 1586.51 860.23
3 458.70 1038.40 1014.08 - - -
4 294.74 784.95 1065.42 3554.62 - -
5 558.42 845.22 741.59 1521.88 - -
6 612.42 - - - - -

WLN 201.38 318.07 375.85 517.59 778.78 438.33
Neta6 191.14 332.60 412.06 1536.93 - -
NIK7 186.99 500.27 388.17 671.11 1009.32 551.17
Neta8 277.52 791.48 517.17 1074.86 1483.10 828.82
Neta16 771.84 - - - - -
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Example 5
In the last example we took a polynomial of degree 7 having the 7 roots of unity, i.e.

p6(z) = z7 − 1. (29)

The results for cases 2, 7, 9, and10 are presented in Figures 21-22. As in all previous examples,
WLN (Fig. 21 right) performed better than the others and now case 2 (Fig. 21 left) is slightly
better than cases 9 (Fig. 22 left) and 10 (Fig. 22 right).

Based on all these examples, we computed the average of the 5 experiments (see Table
2) and found that WLN is best overall, followed by cases 2, 9, and 10. Case 2 is the only new
one that performed well on average. This case is based a rational weight function (LQK) with
β = 3− 2

√
2 having a minimum for the measureA. The CPU time results (Table 3) show that

case 9 is slightly faster than case 2, but it is of a lower order of convergence than case 2.

Fig. 21: LQKwithβ = 3−2
√
2 and a = 3 (left) andWLN (right) for the roots of the polynomial

z7 − 1

Fig. 22: NIK7 (left) and Neta8 (right) for the roots of the polynomial z7 − 1

5 Conclusion
Wehaveempirically analyzeda family ofKing-basedeighthordermethodsdevelopedbyThukral
and Petković [22] and shown how to choose the weight function and the parameters involved
in the family ofmethods. Several possibilitieswere suggested for the parameters. One of those
came close toWLN, NIK7 andNeta8. This one having the parameter β = 3−2

√
2 and aweight

function being a quotient of linear over quadratic polynomials. This parameter β was found
to yield the best performance of King's fourth order method and used in Neta6, NIK7, Neta8
and Neta16.
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